107 research outputs found

    Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as <it>E. coli </it>by the introduction of catalysts for both of these processes.</p> <p>Results</p> <p>Here we show that the introduction of Erv1p, a sulfhydryl oxidase and a disulfide isomerase allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of <it>E. coli</it>. The production of disulfide bonded proteins was also aided by the use of an appropriate fusion protein to keep the folding intermediates soluble and by choice of media. By combining the pre-expression of a sulfhydryl oxidase and a disulfide isomerase with these other factors, high level expression of even complex disulfide bonded eukaryotic proteins is possible</p> <p>Conclusions</p> <p>Our results show that the production of eukaryotic proteins with multiple disulfide bonds in the cytoplasm of <it>E. coli </it>is possible. The required exogenous components can be put onto a single plasmid vector allowing facile transfer between different prokaryotic strains. These results open up new avenues for the use of <it>E. coli </it>as a microbial cell factory.</p

    Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as <it>E. coli </it>due to the presence of multiple pathways for their reduction.</p> <p>Results</p> <p>Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of <it>E. coli </it>even without the disruption of genes involved in disulfide bond reduction, for example <it>trxB </it>and/or <it>gor</it>. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an <it>E. coli </it>strain with the reducing pathways intact, than in the commercial Δ<it>gor </it>Δ<it>trxB </it>strain rosetta-gami upon co-expression of Erv1p.</p> <p>Conclusions</p> <p>Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of <it>E. coli </it>and open up new possibilities for the use of <it>E. coli </it>as a microbial cell factory.</p

    Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway

    Get PDF
    In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility

    Kinetics of error generation in homologous B-family DNA polymerases

    Get PDF
    The kinetics of forming a proper Watson–Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4 were compared in parallel reactions to determine the relative abilities of the two polymerases to incorporate correct nucleotides as well as to form improper pairings. The kinetic rates for three different exonuclease mutants for each enzyme were measured for incorporation of an A opposite T and an A opposite furan as well as for the formation of A:C and T:T mismatches. The T4 exonuclease mutants were all ∼2- to 7-fold more efficient than the corresponding RB69 exonuclease mutants depending on whether a T or furan was in the templating position and which exonuclease mutant was used. The rates for mismatch formation by T4 were significantly reduced compared with incorporation opposite furan, much more so than the corresponding RB69 mutant. These results show that there are kinetic differences between the two enzymes but they are not large enough to preclude structural assumptions for T4 DNA polymerase based on the known structure of the RB69 DNA polymerase

    HDAC Inhibitors Act with 5-aza-2′-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells

    Get PDF
    5-aza-2′-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell proliferation was not observed when cells with knockdown of DNA methyltransferase 1 (DNMT1), or double knock down of DNMT1-DNMT3A or DNMT1-DNMT3B were treated with HDACI, implying that the demethylating function of 5-aza-CdR may be not involved in this synergistic effect. Further study showed that there was a causal relationship between 5-aza-CdR induced DNA damage and the amount of [3H]-5-aza-CdR incorporated in DNA. However, incorporated [3H]-5-aza-CdR gradually decreased when cells were incubated in [3H]-5-aza-CdR free medium, indicating that 5-aza-CdR, which is an abnormal base, may be excluded by the cell repair system. It was of interest that HDACI significantly postponed the removal of the incorporated [3H]-5-aza-CdR from DNA. Moreover, HDAC inhibitor showed selective synergy with nucleoside analog-induced DNA damage to inhibit cell proliferation, but showed no such effect with other DNA damage stresses such as γ-ray and UV, etoposide or cisplatin. This study demonstrates that HDACI synergistically inhibits cell proliferation with nucleoside analogs by suppressing removal of incorporated harmful nucleotide analogs from DNA

    Ethnic Inequalities in Mortality: The Case of Arab-Americans

    Get PDF
    BACKGROUND: Although nearly 112 million residents of the United States belong to a non-white ethnic group, the literature about differences in health indicators across ethnic groups is limited almost exclusively to Hispanics. Features of the social experience of many ethnic groups including immigration, discrimination, and acculturation may plausibly influence mortality risk. We explored life expectancy and age-adjusted mortality risk of Arab-Americans (AAs), relative to non-Arab and non-Hispanic Whites in Michigan, the state with the largest per capita population of AAs in the US. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected about all deaths to AAs and non-Arab and non-Hispanic Whites in Michigan between 1990 and 2007, and year 2000 census data were collected for population denominators. We calculated life expectancy, age-adjusted all-cause, cause-specific, and age-specific mortality rates stratified by ethnicity and gender among AAs and non-Arab and non-Hispanic Whites. Among AAs, life expectancies among men and women were 2.0 and 1.4 years lower than among non-Arab and non-Hispanic White men and women, respectively. AA men had higher mortality than non-Arab and non-Hispanic White men due to infectious diseases, chronic diseases, and homicide. AA women had higher mortality than non-Arab and non-Hispanic White women due to chronic diseases. CONCLUSIONS/SIGNIFICANCE: Despite better education and higher income, AAs have higher age-adjusted mortality risk than non-Arab and non-Hispanic Whites, particularly due to chronic diseases. Features specific to AA culture may explain some of these findings

    Characterization of the Conus bullatus genome and its venom-duct transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The venomous marine gastropods, cone snails (genus <it>Conus</it>), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. <it>Conus bullatus </it>belongs to a clade of <it>Conus </it>species called <it>Textilia</it>, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic <it>Textilia </it>clade.</p> <p>Results</p> <p>We have carried out a sequencing survey of the <it>Conus bullatus </it>genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an <it>in silico </it>pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities.</p> <p>Conclusions</p> <p>Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of <it>Conus bullatus </it>venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of <it>C. bullatus </it>transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.</p

    The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications

    Get PDF
    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted

    Dietary patterns and oral health in schoolchildren from Damascus, Syrian Arab Republic ‫السورية‬ ‫العربية‬ ‫اجلمهورية‬ ‫دمشق،‬ ‫يف‬ ‫املدارس‬ ‫أطفال‬ ‫لدى‬ ‫الفم‬ ‫وصحة‬ ‫الغذائية‬ ‫األنامط‬

    No full text
    ABSTRACT This study investigated the association between dietary patterns and oral health in primary-school children from Damascus. A total of 504 children aged 6-12 years were enrolled and food frequency questionnaires were distributed to their guardians to evaluate food consumption. Dental health was evaluated by gingival index and presence of untreated dental caries. Consumption of food groups was lower than recommended frequencies, whereas consumption of sugars was high. High sugar consumption (OR 5.26), low consumption of dairy products (OR 2.45) and poor oral hygiene (OR 2.98) remained risk factors for dental caries in multiple regression analysis. Poor oral hygiene (OR 18.5), high consumption of sugars (OR 1.82) and low frequency of tooth brushing (OR 1.98) also remained as risk factors for gingivitis regardless of all confounders included in the analysis. Comprehensive educational programmes about dietary patterns and their relation to oral health should be provided for children and their guardians. Habitudes alimentaires et santé bucco-dentaire chez des écoliers à Damas (République arabe syrienne) RÉSUMÉ La présente étude a examiné l&apos;association entre les habitudes alimentaires et la santé bucco-dentaire chez des écoliers du primaire à Damas. Au total, 504 enfants âgés de 6 à 12 ans ont été recrutés et des questionnaires de fréquence alimentaire ont été distribués aux personnes qui avaient la charge des enfants pour évaluer leur consommation d&apos;aliments. La santé dentaire a été évaluée par rapport à un indice gingival et la présence de caries dentaires non soignées. La consommation des aliments des différents groupes était inférieure aux recommandations, alors que la consommation de sucre était supérieure
    corecore