385 research outputs found

    Effects of parabolic flight and spaceflight on the endocannabinoid system in humans

    Get PDF
    The endocannabinoid system (ECS) plays an important role in the regulation of physiological functions, from stress and memory regulation to vegetative control and immunity. The ECS is considered a central and peripheral stress response system to emotional or physical challenges and acts through endocannabinoids (ECs), which bind to their receptors inducing subsequent effecting mechanisms. In our studies, the ECS responses have been assessed through blood concentrations of the ECs anandamide and 2-arachidonoylglycerol. In parallel, saliva cortisol was determined and the degree of perceived stress was quantified by questionnaires. This report summarizes the reactivity of the ECS in humans subjected to brief periods of kinetic stress and weightlessness during parabolic flights and to prolonged stress exposure during life onboard the International Space Station (ISS). Both conditions resulted in a significant increase in circulating ECs. Under the acute stress during parabolic flights, individuals who showed no evidence of motion sickness were in low-stress conditions and had a significant increase of plasma ECs. In contrast, highly stressed individuals with severe motion sickness had an absent EC response and a massive increase in hypothalamic-pituitary-adrenal axis activity. Likewise, chronic but well-tolerated exposure to weightlessness and emotional and environmental stressors on the ISS for 6 months resulted in a sustained increase in EC blood concentrations, which returned to baseline values after the cosmonauts' return. These preliminary results suggest that complex environmental stressors result in an increase of circulating ECs and that enhanced EC signaling is probably required for adaptation and tolerance under stressful conditions

    Motion sickness, stress and the endocannabinoid system

    Get PDF
    A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V) during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS) represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation

    Glucocorticoid-endocannabinoid interaction in cardiac surgical patients: relationship to early cognitive dysfunction and late depression

    Get PDF
    Background: Endocannabinoids (ECs) are rapidly acting immune-modulatory lipid-signaling molecules that are important for adaptation to stressful and aversive situations. They are known to interact with glucocorticoids and other stress-responsive systems. Maladaptation to acute or chronic stress represents a major risk factor for the development of psychiatric disorders. In the present study, we administered stress doses of hydrocortisone in a prospective, randomized, placebo-controlled double-blind study in patients undergoing cardiac surgery (CS) to examine the relationship between the use of glucocorticoids, plasma EC levels, and the occurrence of early postoperative cognitive dysfunction (delirium) and of later development of depression. Methods: We determined plasma levels of the ECs anandamide and 2-arachidonoylglycerol (2-AG) in CS patients of the hydrocortisone (n=56) and the placebo group (n=55) preoperatively, at postoperative day (POD) 1, at intensive care unit discharge, and at 6 months after CS (n=68). Postoperative delirium was diagnosed according to Diagnostic and Statistical Manual of the American Psychiatric Association IVth Edition (DSM-IV) criteria, and depression was determined by validated questionnaires and a standardized psychological interview (Structured Clinical Interview for DSM-IV). Results: Stress doses of hydrocortisone did not affect plasma EC levels and the occurrence of delirium or depression. However, patients who developed delirium on POD 1 had significantly lower preoperative 2-AG levels of the neuroprotective EC 2-AG (median values, 3.8 vs. 11.3 ng/ml; p=0.03). Preoperative 2-AG concentrations were predictive of postoperative delirium (sensitivity=0.70; specificity=0.69; cutoff value=4.9 ng/ml; receiver operating characteristic curve area=0.70; 95% confidence interval=0.54-0.85). Patients with depression at 6 months after CS (n=16) had significantly lower anandamide and 2-AG levels during the perioperative period. Conclusions: A low perioperative EC response may indicate an increased risk for early cognitive dysfunction and long-term depression in patients after CS. Glucocorticoids do not seem to influence this relationship

    Plasma concentrations of endocannabinoids and related primary Fatty Acid amides in patients with post-traumatic stress disorder.

