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ABSTRACT

Topological entropy is shown to be a useful characteristic of the state of the free atmosphere. It can be

determined as the stretching rate of a line segment of tracer particles in the atmosphere over a time span of

about 10 days. Besides case studies, the seasonal distribution of the average topological entropy is determined

in several geographical locations. The largest topological entropies appear in the mid- and high latitudes,

especially in winter, owing to the greater temperature gradient between the pole and the equator and the

more intense stirring and shearing effects of cyclones. The smallest values can be found in the trade wind belt.

The local value of the topological entropy is a measure of the chaoticity of the state of the atmosphere and of

how rapidly pollutants and contaminants spread from a given location.

1. Introduction

The advection of tracers and particles in the atmo-

sphere and the characterization of this process have

been investigated in many different ways. Several stud-

ies characterize the advection of tracers by means of

various Lagrangian quantities, like Lyapunov exponents

(Pierrehumbert and Yang 1993; Bowman 1993; von

Hardenberg et al. 2000; Mizuta and Yoden 2001), fractal

dimensions (Pierrehumbert and Yang 1993; Yang and

Pierrehumbert 1994; von Hardenberg et al. 2000;Mizuta

and Yoden 2001), and diffusion coefficients (Bowman

1993; von Hardenberg et al. 2000; Huber et al. 2001).

Here we propose the use of another quantity, well

known in dynamical systems theory (Ott 1993; T�el and

Gruiz 2006), which turns out to have a very natural

meaning in the context of dispersion—namely, the

stretching rate of material lines. The numerical de-

termination of this quantity proves to be easier than that

of many other Lagrangian measures. Being basically

a concept used in chaos theory, topological entropy can

be used in situations when the tracer dynamics can be

well described in terms of an ordinary differential

equation with the wind field as input data. This is the

case on large scales in the free atmosphere where the

effect of turbulent diffusion is weak and dry and wet

deposition are negligible (i.e., when tracers remain

outside the boundary layer). In the simulations pre-

sented in the bulk of the paper, for simplicity, we neglect

these processes also in the boundary layer where a

small fraction of the particles enter.

In this paper passive tracers are tracked in reanalysis

wind fields. In a first approximation passive tracers are

advected along isentropic surfaces (e.g., Stohl 1998). In

our study we calculate the 3D trajectory of the tracers in

order to demonstrate that determining the topological

entropy does not imply any complication even in fully

3D wind fields.

We initialize line segments of particles in the free at-

mosphere, and in each time step calculate the length of

the filament. This increases typically in an exponen-

tial manner in time. It is the rate of this exponential

stretching of the filament length that provides the to-

pological entropy. The numerical determination of this

is much easier than, say, that of the Lyapunov exponent.

Since the initial length need not be infinitesimally small,

neighboring particles need not remain close to each

other; on the contrary, the length of thematerial line can

reach several thousands of kilometers. The topological

entropy is known to be an upper bound to the Lyapunov

exponent. Typical values are found to be on the order of

0.6 day21 inmid- and high latitudes. This implies that the

length is stretched by a factor of 400 over 10 days and

a factor of more than 6 3 107 over a month.
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The topological entropy characteristic to the time span

of about 10 days turns out to depend on the actual wind

field; therefore, the determination of a geographical and

seasonal distribution of the topological entropy appeared

to be reasonable. The result is that different values show

up in the range of 0.3–0.8 day21. This range seems to be

not very large, but being in the exponent, it implies length

ratios of about 150 over 10 days and 33 106 over amonth.

The paper is organized as follows. In section 2 we

provide a brief overview of the concept of the topolog-

ical entropy and point out what way is the most efficient

for its determination in an atmospheric context. Section 3

presents the equations of the motion for tracer particles

advected in a given wind field and the data and numer-

ical methods used in the simulations. In section 4 a case

study is presented to demonstrate how the method works

in detail. The results concerning the geographical distri-

bution of the topological entropy in different periods of

a year are given in section 5. Local variances are inves-

tigated in section 6 where we show that topological en-

tropy can be considered as a measure of the spreading of

large-scale contaminations. Section 7 contains a discus-

sion and outlook.

