26 research outputs found

    STUDYING GREEN HOUSE GASES – IAGA DIVISION 2. AERONOMIC PHENOMENA

    Get PDF

    Escape rate : A Lagrangian measure of particle deposition from the atmosphere

    Get PDF
    Due to rising or descending air and due to gravity, aerosol particles carry out a complicated, chaotic motion and move downwards on average. We simulate the motion of aerosol particles with an atmospheric dispersion model called the Real Particle Lagrangian Trajectory (RePLaT) model, i.e., by solving Newton's equation and by taking into account the impacts of precipitation and turbulent diffusion where necessary, particularly in the planetary boundary layer. Particles reaching the surface are considered to have escaped from the atmosphere. The number of non-escaped particles decreases with time. The short-term and long-term decay are found to be exponential and are characterized by escape rates. The reciprocal values of the short-term and long-term escape rates provide estimates of the average residence time of typical particles, and of exceptional ones that become convected or remain in the free atmosphere for an extremely long time, respectively. The escape rates of particles of different sizes are determined and found to vary in a broad range. The increase is roughly exponential with the particle size. These investigations provide a Lagrangian foundation for the concept of deposition rates

    Topological Entropy : A Lagrangian Measure of the State of the Free Atmosphere

    Get PDF
    Topological entropy is shown to be a useful characteristic of the state of the free atmosphere. It can be determined as the stretching rate of a line segment of tracer particles in the atmosphere over a time span of about 10 days. Besides case studies, the seasonal distribution of the average topological entropy is determined in several geographical locations. The largest topological entropies appear in the mid- and high latitudes, especially in winter, owing to the greater temperature gradient between the pole and the equator and the more intense stirring and shearing effects of cyclones. The smallest values can be found in the trade wind belt. The local value of the topological entropy is a measure of the chaoticity of the state of the atmosphere and of how rapidly pollutants and contaminants spread from a given location

    Intensification of large-scale stretching of atmospheric pollutant clouds due to climate change

    Get PDF
    Abstract The aim of the paper is to investigate the question of how a changing climate influences the spreading of pollutants on continental and global scales. For characterizing the spreading, a measure of chaotic systems, called topological entropy, is used. This quantity describes the exponential stretching of pollutant clouds and, therefore, is related to the predictability and the complexity of the structure of a pollutant cloud. For the dispersion simulations the ERA-Interim database is used from 1979 to 2015. The simulations demonstrate that during this period the mean topological entropy slightly increases: the length of an initially line-like pollutant cloud advected for 10 (30) days in the atmosphere becomes 20%–65% (200%–400%) longer by the 2010s than in the 1980s. The mean topological entropy is found to be strongly correlated with the mean of the absolute value of the relative vorticity and only weakly linked to the mean temperature.</jats:p

    Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Get PDF
    The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5-10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment

    When the Earth goes white: the Snowball Earth attractor

    Get PDF
    Using an intermediate complexity climate model we investigate the so-called snowball Earth transition. For certain values (including its current value) of the solar constant, the climate system allows two different stable states: one of them is the snowball Earth, covered by ice and snow, and the other one is today's climate
    corecore