129 research outputs found

    Lineage-Specific Chimerism and Outcome After Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency

    Get PDF
    Bi-allelic variants in the dedicator of cytokinesis 8 (DOCK8) gene cause a combined immunodeficiency, characterized by recurrent sinopulmonary and skin infections, food allergies, eczema, eosinophilia, and elevated IgE. Long-term outcome is poor given susceptibility to infections, malignancy, and vascular complications. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option and has shown promising outcome. The impact of mixed chimerism on long-term outcome is unclear. We reasoned that reversal of disease phenotype would depend on cell lineage-specific chimerism. DOCK8 variants were confirmed by Sanger and/or exome sequencing and immunoblot and/or intracellular flow cytometry. Donor chimerism was analyzed by XY-fluorescence in situ hybridization or quantitative short tandem repeat PCR. Outcome was assessed by laboratory tests, lymphocyte subsets, intracellular DOCK8 protein flow cytometry, T-cell proliferation analysis, and multiparameter immunoblot allergy screening. We report on nine patients, four of whom with mixed chimerism, with a median follow-up of 78~months after transplantation. Overall, we report successful transplantation with improvement of susceptibility to infections and allergies, and resolution of eczema in all patients. Immunological outcome in patients with mixed chimerism suggests a selective advantage for wild-type donor T-cells but lower donor B-cell chimerism possibly results in a tendency to hypogammaglobulinemia. No increased infectious and allergic complications were associated with mixed chimerism. Aware of the relatively small cohort size, we could not demonstrate a consistent detrimental effect of mixed chimerism on clinical outcomes. We nevertheless advocate aiming for complete donor chimerism in treating DOCK8 deficiency, but recommend reduced toxicity conditioning

    Flow cytometric measurement of STAT5 phosphorylation in cytomegalovirus-stimulated T cells

    Get PDF
    Cytomegalovirus (CMV)-specific T cells expand with CMV reactivation and are probably prerequisite for control and protection. Given the critical role STAT5A phosphorylation (pSTAT5A) in T cell proliferation, this study presents a simple and sensitive flow cytometric-based pSTAT5A assay to quickly identify CMV-specific T cell proliferation. We determined pSTAT5A in T cells treated with CMV-specific peptide mix (pp65 + IE1 peptides) from 20 healthy adult subjects and three immunodeficient patients with CARMIL-2 mutation. After stimulation, the percentage of pSTAT5A+ T cells in CMV-seropositive (CMV+) subjects significantly increased from 3.0% ± 1.9% (unstimulated) to 11.4% ± 5.9% (stimulated) for 24 h. After 7 days of stimulation, the percentage of expanded T cells amounted to 26% ± 17.2%. Conversely, the percentage of pSTAT5A+ T cells and T cell proliferation from CMV-seronegative (CMV−) subjects hardly changed (from 3.0% ± 1.3% to 3.7% ± 1.8% and from 4.3% ± 2.1% to 5.7% ± 1.7%, respectively). We analyzed the correlation between the percentage of pSTAT5A+ T cells versus (1) CMV-IgG concentrations versus (2) the percentage of expanded T cells and versus (3) the percentage of initial CMV-specific T cells. In immunodeficient patients with CARMIL-2 mutation, CMV-specific pSTAT5A and T cell proliferation were completely deficient. In conclusion, flow cytometric-based pSTAT5A assay represents an appropriate tool to quickly identify CMV-specific T cell proliferation and helps to understand dysfunctions in controlling other pathogens. Flow cytometric-based pSTAT5A assay may be a useful test in clinical practice and merits further validation in large studies

    Scabies, Periorbital Cellulitis and Recurrent Skin Abscesses due to Panton-Valentine Leukocidin-Positive Staphylococcus aureus Mimic Hyper IgE Syndrome in an Infant

    Get PDF
    We describe the clinical course of a 2-month-old infant who was evaluated for autosomal dominant Hyper IgE Syndrome based on eczema, periorbital cellulitis, skin abscesses, increased total IgE levels and blood eosinophilia. However, scabies and nasal colonization by Panton-Valentine Leucocidin-positive S. aureus were eventually diagnosed. After specific treatment, the child was asymptomatic

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    Overcoming water diffusion limitations in hydrogels via microtubular graphene networks for soft actuators

    Get PDF
    Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ~90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here we show, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4 % dramatically enhances actuation dynamics by up to ~400 % and actuation stress by ~4000 % without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically-powered actuation. We anticipate that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and two-dimensional materials, paving the way towards designing soft intelligent matter.Comment: Shared First-authorship: Margarethe Hauck and Lena Marie Saur

    Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration

    Get PDF
    The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics

    Salvage HLA-haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for graft failure in non-malignant disorders

    Full text link
    Graft failure requires urgent salvage HSCT, but there is no universally accepted approach for this situation. We investigated T-cell replete haploidentical HSCT with post-transplantation cyclophosphamide following serotherapy-based, radiation-free, reduced intensity conditioning in children with non-malignant disorders who had rejected their primary graft. Twelve patients with primary or secondary graft failure received T-cell replete bone marrow grafts from haploidentical donors and post-transplantation cyclophosphamide. The recommended conditioning regimen comprised rituximab 375 mg/m2, alemtuzumab 0.4 mg/kg, fludarabine 150 mg/m2, treosulfan 20–24 g/m2 and cyclophosphamide 29 mg/kg. After a median follow-up of 26 months (7–95), eleven of twelve patients (92%) are alive and well with complete donor chimerism in ten. Neutrophil and platelet engraftment were observed in all patients after a median of 18 days (15–61) and 39 days (15–191), respectively. Acute GVHD grade I was observed in 1/12 patients (8%) and mild chronic GVHD in 1/12 patients (8%). Viral reactivations and disease were frequent complications at 75% and 42%, respectively, but no death from infectious causes occurred. In summary, this retrospective analysis demonstrates that a post-transplantation cyclophosphamide-based HLA-haploidentical salvage HSCT after irradiation-free conditioning results in excellent engraftment and overall survival in children with non-malignant diseases

    Current understanding and future research priorities in malignancy associated with inborn errors of immunity and DNA repair disorders : the perspective of an interdisciplinary working group

    Get PDF
    Patients with inborn errors of immunity or DNA repair defects are at significant risk of developing malignancy and this complication of their underlying condition represents a substantial cause of morbidity and mortality. Whilst this risk is increasingly well-recognized, our understanding of the causative mechanisms remains incomplete. Diagnosing cancer is challenging in the presence of underlying co-morbidities and frequently other inflammatory and lymphoproliferative processes. We lack a structured approach to management despite recognizing the competing challenges of poor response to therapy and increased risk of toxicity. Finally, clinicians need guidance on how to screen for malignancy in many of these predisposing immunodeficiencies. In order to begin to address these challenges, we brought together representatives of European Immunology and Pediatric Haemato-Oncology to define the current state of our knowledge and identify priorities for clinical and research development. We propose key developmental priorities which our two communities will need to work together to address, collaborating with colleagues around the world
    • …
    corecore