2. Topological entropy

When the advection of a tracer particle is considered

in a given wind field v(r, t) of the free atmosphere, on

large scales, diffusion turns out to be negligible. An order-

of-magnitude estimate reveals that the average distanceD

over which a pointlike initial concentration spreads in a

time interval of T 5 10 days in the presence of a typical

horizontal turbulent diffusion of Kh 5 10–103m2 s21 is

D’
ffiffiffiffiffiffiffiffiffiffi

KhT
p

’ 3–30 km. On horizontal scales larger than

30km, which is much smaller than the advection length

scale, typically of 1000km, the equation of motion is an

ordinary differential equation (see section 3) for the path

of a particle. The dispersion problem therefore belongs to

the class of low-dimensional dynamical systems [for an

introductory text, see T�el and Gruiz (2006)], and the

appearance of chaos is very likely in such cases.

In the best-known examples of chaos, the driving is

typically periodic in time. This is different in our prob-

lem, where the motion of the particle in the turbulent

state of the atmosphere is driven by a temporally ir-

regular external forcing. Although more complicated

than traditional cases, the dispersion problem under the

conditions mentioned above provides an example of

chaotic advection (Aref 1985; Ottino 1989).

The developments of the last decades in chaotic ad-

vection led to an advanced understanding supported by

a number of laboratory experiments (e.g., Sommerer

and Ott 1993; Sommerer et al. 1996; Mathur et al. 2007).

The concepts have found wide applications in geo-

physical and oceanographic contexts as Ruppert-Felsot

et al. (2005), Shadden et al. (2005, 2009), Kai et al.

(2009), and Peacock and Haller (2013) illustrate.

In dynamical systems theory, topological entropy is

a measure of the complexity of the motion. In the most

abstract setting, this quantity characterizes how the

number of possible trajectories grows in time, in terms of

an appropriately defined symbolic encoding (Ott 1993).

The concept is most clearly accessible in periodically

driven cases, where a slightly different formulation is

based on the fact that there exist unstable periodic

orbits—so-called cycles—available for the dynamics.

The temporal length of these cycles can be arbitrarily

large.Moreover, the numberNt of all the unstable cycles

of length t increases drastically, exponentially for large

times t. The growth rate h, defined by the relationNt; eht,

is called the topological entropy. The definition is mo-

tivated by Boltzmann’s relation S5 kB lnN known from

statistical physics, where N is the number of states, S is

the thermodynamical entropy, and kB is Boltzmann’s

constant. It can be seen that the equivalent of S is ht; h

is thus some kind of entropy density.

The existence of h is a basic property of chaos. A

possible definition of chaos is ‘‘a system is chaotic if its

topological entropy is positive’’ (Ott 1993; T�el andGruiz

2006). The unstable cycles form the skeleton of chaos;

chaotic motion can be considered as a random walk

among the unstable cycles. The motion might tempo-

rarily approach one of the cycles. Since, however, the

cycle is unstable, the trajectory can only remain in its

neighborhood for a finite time and it approaches another

one sooner or later. This is the origin of the irregular

nature of chaotic dynamics. Consequently, chaotic mo-

tion does not repeat itself: it cannot be decomposed into

the sum of even infinite number of periodicmotions with

discrete frequencies.

A property of topological entropy that is easier to

capture in measurements is that it is also the growth rate

of the length of line segments. A line segment of initial

length L0 is stretched more and more in the unstable

direction of the dynamics. Let L(t) denote the length of

the line segment after time t. (Note that the line seg-

ment will always remain a one-dimensional object.) For

two-dimensional systems, it is proven (Newhouse and

Pignataro 1993) that after a sufficiently long time this

length increases exponentially, and the growth rate is

given by just h, according to the relation

L(t); eht , (1)

valid for t � 1/h. Qualitatively speaking, in the course

of its stretching, the line segment approaches more and
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more unstable cycles, and in time t each orbit of length t

gives an approximately identical contribution to its

growth. This property has numerically been demon-

strated by investigating the growth of material lines in

laminar time periodic flows, such the vonK�arm�an vortex

street (Lai and T�el 2011; Ziemniak et al. 1994).

