94 research outputs found

    Forward Beam Monitor for the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to measure the neutrino mass with a sensitivity of 0.2 eV (90 % CL). This will be achieved by a precision measurement of the endpoint region of the β-electron spectrum of tritium decay. The β-electrons are produced in the Windowless Gaseous Tritium Source (WGTS) and guided magnetically through the beamline. In order to accurately extract the neutrino mass the source activity is required to be stable and known to a high precision. The WGTS therefore undergoes constant extensive monitoring from several measurement systems. The Forward Beam Monitor (FBM) is one such monitoring system. The FBM system comprises a complex mechanical setup capable of inserting a detector board into the KATRIN beamline with a positioning precision of better than 0.3 mm. The electron flux density at that position is on the order of 106^6 s1^{-1} mm2^{-2}. The detector board contains two silicon detector chips of p-i-n diode type which can measure the β-electron flux from the source with a precision of 0.1 % within 60 s with an energy resolution of FWHM = 2 keV. The unique challenge in developing the FBM arises from its designated operating environment inside the Cryogenic Pumping Section which is a potentially tritium contaminated ultra-high vacuum chamber at cryogenic temperatures in the presence of a 1 T strong magnetic field. Each of these parameters do strongly limit the choice of possible materials which e.g. caused difficulties in detector noise reduction, heat dissipation and lubrication. In order to completely remove the FBM from the beam tube a 2 m long traveling distance into the beamline is needed demanding a robust as well as highly precise moving mechanism

    Solid-phase synthesis and characterization of n-terminally elongated Aβ-3-x-peptides

    No full text
    In addition to the prototypic amyloid-beta (A beta) peptides A beta(1-40) and A beta(1-42), several A beta variants differing in their amino and carboxy termini have been described. Synthetic availability of an A beta variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Ab-peptides A beta(-3-38), A beta(-3-40), and A beta(-3-42). Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that A beta(-3-38) and A beta(-3-40) are generated by transfected cells even in the presence of a tripartite beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Ab peptides starting at Val(-3) can be separated from N-terminally-truncated A beta forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic A beta variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated A beta variants in Alzheimer's disease

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A∗ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈ 7650 km s-1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s-1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics
    corecore