117 research outputs found

    What American Psychological Association Leaders Have to Say About Psychology of Religion and Spirituality

    Full text link
    What do American Psychological Association (APA) leaders have to say about the new journal Psychology of Religion and Spirituality? A survey was sent to 204 current APA council representatives and divisional residents, yielding 63 completed questionnaires (31% response rate). Respondents generally affirmed the importance of religion and spirituality as topics of inquiry in psychology. Although not highly religious themselves, respondents recognize religion and spirituality as important aspects of human diversity. In considering the new journal, current APA leaders who responded to the survey are particularly interested in articles relating religion and spirituality to health and coping and articles considering cross-cultural and interfaith issues

    Hydrogeology and Geochemistry of Glacial Deposits in Northeastern Kansas

    Get PDF
    Twelve counties (Atchison, Brown, Doniphan, Douglas, Jackson, Jefferson, Johnson, Leavenworth, Nemaha, Shawnee, Wabaunsee, and Wyandotte) in northeastern Kansas were glaciated during the Pleistocene Epoch. The glacial deposits consist of till, fluvial, loess, and lacustrine deposits locally totalling thicknesses of 400 ft (120 m). A major buried valley 3 mi (5 km) wide, 400 ft (120 m) deep, and 75 mi (120 km) long trends eastward across southern Nemaha, northern Jackson, and central Atchison counties. Several smaller tributary valleys can be identified in Atchison, Nemaha, Brown, Jackson, and Jefferson counties. Other buried valleys generally trend southward to the Kansas River valley or northward into Nebraska and Missouri. The glacial deposits filling the buried valleys locally are clayey. However, most valleys contain at least some water-bearing sand and gravel. Wells drilled into the best water-bearing sand and gravel deposits may yield as much as 900 gallons per minute (gpm; 0.06 m3/sm3/s), but less than 500 gpm (0.03 m3/s) is more common. The alluvial deposits of the Kansas and Missouri river valleys are the major sources of ground water in northeastern Kansas. Wells in these aquifers may have yields of 5,000 gpm (0.3 m3/s), but yields are more commonly less than 3,000 gpm (0.2 m3/s). We analyzed data from 80 pump tests using computer programs to find the best fit for transmissivity (1) and storage (S) values on glacial, alluvial, and bedrock aquifers. Transmissivities in the Missouri River valley alluvium ranged from 200,000 gallons per day per foot (gpd/ft) to 600,000 gpd/ft (2,000-7,000 m2/d), and storage values were between 0.001 and 0.0004. Tests in the Kansas River valley alluvium indicated transmissivities in the range 50,000-600,000 gpd/ft (600-7,000 m2/d) and storage values of 0.03. In the main buried valley across northeastern Kansas, the glacial deposits had T and S values of 2,500-25,600 gpd/ft (31.0-318 m2/d) and 0.00002-0.002, respectively. In the smaller buried valleys the glacial deposits had T values ranging from 1,500 gpd/ft to 100,000 gpd/ft (19-1,200 m2/d). Because of increasing population size in northeastern Kansas, appropriations of water for public and industrial water supplies have been increasing. Most of the pumpage comes from wells in the Kansas and Missouri river valleys. However, in 1981 the Division of Water Resources reported allocations of 1,466 acre-ft of water from wells tapping glacial aquifers associated with the main buried channel across Nemaha, Jackson, and Atchison counties and an additional 837 acre-ft from tributaries associated with the main buried channel. Nemaha County has the largest appropriation of water from the glacial aquifer (1,549 acre-ft/yr in 1983), and Wyandotte County has the largest appropriation of water from the alluvial aquifers (54,250 acre-ft/yr in 1983). Shawnee County has the largest number of ground-water appropriation rights (217). In 1981, for the 12-county study area, the Division of Water Resources found that 773 wells have ground-water appropriation rights. These 773 wells have appropriation rights for 140,484 acre-ft of water from alluvial aquifers, 5,290 acre-ft from glacial aquifers, and 2,146 acre-ft from Pennsylvanian and Permian rock aquifers. Maps for each county show the depth to bedrock, total thickness of Pleistocene sand and gravel deposits, estimated yield of wells, depth to water in wells and test holes, and the saturated thickness of Pleistocene deposits. A bedrock topographic map for the twelve counties was prepared from outcrop data and information from more than 5,000 water well, oil and gas, and test-hole logs. Ground waters from alluvial deposits are hard calcium bicarbonate waters that may have iron concentrations of several milligrams per liter. Sand and gravel associated with the glacial deposits generally yield hard calcium bicarbonate waters and may contain appreciable amounts of iron, manganese, sulfate, and chloride locally. Nitrate concentrations above 45 mg/L are noted in a number of wells of varying depth and aquifer source

