7,033 research outputs found
Hopping conductivity in the quantum Hall effect -- revival of universal scaling
We have measured the temperature dependence of the conductivity
of a two-dimensional electron system deep into the localized regime of the
quantum Hall plateau transition. Using variable-range hopping theory we are
able to extract directly the localization length from this experiment. We
use our results to study the scaling behavior of as a function of the
filling factor distance to the critical point of the transition.
We find for all samples a power-law behavior
with a universal scaling exponent as proposed theoretically
High Frequency Conductivity in the Quantum Hall Regime
We have measured the complex conductivity of a two-dimensional
electron system in the quantum Hall regime up to frequencies of 6 GHz at
electron temperatures below 100 mK. Using both its imaginary and real part we
show that can be scaled to a single function for different
frequencies and for all investigated transitions between plateaus in the
quantum Hall effect. Additionally, the conductivity in the variable-range
hopping regime is used for a direct evaluation of the localization length
. Even for large filing factor distances from the critical
point we find with a scaling exponent
Conductance fluctuations at the quantum Hall plateau transition
We analyze the conductance fluctuations observed in the quantum Hall regime
for a bulk two-dimensional electron system in a Corbino geometry. We find that
characteristics like the power spectral density and the temperature dependence
agree well with simple expectations for universal conductance fluctuations in
metals, while the observed amplitude is reduced. In addition, the dephasing
length , which governs the temperature dependence of
the fluctuations, is surprisingly different from the scaling length
governing the width of the quantum Hall plateau
transition
Twisted-light-induced optical transitions in semiconductors: Free-carrier quantum kinetics
We theoretically investigate the interband transitions and quantum kinetics
induced by light carrying orbital angular momentum, or twisted light, in bulk
semiconductors. We pose the problem in terms of the Heisenberg equations of
motion of the electron populations, and inter- and intra-band coherences. Our
theory extends the free-carrier Semiconductor Bloch Equations to the case of
photo-excitation by twisted light. The theory is formulated using cylindrical
coordinates, which are better suited to describe the interaction with twisted
light than the usual cartesian coordinates used to study regular optical
excitation. We solve the equations of motion in the low excitation regime, and
obtain analytical expressions for the coherences and populations; with these,
we calculate the orbital angular momentum transferred from the light to the
electrons and the paramagnetic and diamagnetic electric current densities.Comment: 11 pages, 3 figure
Improved chlorate candle provides concentrated oxygen source
Improved chlorate candle is used as a solid, portable source of oxygen in emergency situations. It contains sodium chlorate, iron, barium peroxide, and glass mixed in powdered form. The oxygen evolves from the decomposition of the sodium chlorate when an ignition pellet is electrically initiated
Parasitic pumping currents in an interacting quantum dot
We analyze the charge and spin pumping in an interacting dot within the
almost adiabatic limit. By using a non-equilibrium Green's function technique
within the time-dependent slave boson approximation, we analyze the pumped
current in terms of the dynamical constraints in the infinite-U regime. The
results show the presence of parasitic pumping currents due to the additional
phases of the constraints. The behavior of the pumped current through the
quantum dot is illustrated in the spin-insensitive and in the spin-sensitive
case relevant for spintronics applications
Bimodal Counting Statistics in Single Electron Tunneling through a Quantum Dot
We explore the full counting statistics of single electron tunneling through
a quantum dot using a quantum point contact as non-invasive high bandwidth
charge detector. The distribution of counted tunneling events is measured as a
function of gate and source-drain-voltage for several consecutive electron
numbers on the quantum dot. For certain configurations we observe
super-Poissonian statistics for bias voltages at which excited states become
accessible. The associated counting distributions interestingly show a bimodal
characteristic. Analyzing the time dependence of the number of electron counts
we relate this to a slow switching between different electron configurations on
the quantum dot
Channel Blockade in a Two-Path Triple-Quantum-Dot System
Electronic transport through a two-path triple-quantum-dot system with two
source leads and one drain is studied. By separating the conductance of the two
double dot paths, we are able to observe double dot and triple dot physics in
transport and study the interaction between the paths. We observe channel
blockade as a result of inter-channel Coulomb interaction. The experimental
results are understood with the help of a theoretical model which calculates
the parameters of the system, the stability regions of each state and the full
dynamical transport in the triple dot resonances.Comment: 6 pages, 6 figure
Direct Measurement of the g-Factor of Composite Fermions
The activation gap of the fractional quantum Hall states at constant
fillings and 2/5 has been measured as a function of the
perpendicular magnetic field . A linear dependence of on is
observed while approaching the spin polarization transition. This feature
allows a direct measurement of the -factor of composite fermions which
appears to be heavily renormalized by interactions and strongly sensitive to
the electronic filling factor.Comment: 4 pages, 4 figures Changed content: Fokus more on g-factors (and less
on other details
Spin Blockade in Capacitively Coupled Quantum Dots
We present transport measurements on a lateral double dot produced by
combining local anodic oxidation and electron beam lithography. We investigate
the tunability of our device and demonstrate, that we can switch between
capacitive and tunnel coupling. In the regime of capacitive coupling we observe
the phenomenon of spin blockade in a magnetic field and analyze the influence
of capacitive interdot coupling on this effect.Comment: 4 pages, 3 figure
- …