The topological entropy is similar in spirit to, but

different in value from, the (largest positive) Lyapunov

exponent l. A general inequality states (Ott 1993; T�el

and Gruiz 2006) that

h$ l . (2)

The difference lies in the fact that though the Lyapunov

exponent is the rate of deviation between nearby tra-

jectories, a detailed investigation of its basic definition

reveals that the linear growth rate of the logarithm of the

distance between a particle pair should be determined.

In contrast, h is the rate of change of a length (and not of

its logarithm). Inequality (2) is a consequence of the

mathematical property that the logarithm of the average

of a quantity is not the same as the average of the log-

arithm of the same quantity (known as Jensen’s in-

equality for convex functions).

Within the realm of dynamical systems theory, there is

an increasing interest in the effect of nonperiodic driv-

ings. Recent theories (Lai and T�el 2011) claim that most

of the problems in this class can be understood within

the framework of so-called random maps, and the fea-

tures characterizing the periodically driven case remain

practically valid. In particular, the role of strictly peri-

odic unstable orbits is taken over by unstable bounded

orbits that are not exactly periodic, but that closely re-

turn to their original initial position with different return

times. The number of these unstable orbits is also pro-

liferating with the length of return time in an exponen-

tial manner, and the concept of topological entropy

holds. It is in this spirit that we expect the length of ma-

terial line to grow according to Eq. (1) also in turbulence-

driven chaotic advection. We consider this equation to

be a practical definition of the topological entropy in

this case.

Technically, the evaluation of the topological entropy

requires the monitoring of a large number of particles.

This difficulty is, however, compensated by the fact that

no smallness requirement or reshifting conditions are to

be fulfilled [the latter are needed (Ott 1993) for the

Lyapunov calculation since the distance between the

pair should always remain small]. In particular, in flows

represented on a grid, as in our case (see section 3), the

determination of the Lyapunov exponent faces the dif-

ficulty of being forced to small scales. The determination

of the topological entropy is based, however, on lengths

exceeding by far the grid scale. The stretching filaments

foliate regions with considerably different wind fields

and are, therefore, natural candidates for providing

a global characteristic of the atmosphere. Altogether,

our experience shows that the numerical determination

of the topological entropy appears to be straightforward

and computationally rather cheap.

3. Equations, data, and methods

The motion of a tracer particle of negligible size is

determined by the constraint that the particle takes on

the wind velocity instantaneously. The equation of mo-

tion can then be written in the form

_rp(t)[ vp(t)5 v(rp, t) , (3)

where _rp is the velocity of the particle and v(rp, t) is the

velocity of the ambient air at the location rp of the par-

ticle at time t. The solution of this equation is the path

or trajectory rp(t) of the tracer.

Equation (3) represents a dynamical system, and as

such, it possesses topological entropy. This implies that

topological entropy can be determined for any flow, in

whatever format the flow is given. Topological entropy

has thus recently been proven to be useful in oceano-

graphic context (Thiffeault 2010), where typical values

are more than an order of magnitude smaller than in the

atmosphere.

It also follows from Eq. (3) that a trajectory, and

hence the topological entropy, is a Lagrangian concept.

The velocity field itself is Eulerian—it refers to a property

in which the identity of fluid elements is not important. In

contrast, Lagrangian quantities are concerned with the

identity of individual fluid elements. They track the

changing individual properties along the paths of the fluid

elements as they are advected by the flow. Lagrangian

quantities are thus integrals of Eulerian ones over time

intervals and cannot therefore simply be related to

Eulerian quantities taken at preselected time instants. A

trajectory itself is an integral over the velocity field at

locations the particle passes by over its history. In ad-

dition, Eq. (3) also indicates that the topological entropy

is a quantity that is based on the velocity field solely.

Temperature, humidity, and others have thus no direct

influence on topological entropy.

The meteorological fields used for the simulations are

given on pressure levels; therefore, we determine tra-

jectories in pressure coordinates. Since in the horizontal

direction spherical coordinates are used, we solve the

following equations to determine the position of the

particles:
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dlp

dt
5

u(lp,up, pp, t)

RE cosup

, (4a)

dup

dt
5

y(lp,up, pp, t)

RE

, (4b)

dpp

dt
5v(lp,up, pp, t) , (4c)

where lp and up are the longitude and latitude co-

ordinates of a particle; pp(t) [ p[rp(t), t] is the pressure

coordinate of a particle along its path; u, y, and v are the

components of the wind field in these coordinates; and

RE is the radius of Earth.

The particle trajectories are computed using the

u, y, v reanalysis fields (1 December 2009–30 November

2010) of the Interim European Centre for Medium-

RangeWeather Forecasts (ECMWF)Re-Analysis (ERA-

Interim) database (Dee et al. 2011). The meteorological

variables are available at 22 pressure levels between 1000

and 100hPa on a 1.58 3 1.58 horizontal gridwith 6h of time

resolution.

To compute trajectories, the wind data on the regular

grid are interpolated to the location of the particles

(using bicubic spline interpolation in horizontal and

linear interpolation in vertical directions and in time).

The equations of motion [Eqs. (4a)–(4c)] are solved by

Euler’s method with a time step of Δt 5 45min. We

chose this time step because by reducing it further, no

notable changes in the dispersion of particles could be

found.

4. A case study

Figure 1 illustrates the dispersion of an initially me-

ridional line segment of n5 23 105 particles with L0 5
38 ’ 333 km (twice the resolution of the wind data) for

10 days. The center of mass of the line segment is located

at l0 5 08, u0 5 608N, and at a height of p0 5 500 hPa.

In the first days, the particles are advected northeast

toward the Scandinavian Peninsula (Fig. 1b), while the

length of the filament increases. On the fourth day (Fig.

1c), the middle part of the filament is captured by a cy-

clone over Finland, while the easterly end also begins to

FIG. 1. Dispersion of a line segment consisting of n5 23 105 particles initialized at 0000UTC 1 Jun 2010. Initial conditions: l05 08,u05
608N, p0 5 500 hPa, L0 5 38 ’ 333 km, and the tracers are distributed uniformly along a meridian. Location of the particles (a) 0, (b) 2,

(c) 4, (d) 6, (e) 8, and (f) 10 days after the ‘‘emission.’’ Color bar indicates the pressure level (hPa) of the particles.
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spiral around another cyclone over Siberia. During the

next few days (Figs. 1d–f), the cyclones and anticyclones

of the atmospheric flow fold, rumple, and lengthen the

filament more andmore by stirring, and at the end of the

observation period, the extent of the line segment be-

comes several thousand times greater than the initial

length (Fig. 2) and extends over Europe and quite a

large area of Asia. It is also interesting, as shown in Fig.

1f, that after 10 days the altitude of the particles spans to

a wide range between about 300 and 1000 hPa.

The algorithm of determining the length of a filament

is based on the observation that initially neighboring

particles remain neighbors for all times. The horizontal

distance (km) between two neighboring particles is

computed along a great circle:

jrp,i 2 rp,i11jhor 5 arccos[sinup,i sinup,i11

1 cosup,i cosup,i11 cos(lp,i 2 lp,i11)]

3
180

p
3 111:1:

(5)

Here, lp,i and up,i denote the horizontal location of

particle i. The vertical distance is determined using the

hydrostatic approximation:

jrp,i 2 rp,i11jvert 5 (rg)21jpp,i2 pp,i11j , (6)

where r and g are the density of the air and the gravi-

tational acceleration, respectively. We note that de-

viations from the hydrostatic approximation are known

to be negligible on length scales larger than about 30 km

(e.g., Kalnay 2003), with the typical spatial resolution of

100 km of the database used here hydrostatic relations

are thus applicable. Since we shall see that vertical dis-

placements are not important, for simplicity, calcula-

tions have been carried out with a constant average air

density of r 5 0.7 kgm23.

Stretching in the vertical direction is negligible compared

to the horizontal one. The proportion is found to be about

1022–1023 (Fig. 2); therefore, in calculating the distance

jrp,i 2 rp,i11j ffi (jrp,i 2 rp,i11j2hor 1 jrp,i 2 rp,i11j2vert)1/2 be-

tween two particles the second term in parentheses can

be neglected.

The length of the filament at time t is computed as the

sum of the horizontal distances between neighboring

particle positions rp,i at time t:

L(t)5 �
n21

i51
p
p,i,p

s

jrp,i(t) 2 rp,i11(t)jhor . (7)

In Eq. (7) pp,i , ps (ps 5 1000 hPa) expresses that only

those particles contribute to the length of the filament

that remain in the atmosphere.1

It is clearly visible in Fig. 2 that the growth of L(t) is

exponential in time. The exponent, the topological en-

tropy, is found to be h 5 0.89 day21. The error of h is

determined from the uncertainty of the least squares

fittings to different time intervals within days 2–10, and

is found to be 60.02 day21. For completeness, we also

determined Lvert(t), the sum of the modulus of the ver-

tical distances of all neighboring particle pairs. This

quantity is found to grow with the same exponent h. The

ratio Lvert(t)/L(t) is approximately 1.5 3 1023, which

supports the view that the total length is determined

basically by the horizontal one.

The value of h 5 0.89 day21 in this case study implies

that the total stretching factor after 10 days is exp(8.9)’
7330. The average initial distance L0/n5 38/(23 105)5
1.53 1025 8 ’ 1.7m of neighboring pairs has thus grown

to 73303 1.7m5 12.5 km. This is much smaller than the

total horizontal extent of the filament, which justifies

a posteriori the use of the simple approximation in

Eq. (7) to determine the distance.

FIG. 2. The growth of the length of the line segment in Fig. 1.

Here L and Lvert denote the length [Eq. (7)] and the length ob-

tained from the vertical differences, respectively. The growth rates

happen to coincide.

1 To enlarge the temporal rangewhere a clear exponential can be

fitted to the graph of L(t), we have extended the validity of Eq. (3)

down to the surface.We have found that even passive tracers reach

the surface within the observed time span of 10 days. The pro-

portion of the outfalling particles in the simulations is, however,

small—usually less than 0.1%. These few particles have been taken

out from the simulation, and neighborhood relations have been

reconsidered: particles between which a particle has left the at-

mosphere become neighbors in the next time step.
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5. Geographical and seasonal changes

Figure 3 illustrates that the stretching rate of line

segments started at different latitudes at the same time

varies significantly. The shortest total length is found at

the equator (h5 0.23 day21), while the longest filament

is formed from the one located at 608N (h5 0.87 day21)

initially.

The relatively strong location dependence motivated

us to determine the geographical distribution of the to-

pological entropy. We initialize material line segments

oriented meridionally over the globe. The initial height

is p0 5 500 hPa for all the particles. These segments are

distributed over the globe on a grid: from 808S to 808N in

108 increments, and starting at 1808 longitude in 308 in-
crements. The topological entropy of each line segment

is calculated from a 10-day tracking. To gain an annual

cycle of the topological entropy, at each geographical

location a line segment is initialized in every 10 days,

and then the temporal average of the topological entropy

of 3 months is determined for December–February,

March–May, June–August, and September–November

(Fig. 4). The largest values appear in the mid- and high

latitudes, mainly in the winter season of the hemisphere

because of the strong mixing and shearing effects of

cyclones. Sowe can find the largest topological entropies

in December–February in the Northern Hemisphere

(Fig. 4a) and in June–August in the Southern Hemi-

sphere (Fig. 4c).

Based on Fig. 4, we also determined the zonally av-

eraged h as a function of u (Fig. 5). The zonally and

seasonally averaged topological entropy in the mid- and

high latitudes (308–808) in the winter season of the

hemispheres is somewhat larger than in the summer

FIG. 3. Dependence on the initial latitude. The growth of L(t) of

meridional line segments (consisting of n 5 2 3 105 particles) ini-

tialized at 0000 UTC 1 Apr 2010 at l0 5 08, u0 (indicated in the

legend), and p05 500hPa. The initial length of the line segments is

L05 38 ’ 333km. The h values in the legend are obtained from the

slopes of the dashed lines.

FIG. 4. Geographical distribution of the average seasonal topological entropy (day21) obtained from line segments

(consisting of n5 23 105 particles) initiated on the p0 5 500-hPa level in (a) December–February, (b) March–May,

(c) June–August, and (d) September–November. The initial length is L0 5 38, and the center of mass of the me-

ridional segments is at the midpoints of the colored discs.
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(hw 2 hs ’ 0:06 day21). This is in agreement with the fact

that winters are more variable than summers because of

the greater temperature gradient between the pole and

the equator. The difference between the winter and

summer seasons is more significant in the Southern

Hemisphere than in the Northern Hemisphere (0.09 and

0.04day21, respectively). The reason for this can be the

difference in the proportion and location of oceans and

continents. In March–May (Fig. 5b) and in September–

November (Fig. 5d) there are no great differences between

the two hemispheres; however, March–May seems to be

a more intense period in both hemispheres based on the

average seasonal topological entropy data. Themean error

of the estimator h on this global level is found to be 2.5%.

6. Local variances and relevance to spreading of
contaminants

There might be considerable deviations from the to-

pological entropy averages given above, and thesemight

indicate basically different scenarios of dispersion. To

illustrate this, Fig. 6 shows that significant topological

entropy differences can be present in the tropics. Al-

though the mean topological entropy here is about 0.4

day21, at certain locations the length of the filament

increases much slower or faster. Figure 6a demonstrates

a weak dispersion: the particles initiated close to Ecua-

dor travel with the trade winds while they happen to

sink. The topological entropy of the filament is small:

h 5 0.25 day21. However, in Fig. 6b the particles distrib-

uted around PapuaNewGuinea rise high in a low-pressure

system (which formed on 3 January and dissipated on

8 January), and the filament becomes strongly folded in

the upper levels of the atmosphere. In this case the to-

pological entropy is h 5 0.58day21. We thus see that

a value of h around 0.3 hardly represents any danger for

a strong spreading of a pollutant over 10 days, while twice

of this value implies a considerable risk for a convoluted

dispersion over an extended area after the same time

interval.

Besides the topological entropy, the fractal dimen-

sion of the line segments in Figs. 1, 6a, and 6b is also

FIG. 5. Latitudinal distribution of the zonally and seasonally averaged topological entropy obtained from line

segments (consisting of n5 23 105 particles) initiated on the 500-hPa level in (a) December–February, (b) March–

May, (c) June–August, and (d) September–November. The initial length is L0 5 38. The error bars represent the

standard deviation of the h values in Fig. 4 along a line of latitude.

4036 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



estimated in each time step of the simulation (see Fig. 7).

In fact, these figures have been redone with 10 times

more particles than originally. Fractal dimension D0 is

determined by using the formula N(«); «2D0 , where

N(«) denotes the number of horizontal cells of charac-

teristic size « that cover the entire line segment. Instead

of cells of a regular latitude–longitude grid (where, e.g.,

a 0.58 3 0.58 cell has much smaller area near the pole

than near the equator), we design here an alternative

grid (see Fig. 7a) constructed in the following way: the

meridional sides of a cell is Δu5 « for all latitudes, while

the zonal sides Δl of the cells vary with latitude so that

the area of the cells is almost equal (a belt of a latitude

has to be filled with integer number of cells; therefore,

the area of the cells at different latitudes differ only

slightly). At the equator Δl5 «. The fractal dimension is

estimated by calculating N(«) at different times and fit-

ting a straight line to the lnN versus ln(1/«) graph over an

interval of 1.5 decades, within the range of «5 0.0258–108,
where a clear linear behavior can be seen. The error ofD0

is obtained as the error of the least squares fitting over

this interval.

Figure 7b shows the dimensions over 30 days. Note

that all three line segments remain on average hori-

zontal lines, indicating D0 ’ 1, over the first 5 days. As

the material lines stretch and fold, and their shape be-

comes more complex, the fractal dimensions begin to

increase. The growth is the fastest for Fig. 1 and the

slowest for Fig. 6a, which is in harmony with the visual

impression gained from these figures. After 10 days, the

FIG. 6. The distribution of n 5 2 3 105 particles of a meridional line segment initialized at 0000 UTC 1 Jan 2010

(black line) after 10 days (colored line). Initial conditions: (a) l05 908W, u05 08, p05 500 hPa; (b) l05 1508E, u05
108S, p0 5 500hPa. The initial length is L0 5 38 in both cases. Color bar indicates the pressure level (hPa) of the

particles.