    Hydrogeology and Geochemistry of Glacial Deposits in Northeastern Kansas

    Get PDF
    Twelve counties (Atchison, Brown, Doniphan, Douglas, Jackson, Jefferson, Johnson, Leavenworth, Nemaha, Shawnee, Wabaunsee, and Wyandotte) in northeastern Kansas were glaciated during the Pleistocene Epoch. The glacial deposits consist of till, fluvial, loess, and lacustrine deposits locally totalling thicknesses of 400 ft (120 m). A major buried valley 3 mi (5 km) wide, 400 ft (120 m) deep, and 75 mi (120 km) long trends eastward across southern Nemaha, northern Jackson, and central Atchison counties. Several smaller tributary valleys can be identified in Atchison, Nemaha, Brown, Jackson, and Jefferson counties. Other buried valleys generally trend southward to the Kansas River valley or northward into Nebraska and Missouri. The glacial deposits filling the buried valleys locally are clayey. However, most valleys contain at least some water-bearing sand and gravel. Wells drilled into the best water-bearing sand and gravel deposits may yield as much as 900 gallons per minute (gpm; 0.06 m3/sm3/s), but less than 500 gpm (0.03 m3/s) is more common. The alluvial deposits of the Kansas and Missouri river valleys are the major sources of ground water in northeastern Kansas. Wells in these aquifers may have yields of 5,000 gpm (0.3 m3/s), but yields are more commonly less than 3,000 gpm (0.2 m3/s). We analyzed data from 80 pump tests using computer programs to find the best fit for transmissivity (1) and storage (S) values on glacial, alluvial, and bedrock aquifers. Transmissivities in the Missouri River valley alluvium ranged from 200,000 gallons per day per foot (gpd/ft) to 600,000 gpd/ft (2,000-7,000 m2/d), and storage values were between 0.001 and 0.0004. Tests in the Kansas River valley alluvium indicated transmissivities in the range 50,000-600,000 gpd/ft (600-7,000 m2/d) and storage values of 0.03. In the main buried valley across northeastern Kansas, the glacial deposits had T and S values of 2,500-25,600 gpd/ft (31.0-318 m2/d) and 0.00002-0.002, respectively. In the smaller buried valleys the glacial deposits had T values ranging from 1,500 gpd/ft to 100,000 gpd/ft (19-1,200 m2/d). Because of increasing population size in northeastern Kansas, appropriations of water for public and industrial water supplies have been increasing. Most of the pumpage comes from wells in the Kansas and Missouri river valleys. However, in 1981 the Division of Water Resources reported allocations of 1,466 acre-ft of water from wells tapping glacial aquifers associated with the main buried channel across Nemaha, Jackson, and Atchison counties and an additional 837 acre-ft from tributaries associated with the main buried channel. Nemaha County has the largest appropriation of water from the glacial aquifer (1,549 acre-ft/yr in 1983), and Wyandotte County has the largest appropriation of water from the alluvial aquifers (54,250 acre-ft/yr in 1983). Shawnee County has the largest number of ground-water appropriation rights (217). In 1981, for the 12-county study area, the Division of Water Resources found that 773 wells have ground-water appropriation rights. These 773 wells have appropriation rights for 140,484 acre-ft of water from alluvial aquifers, 5,290 acre-ft from glacial aquifers, and 2,146 acre-ft from Pennsylvanian and Permian rock aquifers. Maps for each county show the depth to bedrock, total thickness of Pleistocene sand and gravel deposits, estimated yield of wells, depth to water in wells and test holes, and the saturated thickness of Pleistocene deposits. A bedrock topographic map for the twelve counties was prepared from outcrop data and information from more than 5,000 water well, oil and gas, and test-hole logs. Ground waters from alluvial deposits are hard calcium bicarbonate waters that may have iron concentrations of several milligrams per liter. Sand and gravel associated with the glacial deposits generally yield hard calcium bicarbonate waters and may contain appreciable amounts of iron, manganese, sulfate, and chloride locally. Nitrate concentrations above 45 mg/L are noted in a number of wells of varying depth and aquifer source

    790-2 Baseline Electrocardiogram Predicts 30-day Mortality Among 32,812 Patients with Acute Myocardial Infarction Treated with Thrombolysis

    Get PDF
    To determine the initial electrocardiographic variables predictive of survival among patients with acute myocardial infarction, we analyzed the baseline 12-lead ECGs in 32,812 patients enrolled into the GUSTO trial. All patients had≄0.1mV of ST segment elevation in at least one lead and received thrombolytic therapy. Those with LBBB or ventricular rhythm were excluded from analysis. Clinical follow-up was > 99.5% complete. 2218 (6.8%) patients died within 30 days of the initial ECG. Death within 30 days was more common in patients with RBBB (17%), LAFB (14%), and LPFB (17%), than in those with a normal conduction pattern (6%). Patients with ECG evidence of previous MI in a location distinct from the acute MI had a higher risk of death (9.8% vs. 5.9%) than those without prior infarction (p<0.0001). The variable having the greatest univariate predictive power for 30-day survival was the sum of the absolute ST-segment deviation in each lead (x2=341), as shown in the following mortality curve.Other ST segment variables that predicted 30-day survival were the sum of ST-segment elevation in each lead (x2=287). the maximum ST elevation in anyone lead (X2=257), and the number of leads with ST elevation (x2=250). When multivariate modeling was performed the sum of the absolute ST deviations, number of leads with ST elevation, prior ECG MI, RBBB, and LAFB each added independent prognostic information.We conclude that an ECG at the time of presentation contains substantial prognostic information which can be used to help stratify risk among thrombelytic-treated patients with acute myocardial infarction

    ROS Promote Epigenetic Remodeling and Cardiac Dysfunction in Offspring Following Maternal Engineered Nanomaterial (ENM) Exposure

    Get PDF
    Background: Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. Results: Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. Conclusions: Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    • 

    corecore