80 research outputs found

    A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach

    Get PDF
    AbstractFraud in the global food supply chain is becoming increasingly common due to the huge profits associated with this type of criminal activity. Food commodities and ingredients that are expensive and are part of complex supply chains are particularly vulnerable. Both herbs and spices fit these criteria perfectly and yet strategies to detect fraudulent adulteration are still far from robust. An FT-IR screening method coupled to data analysis using chemometrics and a second method using LC-HRMS were developed, with the latter detecting commonly used adulterants by biomarker identification. The two tier testing strategy was applied to 78 samples obtained from a variety of retail and on-line sources. There was 100% agreement between the two tests that over 24% of all samples tested had some form of adulterants present. The innovative strategy devised could potentially be used for testing the global supply chains for fraud in many different forms of herbs

    Evaluation of an alternative spectroscopic approach for aflatoxin analysis: Comparative analysis of food and feed samples with UPLC-MS/MS

    Get PDF
    Increasing research has highlighted the effects of changing climates on the occurrence and prevalence of toxigenic Aspergillus species producing aflatoxins. There is concern of the toxicological effects to human health and animal productivity following acute and chronic exposure that may affect the future ability to provide safe and sufficient food globally. Considerable research has focused on the detection of these toxins, based on the physicochemical and biochemical properties of the aflatoxin compounds, in agricultural products for human and animal consumption. As improvements in food security continue more regulations for acceptable levels of aflatoxins have arisen globally; the most stringent in Europe. These regulations are important for developing countries as aflatoxin occurrence is high significantly effecting international trade and the economy. In developed countries analytical approaches have become highly sophisticated, capable of attaining results with high precision and accuracy, suitable for regulatory laboratories. Regrettably, many countries that are affected by aflatoxin contamination do not have resources for high tech HPLC and MS instrumentation and require more affordable, yet robust equally accurate alternatives that may be used by producers, processors and traders in emerging economies. It is especially important that those companies wishing to exploit the opportunities offered by lucrative but highly regulated markets in the developed world, have access to analytical methods that will ensure that their exports meet their customers quality and safety requirements. This work evaluates the ToxiMet system as an alternative approach to UPLC–MS/MS for the detection and determination of aflatoxins relative to current European regulatory standards. Four commodities: rice grain, maize cracked and flour, peanut paste and dried distillers grains were analysed for natural aflatoxin contamination. For B1 and total aflatoxins determination the qualitative correlation, above or below the regulatory limit, was good for all commodities with the exception of the dried distillers grain samples for B1 for which no calibration existed. For B1 the quantitative R2 correlations were 0.92, 0.92, 0.88 (<250 μg/kg) and 0.7 for rice, maize, peanuts and dried distillers grain samples respectively whereas for total aflatoxins the quantitative correlation was 0.92, 0.94, 0.88 and 0.91. The ToxiMet system could be used as an alternative for aflatoxin analysis for current legislation but some consideration should be given to aflatoxin M1 regulatory levels for these commodities considering the high levels detected in this study especially for maize and peanuts. (Résumé d'auteur

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    © 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore