51 research outputs found

    Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications

    Get PDF
    Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health applications

    Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4

    Get PDF
    Cu2ZnSnS4 (CZTS) is a technologically important and complex quaternary semiconductor and a highly promising material for the absorber layer in sustainable thin film solar cells. Its photovoltaic performance is currently limited by low open-circuit voltage, thought to be due to a range of point defects such as disorder between the copper and zinc lattice sites. This is the highest-resolution neutron diffraction study reported for CZTS, which unambiguously identifies the crystal symmetry and accurately quantifies precise values for the disorder on all cation symmetry sites as a function of temperature. Two samples of CZTS were fabricated by solid state reaction and their compositions were measured by inductively-coupled plasma mass spectroscopy, which identified significant tin loss during growth, leaving the samples Sn-poor, Cu-rich and Sn-poor, Zn-rich respectively. Both samples were found exclusively to adopt the tetragonal kesterite crystal structure with significant cation disorder, which is investigated in detail over the range 4–1275 K. Importantly, and in contrast to previous reports, the 2a Wyckoff site shows disorder equal to or greater than the 2c site. The order–disorder phase transition was observed at different temperatures for the two compositions, 489 and 501 K respectively, lower than previously reported. The kesterite–sphalerite transition was observed between 1250 and 1275 K for the Sn-poor, Cu-rich sample, significantly higher than previously reported. These results provide new insights into the high levels of disorder present in CZTS and confirm that composition and cation disorder have a significant effect on the phase transition mechanism. This work will enable the development of routes to the fabrication of higher-efficiency photovoltaic devices

    Nanoscale strontium-substituted hydroxyapatite pastes and gels for bone tissue regeneration

    Get PDF
    Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0–100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility

    The effect of hyperbranched poly(acrylic acid)s on the morphology and size of precipitated nanoscale (fluor)hydroxyapatite

    Get PDF
    Hydroxyapatite and fluorhydroxyapatite (F)HA nanoparticles were synthesised in the presence of branched poly(acrylic acid)s (PAA) synthesised via reversible addition-fragmentation chain transfer polymerisation and compared to those synthesised in the presence of linear PAA. Analysis of the resulting nanoparticles using Fourier transform infrared spectroscopy, powder X-ray diffraction and transition electron microscopy found that polymer was included within the nanoparticle samples and affected their morphology with nanoparticles synthesised in the presence of branched PAA being more acicular and smaller overall

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Electrochemical detection of K+-evoked quantal secretory events from isolated rat type I carotid body cells

    No full text
    Using amperometric techniques, electrochemical events associated with vesicular transmitter release were recorded from isolated rat type I carotid body cells when exposed to a solution containing 50mm K+. Events were enhanced in amplitude by preloading cells with the catecholamine precursor, L-b-3,4-dihydroxyphenylalanine (L-DOPA). K+-evoked secretion was abolished by the non-selective Ca2, channel blocker Cd2+ (100 ,/M) and markedly reduced by the L-type Ca2+ channel blocker nifedipine (5 µM). Our results indicate that secretion from isolated rat type I cells can be monitored electrochemically and we demonstrate a major role for L-type Ca2+ channels in mediating K+-evoked secretion
    corecore