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Abstract  22 

European Regulation 1169/2011 requires producers of foods that contain refined vegetable 23 

oils to label the oil types. A novel rapid and staged methodology has been developed for the 24 

first time to identify common oil species in oil blends. The qualitative method consists of a 25 

combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty 26 

acid chromatographic analysis to confirm the composition of the oils when required. 27 

Calibration models and specific classification criteria were developed and all data were fused 28 

into a simple decision-making system. The single lab validation of the method demonstrated 29 

the very good performance (96% correct classification, 100% specificity, 4% false positive 30 

rate). Only a small fraction of the samples needed to be confirmed with the majority of oils 31 

identified rapidly using only the spectroscopic procedure. The results demonstrate the huge 32 

potential of the methodology for a wide range of oil authenticity work. 33 

 34 

 35 

keywords: authentication, labelling, vegetable oil, blend, palm oil, spectroscopy. 36 

  37 
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1. Introduction  38 

Almost all processed foods, such as confectionary, pastry and other ready-to-eat products, 39 

contain substantial amounts of refined vegetable oil. According to current European 40 

legislation requirements it is labelled as simply ‘vegetable oil’ although it can be pure oil or 41 

blends of different oil botanical species. The most common oils used in food manufacturing 42 

are refined palm, rapeseed, sunflower oil, soybean oil and to a lesser extent, cottonseed and 43 

coconut oil. The EU Regulation 1169 on the Provision of Food Information to Consumers 44 

which take effect from 13 December 2014 across the EU, introduces a new requirement 45 

that changes the way these products are labelled. In order to provide additional information 46 

to the consumer, the food manufacturers will need to include the type of oil used (i.e. to list 47 

all the oil botanical species) in the ingredients’ list on the label. It will not be necessary to 48 

indicate the proportion in which oils are used where there is a mixture, and the label may 49 

indicate that the oils are used in different proportions (to allow for seasonal and market 50 

fluctuations). 51 

From the vegetable oils listed, palm oil will be the most abundant oil and is used 52 

extensively in food manufacturing. Palm oil has emerged as the preferred oil source due to 53 

its naturally low trans-fatty acid content, unique flavour, cost and desirable physical 54 

properties (texture and melting point). Today the majority of the processed foods contain 55 

palm oil in some form (palm oil or its derivatives, palm olein and palm stearin). According 56 

to the food industry, this might have some impact on food choices that consumers make. 57 

The reason is that palm oil production and agricultural practises have generated global 58 

interest with regards to sustainability and fair trade and concerns about damage to 59 

biodiversity in some tropical areas with palm oil plantations. Currently, many leading food 60 

companies are members of the Roundtable on Sustainable Palm Oil (RSPO), an 61 

organisation that promotes and certifies palm oil. Even if only a small portion of palm oil 62 
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production is currently certified, sustainable palm oil is in great demand in food 63 

manufacturing especially in Europe.  64 

From an analytical point of view, testing an unknown vegetable oil to identify its origin and 65 

composition is a very difficult task, one that has confounded researchers, public chemists 66 

and legislation authorities for years, especially with regards to premium oil authenticity. 67 

One could undertake a battery of chemical tests, such as fatty acid analysis, determination 68 

of sterol and hydrocarbon fractions, tocopherols, pigments and still remain uncertain about 69 

the oil’s authenticity. Premium vegetable oils such as extra virgin olive oil have been 70 

researched extensively in order to identify adulteration with other oils such as refined olive 71 

oil, deodorised olive oil, seed oils, etc. (Gurdeniz & Ozen, 2009; Baeten, Ferrnández, 72 

Dardenne, Meurens, García-González & Aparicio-Ruiz, 2005; De Luca et al., 2011). 73 

Developing such methodology for refined oils, where most of the polar fraction has been 74 

significantly reduced or eliminated during the refinement process, creates an additional 75 

challenge (Koidis & Osorio-Argüello, 2013). One has to mostly rely on the unique 76 

chemical information retained in the triacyglycerols and the fatty acids as major 77 

components of the oil, rather than focusing on the minor constituents that remain after the 78 

refinement process such as sterols as the majority of the methods in the literature have 79 

exercised. In a comprehensive literature review (Osorio, Haughey, Elliott & Koidis, 2014), 80 

all potential analytical methods ranging from DNA methods to stable isotope analysis 81 

including spectroscopic and chromatographic methods were critically discussed and 82 

evaluated for this particular analytical problem. Unsurprisingly, the majority of the sources 83 

cite analytical techniques applied to crude vegetable oils such as virgin olive oil rather than 84 

refined oils. This was expected as the analytical need for identifying refined vegetable oil 85 

species didn’t exist before the introduction of the new EU legislation. Based on critical 86 

analysis of a) the literature review results on vegetable oil authenticity, b) the chemical 87 
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composition of the three particular vegetable oils (palm, sunflower and rapeseed oil) and c) 88 

the impact of refining process on their constituents, it was found that only a small number 89 

of specific chromatographic and spectroscopic fingerprinting methods coupled with 90 

chemometrics appear applicable to this complex challenge. The latter techniques are mainly 91 

FTIR and Raman spectroscopy in untargeted mode and triacylglycerol and fatty acid 92 

analysis in targeted mode. Combining these two techniques in the area of oil analysis has 93 

been suggested (Aparicio & Aparicio-Ruiz, 2000) but has not been applied before 94 

according to the literature. There are many uncertainties as to the extent that these methods 95 

will work, how different results of different nature (targeted and untargeted) are going to be 96 

combined and how the two methods, spectroscopic and chromatographic, can be used 97 

mutually and collectively to strengthen the accuracy of the result. It was therefore clear that 98 

major experimental work has to be performed to test these hypotheses. 99 

The aim of the current study, therefore, was to develop a novel analytical procedure based 100 

on both spectroscopic and chromatographic techniques for the identification of oil blends of 101 

same or different species of refined vegetable oils.  102 

 103 

2. Materials and methods 104 

2.1. Sourcing of refined authentic vegetable oils 105 

Refined vegetable oils (whole palm oil, palm stearin and palm olein, palm kernel oil, 106 

sunflower and rapeseed oil, n=23) were obtained as reference authentic samples and were 107 

used to build in-house admixtures (Section 2.2) and develop the methodology. In addition, 108 

23 authentic samples of extra virgin olive oil (n=19) and refined hazelnut oil (n=4) were 109 

obtained to aid in method validation as ‘negative examples’. All 46 samples were pure oils 110 

(100%) purchased from reliable and reputable sources within major food companies, oil 111 

processing industry and directly from oil producers when possible. The refined oils had 112 
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global origin and represent the European and global oils supply market. Due to 113 

confidentiality issues the origin of some of all the samples sourced is not provided. 114 

However, most of the palm oils samples originate from Indonesia, Malaysia, Papua New 115 

Guinea and South America. 116 

The sample dataset (n=47 pure oils, Figure 1) was divided into 3 independent sets, the 117 

calibration dataset, the prediction set and the validation set (Section 2.2). Due to the lack of 118 

authentic samples, some oils were used for both calibration and prediction set although 119 

validation samples were completely independent at all cases. The sample distribution is 120 

presented in Figure 1. The samples from the calibration set were used to calibrate the 121 

chemometric models for every class. The prediction set utilisation was two-fold: it was 122 

used firstly to benchmark the prediction efficiency of the calibration models (intra-123 

validation) and provide evidence on the best spectroscopic and chemometric technique and 124 

secondly, as the basis for the development of the confirmation chromatographic analysis 125 

criteria. The validation samples (n=23) were comprised of an independent group of refined 126 

authentic vegetable oils (and their admixtures, see Section 2.2. and Figure 1) and a group of 127 

extra virgin olive oil and refined hazelnut pure oils, also referred as ‘negative samples’. 128 

‘Negative samples’ (n=23) are meant to confirm if the method returns any false positives. 129 

The validation dataset (n=46) was used to test the entire methodology, both screening and 130 

confirmation stage. 131 

 132 

2.2. Preparation of in-house oil mixtures 133 

Oil binary admixtures, derived from authentic oils (palm oil, palm kernel, palm stearin, 134 

palm olein, sunflower and rapeseed oils), were created in-house (n=213, Figure 1). After 135 

consultation with the industry and law enforcing bodies it was determined which were the 136 

most relevant oil binary blends used in food manufacturing. These binary admixtures were: 137 
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palm stearin + palm oil (PS-PO): 24 admixtures; palm olein + sunflower oil (POL-SO): 24 138 

admixtures; sunflower oil + palm oil (SO-PO): 28 admixtures; rapeseed oil + palm kernel 139 

oil (RO-PKO): 19 admixtures; sunflower oil + palm kernel oil (SO-PKO): 19 admixtures; 140 

palm oil + palm kernel oil (PO-PKO): 24 admixtures; rapeseed oil + sunflower oil (RO-141 

SO): 24 admixtures; rapeseed oil + palm oil (RO-PO): 28 admixtures. All binary 142 

admixtures (e.g. A:B) contained various concentrations of A and B in 4% intervals from 4 143 

to 96% (for PS-PO, POL-SO, PO-PKO, RO-SO), in 4 and 2% intervals from 6 to 96% (for 144 

SO-PO, RO-PO) and in 4 and 6% intervals from 4 to 94% (for RO-PKO, SO-PKO). 145 

However, in order to improve the model performance, the oil admixtures with extreme 146 

analogies were not included in the calibration set. The optimal admixture analogies 147 

contained between 15:85 of each oil (n=115 samples). Limited ternary admixtures were 148 

also created but were not used in the study, as it is uncommon for 3 different species to be 149 

used in one product. 150 

In the preparation of every admixture, oils from different sources and geographical origin 151 

were used in order to capture compositional variability. All oil samples were stored 152 

individually in 125 ml amber glass vials in the dark at -18°C with a headspace of <5% to 153 

avoid auto-oxidation and photo-oxidation. 154 

 155 

2.3. Spectral Data Acquisition with FTIR and Raman spectroscopy 156 

For FTIR, samples were kept at 50°C prior to analysis and immediately placed in the ATR 157 

sample area of a Thermo Nicolet iS5 spectrometer (Thermo Fisher Scientific, Dublin, 158 

Ireland) equipped with ATR iD5 diamond and DTGS KBr detector. A few drops of oil 159 

were used and each spectrum was acquired in the 550 - 4000 cm-1 range. The acquisition 160 

parameters were: number of sample scans: 32; collection length: 51.1 s; resolution: 4.000; 161 

levels of zero filling: 2, number of scan points: 12415; number of FFT points: 65536; laser 162 
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frequency: 15798.0 cm-1; interferogram peak position: 6100; apodization: N-B Strong; 163 

phase correction: mertz; number of background scans: 32. The acquisition was repeated 3 164 

times. 165 

Raman spectra acquisition was performed in an Advantage 1064 Raman Spectrometer 166 

(DeltaNu Inc., Wyoming, USA). Three hundred microlitres of the oils were pipetted into 167 

glass vials, with a pathlength of 10 mm and shortly kept at 50°C prior to the analysis. 168 

Acquisition was performed for all samples at 10 cm-1 resolution across the spectral range 169 

200 - 2000 cm-1. Using the NuSpec software, the following parameters were inserted: 170 

number of points: 6950; data spacing: 0.482117; integration time: 10 sec. The acquisition 171 

was repeated twice. 172 

All spectra were pre-processed according to a suitable standardized treatment which 173 

includes three spectral filters, standard normal variate (SNV), first order derivative and 174 

Savitsky-Golay smoothing, applied in a sequential order (Graham, Haughey, Ervin, 175 

Cancouët, Bell, & Elliott, 2012). For FTIR, 3781 variables were selected in the range 176 

intervals (654.2 to 1875.4 cm-1) and (2520.0 to 3120.7 cm-1). The Raman interval used for 177 

data analysis was 800.3 to 1800.2 cm-1 resulting in 1038 variables. 178 

 179 

2.4. Chromatographic determination of fatty acid methyl esters  180 

Fatty acid methyl esters were prepared according to British Standard BS EN ISO 12966-181 

2:2011 using a Varian CP3800 Gas chromatograph fitted with Flame Ionisation Detector 182 

(JVA Analytical, Dublin, Ireland) running on a Agilent CP-88-SIL (100m x 0.25mm id, 183 

0.2µm film thickness) analytical column. Briefly, oil blends were heated to 60°C to ensure 184 

complete melting of the solid fat component before being thoroughly mixed prior to 185 

sampling. Subsamples (300 mg) were taken in duplicate and dissolved in 10 ml of hexane. 186 

An aliquot of the fatty acid methyl esters in hexane was transferred to a vial prior to 187 
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analysis by gas chromatography. Individual fatty acid methyl esters were detected by flame 188 

ionisation detection, identified by comparison with external fatty acid methyl ester 189 

standards and quantified by the use of methyl tridecanoate (Sigma-Aldrich, Dorset, UK) as 190 

internal standard. Blanks were included within each batch of samples to establish base line 191 

stability and instrument readiness. The internal standard was added to each sample prior to 192 

preparation and determination of the fatty acid methyl esters. All analyses were carried out 193 

in duplicate. Final results are expressed both as mg fatty acid g-1 of sample and as 194 

percentage of total fatty acids in the oil. 195 

 196 

2.5. Calibration modelling and prediction  197 

Multivariate data exploration (Principal Component Analysis) was performed using 198 

Umetrics SIMCA 13.0 (Umea, Sweden). Calibration of specific model classes was 199 

performed using two independent supervising classification techniques, Partial Least 200 

Square Discriminant Analysis (PLS-DA) and Soft Independent Model Class Analogy 201 

(SIMCA). Independently of the technique selected, cross validation in SIMCA 13 is carried 202 

out automatically as follows: The data are divided into 7 parts and each 1/7th in turn is 203 

removed. A model is built on the 6/7th data left in and the left out data are predicted from 204 

the new model. This is repeated with each 1/7th of the data until all the data have been 205 

predicted. The predicted data are then compared with the original data and the sum of 206 

squared errors calculated for the whole dataset. This is then called the Predicted Residual 207 

Sum of Squares (PRESS). The better the predictability of the model the lower this value 208 

will be. For convenience, SIMCA 13 converts PRESS into Q2 to resemble the scale of the 209 

R2. R2 is a measure of variation of the training set explained by the model and is a measure 210 

of fit, i.e. how well the model fits the data. Q2 indicates how well the model predicts new 211 

data. Good predictions will have high Q2. After calibration, prediction and external 212 
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validation sets were used independently in the developed models and their prediction 213 

parameters, R2 and the Q2, along with Distance-to-Plot scores were calculated.  214 

 215 

3. Results and discussion  216 

The proposed method to identify oil botanical species in vegetable oil blends consists of a 217 

screening stage based on a spectroscopic technique operating in untargeting mode and a 218 

confirmation stage based on a chromatographic targeted analysis.  219 

During the development of the staged method, it was important to establish a) the specific 220 

spectroscopic technique (FTIR vs. Raman) that is most suitable for screening, b) the exact 221 

multivariate classification technique (SIMCA vs. PLS-DA) and c) the actual model classes, 222 

i.e. the oil types included in every class.  In addition, although the chromatographic method 223 

of the confirmation stage was early identified (fatty acid analysis using GC/FAME) specific 224 

criteria for individual fatty acids had to be developed. These criteria had to be quantitative 225 

and based on the final model classes in order to confirm the nature of an unknown sample. 226 

 227 

3.1. Choice of screening spectral technique, classification algorithm and model classes 228 

Both FTIR and Raman spectroscopy were used and compared as screening techniques in 229 

order to create a database of spectroscopic data from vegetable oil samples (pure and 230 

admixtures) and use it as the basis for building the calibration models. Recorded spectra of 231 

some pure oils (4 palm kernel oils, 5 palm oils, 2 palm stearins, 1 palm olein, 4 rapeseed 232 

oils and 4 sunflower oils) can be seen in Figure 2A for FTIR. Substantial differences were 233 

observed amongst the six different types of pure oils when all spectra were superimposed, 234 

which was an early indication that there was sufficient signal differences between the oils at 235 

the molecular level (stretching and bending vibrations induced by infrared absorption). 236 

Similar information was observed in the superimposed Raman spectra of pure oils. Pre-237 
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processing of spectral data removed undesired systematic variation in the data (i.e. baseline 238 

drift and wavenumber regions of low information content) and therefore enhanced the 239 

predictive power of multivariate calibration models (Eriksson, Johansson, Kettaneh-Wold, 240 

Trygg, Wikstrom & Wold, 2006). FTIR data exploration with Principal Component 241 

Analysis (PCA), an unsupervised technique, showed that initial spectral differences 242 

correspond to a very good separation in the scores plot using 2 or 3 principal components 243 

(PCs) (Figure 2B, 2C). Loadings plot revealed that the most discriminative wavelengths in 244 

the FTIR spectra were those within the range of a) 1117-1142 cm-1 corresponding to 245 

stretching vibration of the C-O ester group, b) 1732-1747 cm-1 accounting for the ester 246 

carbonyl functional group of the triglycerides and c) 2845-2925 cm-1 relating to the 247 

asymmetrical and symmetrical stretching vibration of methylene (-CH2) group (Guillen & 248 

Cabo, 1997; Lerma-Garcia, Ramis-Ramos, Herrero-Martinez & Simo-Alfonso, 2010; 249 

Rohman & Che Man, 2010). Palm kernel oil (PKO) samples have very distinctive spectral 250 

characteristics and can be considered as a class of their own in the PCA score plot (Figure 251 

2B, 2C). Palm olein (POL), palm stearin (PS), whole palm oil (PO) and the admixture PS-252 

PO are grouped together due to their very similar chemical composition and origin (e.g. 253 

palm stearin + olein = whole palm oil) and were therefore considered as one class (P class) 254 

instead of 3 different classes. The same applies to sunflower oil (SO), rapeseed oil (RO) 255 

and the admixtures comprise of those two seed oils (RO-SO) that are clustered together (RS 256 

class) due to their similar polyunsaturated character. The remaining classes, POL-SO, SO-257 

PO, RO-PKO, SO-PKO, PO-PKO and RO-PO were clustered in three groups and therefore 258 

considered as RSPKO (RO-PKO, SO-PKO), RSPO (SO-PO, RO-PO, POL-SO) and PPKO 259 

(PO-PKO) classes. These three new classes were clustered, as expected, in the virtual space 260 

between the 3 initial new classes (PKO, P and RS) and they accommodate all remaining oil 261 

admixture samples (Figure 2C). The Raman spectral data (not shown) also support the 6-262 
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class argument although the class separation is clearer when using FTIR data. Several other 263 

iterations have been attempted including a trial model with 18 independent classes but the 264 

best prediction performance was obtained with the 6-class model design selected which is 265 

parsimonious and has a chemical composition rationale.  266 

In parallel to the model class design, the exact spectroscopic techniques (FTIR and Raman) 267 

and classification algorithms were also explored. In general, FTIR contains more high-level 268 

processed signal parameters and slightly richer information than Raman, which is essentially 269 

a low-end dispersive instrument. In fact, FTIR has shown better performance in vegetable 270 

oil botanical speciation especially with olive oil according to the literature (Osorio et al., 271 

2014). These two techniques are based in different light optical phenomena (absorption vs. 272 

scattering) and, in theory, both of them would be useful as they can be complimentary. On 273 

the other hand, both classification techniques (SIMCA and PLS-DA) have proven useful in 274 

classifying spectroscopic data of oils (Sinelli, Cosio, Gigliotti & Casiraghi, 2007; Gurdeniz 275 

& Ozen, 2009; Rohman & Chen Man, 2010). Comparing the spectral and classification 276 

techniques was done simultaneously. The model performance in classifying oil admixtures 277 

spectroscopically using the prediction set was equally good on FTIR and Raman data (Table 278 

2), although, in some cases, Raman achieved marginally higher model parameters Q2 and 279 

R2. In terms of prediction power, all 4 combinations produced excellent results when the 280 

calibration models were challenged with the prediction set (Table 2). The classification rates 281 

were slightly overestimated due to the presence of the sample replicates. SIMCA, however, 282 

proved more accurate when testing unknown and control oil admixtures by producing less 283 

classification errors using the prediction set. More specifically, SIMCA is not ‘forced’ to 284 

classify all samples to a particular class in contrast to PLS-DA (Wold, 1976; Wold & 285 

Sjostrom, 1977; Bevilacqua, Bucci, Magrì, Magrì, Nescatelli & Marini, 2013). In fact, it will 286 

return samples unclassified, i.e. not fitted in any of the model classes, if the residual distance 287 
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from the model is above the statistical limit in every class. This provides great flexibility, 288 

reduces classification errors and fits very well with the purpose of the two-staged 289 

classification approach presented in this study. In addition, in supervised methods, it is 290 

important to avoid overfitting by using a relatively large validation set or with robust 291 

internal cross-validation (Berrueta, Alonso-Salces & Héberger, 2007). PLS-DA is especially 292 

prone to overfitting (Brereton, 2009) and random noise introduced as more laternt valiables 293 

are added (Zielinski, Haminiuk, Nunes, Schnitzler, van Ruth & Granato, 2014) compared to 294 

SIMCA and . FTIR in conjunction with SIMCA produced the highest overall classification 295 

rate when tested with the prediction set (Table 2). Therefore, the combination of FTIR and 296 

SIMCA classification technique was established as the most suitable screening tool that is 297 

fit-for-purpose. 298 

 299 

3.2. Development of decision system and confirmation technique criteria 300 

Unclassified oil samples in the screening stage were transferred to the second stage where a 301 

confirmation technique was applied. This was realised through a simple procedure based on 302 

the probabilities of the SIMCA classification algorithm during the screening stage: when an 303 

unknown oil spectra is loaded, SIMCA calculates the distance-to-model to produce a 304 

probability score for every oil sample to belong in each one of the 6 classes. Samples are 305 

then divided into 3 groups: of high probability (> 0.1) to belong in the particular class, of 306 

medium probability (0.05 to 0.1) and of low probability (< 0.05, not classified) (Figure 3). 307 

Only the unclassified samples of the latter group were transferred to the second stage due to 308 

the uncertainty of the result. A sample may be found to belong to multiple classes. In this 309 

case the class with the highest probability (the lowest residual distance to model) is chosen. 310 
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Meticulous care was exercised so that the decision system would not a) erroneously classify 311 

a sample to a different class (misclassification, false positive), b) does not refer an 312 

ambiguous sample to the confirmation stage (false negative or ‘miss’).  313 

Gas chromatography for the analysis of fatty acid methyl esters was chosen as the 314 

confirmation technique for its wide applicability, accessibility and accuracy in the results 315 

(Aparicio & Aparicio-Ruiz, 2000). Fatty acid criteria based on individual key FA contents 316 

were developed to classify the samples in one of the 6 classes. Every class has unique and 317 

highly specific classification criteria as seen in Table 3. These criteria were developed 318 

analysing the fatty acid profile of the prediction set and analysing standardised 319 

compositional ranges for vegetable oils found in the Codex Alimentarius (CODEX STAN 320 

210, 2011). The criteria were validated using the validation set. The final procedure is 321 

illustrated as a two-stage decision making system (Figure 3).  322 

 323 

3.3. Single Lab Validation of the method using external samples 324 

A single lab validation with external samples was performed to demonstrate the performance 325 

of the method on a new set of 46 oil samples (pure oils and oil blends) including 23 326 

‘negative samples’ (Figure 1). It has to be reiterated that these oils were different from the 327 

oils used in the calibration modelling and prediction sets. The proposed method flowchart 328 

(Figure 3) was followed to assess the assignment success of the external samples in the 6 329 

modelled classes. FTIR spectra were recorded and pre-processed for all external samples 330 

(see 2.3, 2.5). This set was tested against the SIMCA calibration models and a probability 331 

score was assigned to each sample according to the classification algorithm. A total of 18 oil 332 

samples were classified as follows: 6 in P class; 4 in RS class, 4 in RSPKO class and 4 in 333 

RSPO class. The rest of the samples (n=28) were referred to the confirmation stage due to 334 

their low probability score. These samples were analysed chromatographically to determine 335 
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their fatty acid (FA) profile and individual contents (mg fatty acid g-1 oil blend or % of total 336 

FA) were calculated. The following classification results were obtained when the FA criteria 337 

(Table 3) were applied: 1 in PKO class; 2 in P class, 2 in RSPO class, 1 in PPKO class and 338 

23 samples remained unidentified. The 23 unidentified oil samples were the ‘negative 339 

examples’ and were correctly rejected by the method (initially rejected by the SIMCA 340 

algorithm due to the large residual distance from all modelled classes and subsequently 341 

failed to comply with the FA criteria). These samples represent the ‘true negatives’ of the 342 

test. At the end of the procedure, 45 out of 46 samples were correctly classified (97.8%). 343 

The incorrect sample (palm kernel oil) was erroneously classified in the spectroscopic stage 344 

as palm oil (P class) and was considered a ‘false positive’. 345 

The mathematical formulas that describe method validation metrics as precision, accuracy, 346 

robustness etc., are linked with quantitative methods, (AOAC, 1995; Boque, Maroto, Rui & 347 

Rius, 2002) and cannot be applied in qualitative analysis. Ellison and Fearn (2005) argue 348 

that it is necessary to rethink the conventional metrology so that qualitative methods are also 349 

factored. Although there are no universally accepted validation standards in qualitative 350 

analysis, the reliability indexes presented in García-González, Viera, Tena and Aparicio 351 

(2007) and Cárdenas and Valcárel (2005) have been acknowledged as an accepted 352 

evaluation of the performance of such methods. The reliability indexes therefore are: False 353 

Negative rate (FNr): 0%, False Positive (FPr): 4%, sensitivity: 100%, specificity: 100% and 354 

efficiency: 98%. On the other hand, if a confusion matrix is used, a common classification 355 

technique in machine learning that factors in the individual class success (Kohavi & Provost, 356 

1998), the following parameters are calculated: average accuracy 85.7%, average reliability: 357 

78.5%, overall accuracy: 97.8%. 358 

It is therefore confirmed that the decision making process and especially the criteria of the 359 

chromatographic confirmatory analysis are rigorous if challenged with external samples and 360 



 16 

the ~4% classification error can be attributed to the calibration models that need further 361 

optimisation. This applies especially to the PKO model (Q2 cumulative 0.249) which had a 362 

low prediction power and may be the reason for the misclassification of the external palm 363 

kernel oil. This, however, should not undermine the excellent overall method performance 364 

and the significant advantages of the two-staged procedure (only 21% of the ‘true’ 365 

validation samples required confirmation) in terms of speed of analysis and low cost benefits 366 

of a spectroscopic measurement if the confirmatory chromatographic analysis is omitted. 367 

 368 

4. Conclusions 369 

In the current study, an innovative staged method has been developed through the unique 370 

merging of spectroscopic and chromatographic analysis for the botanical species 371 

identification of vegetable oils. The combination of FTIR spectroscopy technique and 372 

SIMCA classification technique was established as the most suitable screening tool for the 373 

purpose of this work. SIMCA class-models achieved high levels of correct classification 374 

when FTIR spectral data were used and strongly suggest the utility of this combined approach 375 

in vegetable oil screening. PLS-DA discriminant models also performed very well but the 376 

risk of misclassified samples is higher. Fatty acid analysis performed by GC-FID proved to 377 

be powerful in identifying samples that could not be assigned to a class by the SIMCA 378 

models. In general, this qualitative method produced very good results in the single 379 

laboratory validation. The sample size used for building the calibration models was relative 380 

small although representative of the global vegetable oil supply and this limits a true 381 

assessment of model performance. The current results have gone some way to proving the 382 

concept of this novel and highly sensitive two-staged approach for identifying the kind of oils 383 

present in oil blends and indicate the need of a larger study for a more robust and 384 



 17 

representative method in both plain oil blends as well as in processed foods containing 385 

refined oil blends.  386 

This study also highlights the numerous analytical challenges that legislation and 387 

enforcement authorities are facing with the current analytical methods to monitor compliance 388 

of EU legislation of food labels in processed foods and oil authenticity in general. 389 

 390 
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FIGURES AND TABLES 477 

 478 

Table 1. SIMCA and PLS-DA model characteristics on calibration dataset using Raman and FTIR 479 

variables on all oil samples. 480 

 Class 
R2X * (cumulative) Q2 ** (cumulative) 

RAMAN FTIR RAMAN FTIR 

SI
M

C
A

 

P 0.978 0.815 0.966 0.712 

PKO 0.841 0.617 0.789 0.239 

RS 0.960 0.778 0.934 0.761 

PPKO 0.917 0.926 0.883 0.906 

RSPO 0.983 0.937 0.978 0.919 

RSPKO 0.985 0.926 0.979 0.917 

PL
S-

D
A

 

All classes 0.991 0.971 0.592 0.739 

 481 
 482 

 483 

 484 

  485 
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Table 2. SIMCA and PLS-DA model performance on prediction dataset using Raman and FTIR (84 486 

samples for Raman and 126 samples for FTIR including replications). 487 

  488 

 
Target   

Group 

Correctly 

classified target 

samples 

Correctly 

classified non-

target samples 

Sensitivity (%) Specificity (%) 

Overall correct 

classification           

rate (%) 

 Technique Raman FTIR Raman FTIR Raman FTIR Raman FTIR Raman FTIR 

SI
M

C
A

 

P 8/8 12/12 76/76 114/114 100 100 100 100 100 100 

PKO 1/2 2/3 82/82 123/123 50 66.7 100 100 98.8 99.2 

RS 11/14 19/21 70/70 105/105 78.6 90.5 100 100 96.4 98.4 

PPKO 10/10 11/15 74/74 111/111 100 73.3 100 100 100 96.8 

RSPO 25/34 43/51 50/50 75/75 73.5 84.3 100 100 89.3 93.7 

RSPKO 16/16 22/24 68/68 102/102 100 91.7 100 100 100 98.4 

 TOTAL (%) 
71/84 

85% 

109/126 

87% 
 97% 98% 

PL
S-

D
A

 

P 7/8 10/12       87.5 83.3 

PKO 2/2 3/3       100 100 

RS 14/14 20/21       100 95.2 

PPKO 10/10 15/15       100 100 

RSPO 33/34 51/51       97.1 100 

RSPKO 14/16 24/24       87.5 100 

 TOTAL (%) 
80/84 

95% 

123/126 

97% 
 95% 96% 
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Table 3. Classification criteria for classification of vegetable oils in 6 classes according to their 489 

fatty acid content. Upper number corresponds to the % FA area per total FA; lower number 490 

correspond to the absolute FA value expressed as mg fatty acid g-1 of sample 491 

Fatty Acids 

( % total FA and 

mg fatty acid g-1 ) 

VEGETABLE OIL CLASSES 

P PKO RS  PPKO  RSPO  RSPKO  

C8:0 

Caprylic acid 
 

> 3.0  
 

> 0.3 
 

> 0.25 

 > 20  > 0.25  > 2.5 

C12:0 

Lauric acid 

> 0.13 >48 < 0.01 
   

> 0.99 > 300 < 0.1    

C14:0 

Myristic acid 

1.00 –  1.45 
 

< 0.09 
   

7.8 – 10.0  < 0.7    

C16:0 

Palmitic acid 

43 –  69 
  

≥ 10 8.0 –  41.5 4.9 –  8.5 

315 –  490   ≥ 70 58 –  330 35 –  70 

C18:1 

Oleic acid 

    ≥ 25  

    ≥ 195  

C18:2 cn6 

Linoleic acid 

5 –  12 
 

18 –  67 3 –  10 9.5 –  56 3 –  60 

43 – 80  135 – 550  25 – 75 70 – 425 24 – 450 

P:S ratio1  < 0.25 < 0.04 > 4.0 ≤ 0.3 ≥ 0.325 
 

 492 

1 P:S (Polyunsaturated/Saturated) ratio is an index of the polyunsaturated character of the oil and it is calculated 493 
using the ratio between C18 polyunsaturated fatty acids and C4-C24 saturated fatty acids. 494 

  495 



 24 

 496 

Figure 1. Graphic representation of the dataset used in this study. 497 

1 independent datasets means that pure and admixture samples in these datasets derive from different 498 

initial pure oils (n=23). EVOO: Extra virgin olive oil, RHO: Refined hazelnut oil. 499 

 500 

  501 
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 502 

Figure 2. A) Superimposed FTIR spectra of different pure oils B) Principal component analysis scores plot 503 

of FTIR data showing the 6 clearly defined oil classes with 3 PCs, C) PCA score plots using 2 PCs . All 504 

identified oil classes are shown. 505 

PO: palm oil; POL: palm olein; PS: palm stearin; PKO: palm kernel oil; RO: rapeseed oil; SO: sunflower 506 

oil; RS: class containing rapeseed and/or sunflower oil; ROSO: binary admixtures of sunflower and 507 

rapeseed oil, P class: class containing pure and admixtures of palm oils and its derivatives, palm olein and 508 

palm stearin; PKO class: class containing pure palm kernel oil; PPKO: binary oil admixtures containing oils 509 

from PO and PKO classes; RSPKO class: binary oil admixtures containing  oils from RS and PKO classes.  510 
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 511 

 512 

Figure 3. Classification results of the screening stage and referral to the confirmation stage. 513 
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