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Abstract

We have reported a transcription profile of an adapted Corynebacterium glutamicum that showed enhanced oxidative
stress resistance. To construct an artificial oxidative stress-resistant strain, gene clusters in the B-ketoadipate pathway,
which were up-regulated in the adapted strain, were artificially expressed in the wild-type C. glutamicum. The wild-type
strain was unable to grow under 2 mM H,0, containing minimal medium, while the strains expressing pca gene
clusters restored growth under the same medium, and the pcaHGBC expression showed the most significant effect
among the gene clusters. The expressions of pca gene clusters also enabled the wild-type to increase its resistance
against oxidative stressors, such as diamide and cumene hydroperoxide, as well as H,O,. The oxidative stress tolerance
of the strain was correlated to the reactive oxygen species (ROS)-scavenging activity of the cell extract. The reason for
the enhanced oxidative stress-resistance of C. glutamicum and its applications on the synthetic strain development

are discussed.
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Introduction

Corynebacterium glutamicum, a Gram-positive bacterium
with high GC-content that belongs to the order of Ac-
tinomycetales, is a well-known industrial strain for the
production of various amino acids and nucleotides,
such as lysine, glutamate, and inosine 5-monophosphate
(IMP) (Eggeling and Bott 2005). During the fermentation
processes, the industrial strains encounter many artifi-
cially-driven stresses, such as temperature, pH, osmotic
pressure, starvation, and oxidation. These kinds of stressors
cause the loss of viability and cellular functions, which
lower the productivity of bioprocesses (Li et al. 2009).
Because reactive oxygen species (ROS) such as superoxide
radical, hydroxyl radical, and hydrogen peroxide are
mainly formed during respiration, by the incomplete
reduction of oxygen, and because oxidative stress by
high oxidizing potential of ROS leads many damages,
such as mutations, metabolic pathway disruption, and
growth inhibition, oxidative stress is an unavoidable
damage for oxygenic bioprocess of aerobic organisms
(Fridovich 1998).
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To understand the oxidative stress-induced responses of
C. glutamicum, we have adaptively evolved the wild-type
strain (ATCC 13032) under gradually increasing H,O,
conditions in a chemostat culture for 1,900 h, and have
acquired a strain that was able to grow under 10 mM
H,0O, conditions (Lee et al. 2013b). The H,0O,-adapted
C. glutamicum strain (KCTC12280BP, i.e,, HA strain)
showed a distinguished transcriptome pattern (NCBI
Gene Expression Omnibus access code: GSE41232).
One of the unique transcriptome pattern of the adapted-
HA strain was the up-regulations of genes involved in
the degradation of aromatic compounds (p-coumarate,
benzoate, quinate, shikimate, ferulate, vanillate, caffeate) in
B-ketoadipate pathway, which could be linked to TCA
cycle (Figure 1A), even though no aromatic compound
was supplemented in the medium. This result brought
about the theory that there might have been synthesis of
aromatic antioxidants via the up-regulated [(-ketoadipate
pathway, and the ROS-scavenging activity of the interme-
diates in the B-ketoadipate pathway might have enabled
the C. glutamicum HA strain to tolerate oxidative stress.

To verify this theory, we artificially expressed pca gene
clusters in p-ketoadipate pathway (pcall, pcaFD, and
pcaHGBC) in the wild-type C. glutamicum and checked
their survivability under oxidative stress conditions. The
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Figure 1 Schematic diagram of the B-ketoadipate pathway (A) and distribution of pca gene clusters (B) in Corynebacterium glutamicum.
(A). Descriptions and abbreviations: PcaHG, PCA 3, 4-dioxygenase; PcaB, (3-carboxy-cis,cis-muconate cycloisomerase; PcaC, y-carboxymuconolactone
decarboxylase; PcaD, B-ketoadipate enol-lactone hydrolase; PcalJ, B-ketoadipate:succinyl-coenzyme A transferase; PcaF, 3-ketoadipate acetyl
CoA acetyltransferase; TCA, tricarboxylic acid cycle. (B). Genes organized as an operon are shown in the same color. Arrows indicate transcriptional
activation and repression (Shen et al. 2012; Zhao et al. 2010). Numbers above genes indicate expression ratios of H,O,-adapted strain/wild-type
from transcriptome results using RNA-seq (NCBI Gene Expression Omnibus access code: GSE41232) (Lee et al. 2013b).

ROS-scavenging activities of the cell extracts were
also estimated. Artificial oxidative stress-tolerant C.
glutamicum is discussed based on the viewpoints of
industrial applications.

Materials and methods

Strain and growth condition

Corynebacterium glutamicum ATCC 13032 containing
vectors were grown in MCGC minimal medium composed
of glucose 10 g, (NHy),SO, 4 g, KH,PO, 3 g, Na,HPO,
6 g, NaCl 1 g, sodium citrate dehydrate 1 g, biotin 200 pug,
thiamine-HCl 1 mg, and minerals (FeSO,-7H,O 20 mg,
MgSO,4-7H,O 0.2 g, MnSO,-H,O 2 mg, FeCl; 2 mg,
ZnSO4-7H,O 0.5 pg, CuCly:2H,O 0.2 pg, (NHys
Mo,0,4-4H,0 0.1 pg, NapB4O7-10H,O 0.2 pg, and
CaCl, 70 pg) per liter (von der Osten et al. 1989).
Kanamycin (25 pg/mL) was supplemented to maintain
vectors. Hydrogen peroxide (2 mM) was added to verify

the growth against oxidative stress. Culture was performed
at 30°C, 230 rpm in a 250 mL-Erlenmyer flask containing
50 mL medium. Cell growth was measured at O.D.ggonm
and was converted into biomass with an extinction coeffi-
cient of 0.250.

Plasmid construction

Plasmid pSL360 (Park et al. 2004), an empty expression
vector carrying the Pigo promoter, which induces con-
stitutive overexpression of the cloned gene, was used to
express pca gene clusters (Figure 1B). The pca gene
clusters (pcall: 5'-gactgcagtgaacattacgttagcatgt-3’ and
5'-ggctgcagttaagcaactttgaaatce-3 ', Pstl site italics; pcaFD:
5'-ggatgcattaaggatcaaaaaatgaaccctc-3' and 5'-ggatgcat
ttaagcgaaatgctgtge-3°, Nsil site italics; pcaHGBC: 5'-aa
ctgcagagacgcagaaaggtctc-3'and 5'-ggctgeagttactgaaggtct
gacac-3’, Nsil site italics). The native ribosome binding
site (RBS) was modified with the consensus RBS sequence
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(bold) for high expression. The amplified DNAs of pcal]
(1,404 bp), pcaFD (1,998 bp), and pcaHGBC (2,799 bp)
were digested with Pstl or Nsil, respectively, and were
further ligated with PstI-digested pSL360 (same over-
hang with Nsil digestion) resulting in pSL360-pcal],
pSL360-pcaFD, and pSL360-pcaHGBC, respectively. The
constructed vectors were electroporated (2 mm cuvette,
25 pE 200 Q, 2.5 kV) using an ECM 630 electroporation
system (BTX, Holliston, MA, USA) into the wild-type C.
glutamicum, after sequence verifications at a sequencing
facility (Macrogen co., Seoul, Korea).

Preparation of total RNA and RT-qPCR

Total RNA was extracted from C. glutamicum cells using
TRIzol® reagent (Invitrogen, Carlsbad, CA, USA) and
the NucleoSpin® RNA II Kit (Macherey-Nagel, Diiren,
Germany) according to the manufacturer’s instructions
with the following modifications. C. glutamicum cells were
harvested at an OD600 of 15, resuspended in TRIzol®
reagent, and transferred to vials containing glass beads
(acid-washed, 212-300 pm, Sigma-Aldrich, MO, USA).
After cell disruption using Mini-Beadbeater-16 (Biospec,
Bartlesville, PA, USA), the suspension was centrifuged,
and the supernatant was applied to NucleoSpin® RNA II
Kit (Macherey-Nagel, Diiren, Germany). 50 ng of total
RNA of C. glutamicum cells were used to cDNA synthesis
using ReverTra Ace-a-° (TOYOBO, Osaka, Japan) ac-
cording to the manufacturer’s instructions, respectively.
THUNDERBIRD™ SYBR® qPCR Mix (TOYOBO, Osaka,
Japan) and the Mx3005P QPCR System (Agilent Tech-
nologies, Santa Clara, CA, USA) were used for gene
expression analysis. The RT-qPCR process was verified
by melting curve and melting peak analyses. Relative
quantity and standard error values from the expression
analysis were calculated with MxPro-Mx3005P software
ver. 4.10 (Agilent Technologies, Santa Clara, CA, USA).
The following primers were used for detecting transcrip-
tion level of pca genes: pcal, 5 -acccagatgcagcaatga-3’
and 5’-gacgcggttgacgtaaattc-3’; pcal, 5’-atcggcatgecta
cacttatc-3” and 5’-gttcctcttcagttgggtaagg-3”; pcaF, 5'-cc
actgggttceggtattt-3” and 5°-gcgaaagcttcgttgagttc-3°; pcaD,
5’-aacttccgacaacaccttgg-3” and 5’-cgatgacgcggaaatcct
tat-3’; pcaH, 5’-ggaccgttatgccaggtaat-3” and 5°-ccgtaaa
ctgacgaccatagag-3’; pcaG, 5’-cgctacgagcagtcgaatatc-3°
and 5’-aaaccgatgtggacgtaagg-3’; pcaB, 5’-ccgatctttatac
tecgaccttg-3” and 5°-gectccacgacaagaagatt-37; pcaC, 5'-tc
gctatgaaaccggaatgaa-3” and 5’-cctgaaacttctcagtcaccte-3';
16S rRNA, 5’-acccttgtcttatgttgecag-3” and 5’°-tgtaccgac
cattgtagcatg-3”.

Agar diffusion test

The tolerance of C. glutamium strains against various
oxidative stressors were estimated by the agar diffusion
test. Cells in log phase were mixed with 0.7% agar
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solution, and the mixture (3 mL) was poured onto 1.6%
bottom agar plate containing 20 mL of BHI medium
(Bacto™ Brain heart infusion 37 g/L, Cockeysville, MD,
USA). A paper disc (6 mm diameter, Adventec, Tokyo,
Japan) soaked with 20 pL of oxidative stressor (14% and
28% H,0,, 1 M diamide, or 10% cumene hydroperoxide,
respectively) was placed on top of the agar, and the plate
was incubated at 30°C for 24 h.

Radical scavenging activity assay

Free radical scavenging activity of cell extract was estimated
using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), that is a stable
free radical and decolorized when acquire an electron (Afify
et al. 2012). The bacterial cells grown to ODgponm = 10 in
BHI medium were harvested (5,000 rpm for 30 min at 4°C)
and disrupted by Mini-BeadBeater16 (BioSpec, Bartlesville,
OK, USA) to prepare the cell free extract. The supernatant
was mixed with the same volume of ethyl acetate. After
vigorous mixing, the ethyl acetate layer was separated by
centrifugation and filtrated by 0.22 pm pore-membrane.
The cell free extract was subjected to the free radical
scavenging activity assay. Freshly prepared DPPH solution
(2.8 mL) at a concentration of 5 mg/100 ml (in ethanol)
were mixed with the cell free extract (200 pL) and incu-
bated for 30 min in the dark at room temperature. Ethanol
(200 pL) was the control. The absorbance for the sample
(Asample) Was monitored at 517 nm during incubation with
5 min intervals and further converted into the free radical
scavenging activity according to the following equation:

ROS-scavenging activity (%)
- (Acontrol_Asample) /Acontrol x 100

The data were represented from the three biological
repeated experiments.

Results

Effect of pca gene clusters expressions on acquired
H,0,-tolerance

To determine whether the expression of pca gene clusters
affects the growth of C. glutamicum under the oxidative
stress conditions, cells were cultured in the MCGC min-
imal medium with or without 2 mM H,O,. The control
strain (wild-type C. glutamicum carrying empty pSL360
vector) was unable to grow when 2 mM H,0O, was present
whereas the strain was able to grow till O.D.=18 in 18 h
without HyO, (Figure 2). The wild-type strains carrying
parts of pca gene clusters - pcal], pcaFD, pcaHGBC —
were able to grow under the oxidative stress conditions.
The expression of pcaHGBC showed the most significant
growth recovery (O.D. = 10.1 at 30 h), while the expression
of pcal] showed the least (O.D. = 2 at 30 h). The expres-
sion of pcaFD showed an intermediate growth recovery
(O.D. =39 at 30 h).
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Figure 2 Growth of Corynebacterium glutamicum strains in minimal medium (A) with and (B) without H,0, stress. Symbols are indicated
as following: wild-type strain carrying empty vector (—o-); wild-type expressing pcalJ (—v-); wild-type expressing pcafD (— A -); wild-type expressing
pcaHGBC (—e-), respectively. Cells were cultured in MCGC minimal medium containing 25 pg/mL kanamycin, and the medium at the panel (A)
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For the verification of the expression of the pca gene
clusters, the transcripts of the pca genes in the strains
under no H,O,-stress conditions were analyzed by
RT-qPCR (Table 1). All mRNAs of the pca genes those
carried by the vector showed greater level than those
in the wild-type. Only the fold of increase were varied
depending on the clusters in the vector, that is, the
mRNA levels of pcal and pca/ in the C. glutamicum
(pSL360-pcal]) were 1.75- and 1.23-fold higher than
those in the wild-type, mRNAs of pcaF and pcaD in
the C. glutamicum (pSL360-pcaFD) were 40- and 42-fold
higher, and mRNAs of pcaH, pcaG, pcaB, and pcaC in
the C. glutamicum (pSL360-pcaHGBC) were 10.1-, 8.8-,
7.7-, 11.9-fold higher, respectively.

Table 1 mRNA transcription levels of pca genes

Effect of pca gene clusters expressions on the other
oxidative stressors

To verify the effects of the expression of pca gene clusters
on the tolerance against other oxidative stressors, agar
diffusion tests were performed (Figure 3). The inhibition
zones of the strain expressing pca gene clusters were
smaller than that of the control against all tested oxidizing
stressors (i.e., 14% and 28% H,O,, 1 M diamide, and 10%
cumene hydroperoxide). The size of inhibition zones were
in good agreement with the growth properties, that is, the
smallest inhibition zone against the oxidative stress was
found in the pcaHGBC expressing strain and the largest in
the pcal] expressing strain, though still more tolerant than
the control strain.

Target RNA-seq® (RPKM) RT-qPCRb (relative fold)

gene wT wT +pcall +pcaFD +pcaHGBC
pcal 1357 1.00£0.39 1.75+0.36 1.55+0.50 061+£0.17
pcal 134.8 1.00+0.15 123+0.14 256 +£0.27 110+012
pcaf 2209 1.00 £0.05 0.24 £0.03 402+66 1.00£0.15
pcaD 1836 1.00£0.18 0.25+0.05 425+59 1.00£0.13
pcat 172.0 1.00+0.02 0.23+0.01 261012 10.1£0.95
pcaG 116.7 1.00 £0.01 0.23+£0.02 245+0.16 8.83 £0.60
pcaB 2175 1.00£0.22 0.19+0.04 231+£0.39 7.72+042
pcaC 77.7 1.00+0.02 0.21 +£0.02 2524023 11.9+£071

The cells were grown in MCGC minimal medium without H,0,-stress and harvested in the log phase for mRNA preparation.
?Adapted from (Lee et al. 2013b) (NCBI Gene Expression Omnibus access code: GSE41232) RPKM (reads per kilo base per million).

PThis study. Values are mean + SD from three independent experiments.
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Figure 3 Growth inhibitions of Corynebacterium glutamicum strains against oxidative stressors. WT: C. glutamicum wild-type strains carrying
empty vector, +pcal) wild-type expressing pcall; +pcafD: wild-type expressing pcafD; +pcaHGBC: wild-type expressing pcaHGBC. Vertical bars indicate
the kind of oxidative stressors on the each paper disc. The agar plate contained BHI medium and a paper disc contained 20 L of each stressor. The
white bars and numbers indicate the size of each inhibition zone in centimeters.
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Effect of pca gene clusters expressions on the
intracellular ROS-scavenging activity

To understand the reason of the acquired oxidative
stress-tolerance in the pca gene clusters expressing C.
glutamicum strains, ROS-scavenging activity of the cell
extract was estimated by DPPH assay (Figure 4 and
Additional file 1: Figure S1). The cell extract from the
pcaHGBC expressing strain showed 3-times greater ROS-
scavenging activity (47.7 + 1.6%) than that from the
wild-type (16.4 + 1.1%). The ROS-scavenging activities
of the cell extracts from the pcaFD and pcal] expressing
strains were 39.1 + 2.3% and 30.9 + 1.4%, respectively.

Discussion

Constitutive overexpressions of pca gene clusters enabled
wild-type C. glutamicum to tolerate oxidizing stressors,
and pcaHGBC expression was the most effective among
pca gene clusters (Figures 2 and 3). The ROS-scavenging
activity of the cell extract was enhanced by the pca
gene clusters expressions (Figure 4). Considering that
the B-ketoadipate pathway by the pca gene clusters is
involved in the degradations of aromatic intermediates
(protocatechuate [PCA, 3,4-dihydroxybenzoate], vanillate
[3-methoxy,4-hydroxybenzoate], and 4-hydroxybenzoate)
and those were also found in natural herbs as antioxidants

(Zheng and Wang 2001), it would be reasonable to esti-
mate that aromatic intermediates have been synthesized
and contributed to ROS-scavenging activity to tolerate the
oxidative stresses (Additional file 2: Figure S3).

The wild-type C. glutamicum transcribed the pca gene
clusters at a low level, even though no aromatic carbon
sources were present in the medium (NCBI Gene Ex-
pression Omnibus access code: GSE41232), and the
transcription level of pcaC was the lowest among the
pca genes: pcal: 135.7; pcal: 134.8; pcaF: 220.9; pcaD:
183.6; pcaG: 116.7; pcaH:172.0; pcaB: 217.5; pcaC:
77.7 RPKM (reads per kilo base per million), respect-
ively (Lee et al. 2013b). This suggested pcaC, a putative
4-carboxymuconolactone decarboxylase, might have been
the bottleneck step for synthesis of aromatic antioxidants
in the wild-type strain, and overexpression of pcaHGBC
might have been mainly responsible for the bottleneck
of the pathway among all pca gene cluster expressions.
Table 1 showed the mRNA levels of pcaF, pcaD, pcaH,
pcaG, pcaB, and pcaC in the C. glutamicum (pSL360-
pcal]) were even lower (0.19- ~ 0.25-fold) than those
in the wild-type, and this might be the reason why the
pcal] cluster expression showed the least effect of oxi-
dative stress resistance among the tested pca gene
clusters.
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Figure 4 ROS-scavenging activities of the cell free extracts from Corynebacterium glutamicum strains. The cell extracts from the
C. glutamicum wild-type strains carrying empty vector, pcalJ-expressing vector, pcaFD-expressing vector, and pcaHGBC-expressing vector are
indicated as WT, +pcall, +pcafD, and + pcaHGBC, respectively. Cells were harvested at OD = 10 in the BHI medium for cell extract preparations.

It is not clear the artificial pca gene clusters expressions
have led the actual intracellular accumulation of aromatic
intermediates. We were not able to detect the actual
accumulation of recognizable aromatic metabolites from
the methanolic extracts of the recombinant strains based
on GC/MS analysis (Additional file 1: Figure S2), though
few metabolites have been changed between the wild-
type and the recombinant strains. The ROS-scavenging
aromatic intermediates might not have been preserved
enough to be detected. Okada and Okada reported that
the supplementation of aromatic compounds in methanolic
extract derived from broad bean increased the growth
rate of human fibroblasts cells by ROS-scavenging activity
(Okada and Okada 2007), and the addition of 50 mg/L
of a mixture of phenol carboxylic acids derived from wine
(caffeate, ferulate, p-coumarate, gallate) was reported
to stimulate bacterial growth (Rozes et al. 2003). The
addition of 0.1% gallate was also reported to enhance
the aerobic growths of Escherichia coli ATCC 11775 and
Staphylococcus enteridis ATCC 13076 1.5-fold and 2-fold,
respectively (Lee et al. 2006). These reports implied that
an overexpression of the aromatic compound-synthetic
pathway might be beneficial for the improved growth
rates of industrial strains, considering the facts that
cellular damages from ROS in aerobic bioprocess are
unavoidable, and that aromatic compounds are able to
scavenge growth-harmful ROS.

A number of microorganisms have been reported to
produce aromatic compounds and their derivatives, via
the aromatic compound-degrading B-ketoadipate pathway
(Harwood and Parales 1996). The biologically-beneficial
properties of aromatic compounds as anti-oxidant, anti-

cancer, and anti-inflammatory compounds have encouraged
their synthesis using microorganisms. Advances in meta-
bolic engineering and synthetic biology enabled the artificial
biosynthesis of aromatic compounds (e.g. anthocyanins,
caffeic acid, coumaric acid, hydroxybenzoic acid, ferulic
acid, and genisteinin) using E. coli and S. cerevisiae (Yan
et al. 2005; Katsuyama et al. 2007; Lin and Yan 2012;
Kang et al. 2012). C. glutamicum has been reported to
degrade aromatic compounds by pB-ketoadipate pathway
(Shen et al. 2004; Shen and Liu 2005; Merkens et al. 2005;
Brinkrolf et al. 2006), and their regulations have been
studied (Qi et al. 2007; HaufSmann et al. 2009; HaufSmann
and Poetsch 2012). Despite the industrial importance of C.
glutamicum, there has been no report of the production
of aromatic compounds from C. glutamicum. The findings
in this study suggest that C. glutamicum is a potentially
suitable host for the production of aromatic antioxidants
via the B-ketoadipate pathway, as well as being suitable for
further applications as an oxidative stress-tolerant host.
Introduction of B-ketoadipate pathway of C. glutamicum
into other species might be another application. The
authors recently found the engineered Escherichia coli
harboring greater intracellular ATP, even though useful
for application (Kim et al. 2012; Kim et al. 2011), showed a
growth defect (Lee et al. 2013a) and intracellular accumu-
lation of ROS was suspected as the reason of growth
inhibition. The ROS scavenging activities from the pca
gene clusters might enabled the engineered E. coli to reduce
the ROS from the high ATP and to lead growth recovery.
In conclusion, the wild-type C. glutamicum acquired
oxidative stress-tolerance based on the increased ROS-
scavenging activity by introducing the B-ketoadipate path-
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way gene clusters, which suggests that the intermediates
of the B-ketoadipate pathway contributed to the acquired
tolerance. This finding could be further applied to develop
a synthetic cell which is oxidative stress-tolerant and rapid
growing industrial strain under oxidative stress conditions.

Additional files

Additional file 1: Figure S1. Kinetics of DPPH radical scavenging activity
of cell free extracts of Corynebacterium glutamicum. Figure S2. The GC
chromatogram of the methanolic extracts of C. glutamicum strains.

Additional file 2: Figure S3. Summary for the expression effect of pca
gene clusters on the artificial oxidative stress-tolerance in Corynebacterium
glutamicum.
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