    Get PDF
    Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events. Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = -0.68, p<0.01). CAPS subscores for intrusions (r = -0.65, p<0.01), avoidance (r = -0.60, p<0.01) and hyperarousal (r = -0.66, p<0.01) were all negatively related to OLDA plasma concentrations. PTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts

    Entwicklung einer Riesenbulla unter Spontanatmung durch „patient self-inflicted lung injury“ bei COVID-19-Pneumonie

    Get PDF
    The outbreak of SARS-CoV\hbox-2 and the associated COVID-19 pandemic pose major challenges to healthcare systems worldwide. New data on diagnosis, clinical presentation and treatment of the disease are published on a~daily basis. This case report describes the fatal course of severe COVID-19 pneumonia in an 81-year-old patient with no previous pulmonary disease who developed a~giant bulla during non-invasive high-flow oxygen therapy. Virus-induced diffuse destruction of alveolar tissue or patient self-inflicted lung injury (P-SILI) are discussed as possible pathomechanisms. Future studies must determine whether lung-protective mechanical ventilation with high levels of sedation and paralysis to suppress spontaneous respiratory drive and to reduce transpulmonary pressure can prevent structural lung damage induced both by the virus and P\hbox-SILI in COVID-19~patients with ARDS. ZUSAMMENFASSUNG SARS-CoV\hbox-2 und die damit assoziierte COVID-19-Erkrankung stellen Gesundheitssysteme weltweit vor große Herausforderungen. Fast täglich werden neue Erkenntnisse zu Diagnostik, Klinik und Therapie der Erkrankung publiziert. Dieser Fallbericht beschreibt den letalen Krankheitsverlauf eines 81-jährigen Patienten ohne pulmonale Vorerkrankungen, der als Komplikation der COVID-19-Pneumonie unter nichtinvasiver High-Flow-Sauerstofftherapie eine Riesenbulla entwickelte. Pathophysiologisch kommen/kommt eine virusbedingte diffuse Zerstörung des Alveolargewebes und/oder die „patient self-inflicted lung injury“ in Betracht

    Progranulin signaling in sepsis, community-acquired bacterial pneumonia and COVID-19: a comparative, observational study

    Get PDF
    BACKGROUND Progranulin is a widely expressed pleiotropic growth factor with a central regulatory effect during the early immune response in sepsis. Progranulin signaling has not been systematically studied and compared between sepsis, community-acquired pneumonia (CAP), COVID-19 pneumonia and a sterile systemic inflammatory response (SIRS). We delineated molecular networks of progranulin signaling by next-generation sequencing (NGS), determined progranulin plasma concentrations and quantified the diagnostic performance of progranulin to differentiate between the above-mentioned disorders using the established biomarkers procalcitonin (PCT), interleukin-6 (IL-6) and C-reactive protein (CRP) for comparison. METHODS The diagnostic performance of progranulin was operationalized by calculating AUC and ROC statistics for progranulin and established biomarkers in 241 patients with sepsis, 182 patients with SIRS, 53 patients with CAP, 22 patients with COVID-19 pneumonia and 53 healthy volunteers. miRNAs and mRNAs in blood cells from sepsis patients (n = 7) were characterized by NGS and validated by RT-qPCR in an independent cohort (n = 39) to identify canonical gene networks associated with upregulated progranulin at sepsis onset. RESULTS Plasma concentrations of progranulin (ELISA) in patients with sepsis were 57.5 (42.8-84.9, Q25-Q75) ng/ml and significantly higher than in CAP (38.0, 33.5-41.0~ng/ml, p < 0.001), SIRS (29.0, 25.0-35.0~ng/ml, p < 0.001) and the healthy state (28.7, 25.5-31.7~ng/ml, p < 0.001). Patients with COVID-19 had significantly higher progranulin concentrations than patients with CAP (67.6, 56.6-96.0 vs. 38.0, 33.5-41.0~ng/ml, p < 0.001). The diagnostic performance of progranulin for the differentiation between sepsis vs. SIRS (n = 423) was comparable to that of procalcitonin. AUC was 0.90 (95% CI = 0.87-0.93) for progranulin and 0.92 (CI = 0.88-0.96, p = 0.323) for procalcitonin. Progranulin showed high discriminative power to differentiate bacterial CAP from COVID-19 (sensitivity 0.91, specificity 0.94, AUC 0.91 (CI = 0.8-1.0) and performed significantly better than PCT, IL-6 and CRP. NGS and partial RT-qPCR confirmation revealed a transcriptomic network of immune cells with upregulated progranulin and sortilin transcripts as well as toll-like-receptor 4 and tumor-protein 53, regulated by miR-16 and others. CONCLUSIONS Progranulin signaling is elevated during the early antimicrobial response in sepsis and differs significantly between sepsis, CAP, COVID-19 and SIRS. This suggests that progranulin may serve as a novel indicator for the differentiation between these disorders. TRIAL REGISTRATION Clinicaltrials.gov registration number NCT03280576 Registered November 19, 2015

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
    corecore