FIG. 7. (a) The nearly uniform grid used for the determination of the fractal dimension. Here «5 1.58. (b) Fractal
dimension of filaments initiated as meridional line segments in Figs. 1 (black), 6a (dark gray), and 6b (light gray).

Dots represent the error bar at a given value of D0.
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fractal dimension of the latter is still D0 ’ 1, but that of

Fig. 6b is D0 ’ 1.2. The object with several foldings in

Fig. 1 is characterized byD0’ 1.6. All dimensions intend

to grow farther in the next 20 days and are expected to

converge to 2 asymptotically.

Qualitatively, more convoluted shapes imply larger

dimensions. The dimension can thus be used as a mea-

sure of the geographical extension of the risk or of the

need of evacuation from a large territory. In particular,

over the first 5 days, while the dimension is unity, the

extension of the infected region grows as L(t). Hence,

the size of the infected region also grows exponen-

tially in time, with the topological entropy as the rate.

(The growth of the infected area then slows down in

time since the full hemisphere, or globe, will be filled

in asymptotically.)

7. Discussion and outlook

As a continuation of the remark of the last paragraph,

we mention that the full atmosphere is a closed system,

and closed, well-mixed dynamical systems are charac-

terized by a single value of the topological entropy (Ott

1993). In our case the time over which this location- and

time-independent value is expected to show up is the

time needed for a more or less uniform spreading over

both atmospheres. This is on the order of several months

(e.g., Haszpra et al. 2012), and the time span used here

(;10 days) is much shorter. To illustrate that the growth

rate of the length changes on time scales longer than

10 days, we determine the length in one of our case studies

(see Fig. 6a) up to 30 days with an enlarged particle num-

ber. As the inset of Fig. 8 shows, a new, steeper part ap-

pears at longer times and the slope there (h5 0.54 day21)

is closer to those characteristic to the midlatitudes. This

can be considered as a signature of the convergence of the

topological entropy to a universal value for long times.

The spread of the particles after 30 days, shown in Fig. 8,

illustrates that they are in the process of approaching

a well-mixed state over the southern and northern mid-

latitudes. The topological entropy used throughout the

paper is thus a kind of finite time entropy. We have

chosen the time span of about 10 days since this appears

to be the shortest, but a sufficiently long time interval

over which a clear exponential growth of the length can

be observed.

Subgrid-scale motions are known to have an impact

on particle dispersion. To see an example of how these

might influence the results of topological entropy cal-

culations, we choose parameterizing turbulence. To this

end, we use a Lagrangian random-walk formulation for

turbulent diffusion and extend Eq. (3) to a stochastic

differential equation for each particle with turbulent

diffusivity K 5 (Kh, Kh, Ky) as a diffusion coefficient.

The equations of motion are similar, for example, to

those of the atmospheric dispersion model GEARN

(Terada and Chino 2008). As a result, infinitesimally

close particles can jump far away from each other within

a time step; therefore, the spatial neighborhood re-

lations of the particles [discussed above Eq. (5)] typi-

cally break down. The material line becomes locally

very much zigzagged. In the simulations, therefore, we

find natural to consider the ‘‘coarse grained’’ horizontal

length obtained by counting the number of boxes of

a given size that cover the set of particles at a time in-

stant. Of course, the length depends on the box size: too-

large boxes, for example, cannot capture the small-scale

filaments. The slope of the coarse-grained lengths (i.e.,

the value of the topological entropy) is found, however,

to not depend on the box size in the range 0.0258–0.58.

FIG. 8. The distribution of n 5 2 3 106 particles at the end of day 30, initiated on the me-

ridional line segment of Fig. 6a. Color bar indicates the pressure level (hPa) of the particles. The

inset shows the material length over 30 days. In the period 10–15 days, a crossover takes place

from h 5 0.25 day21 to a larger value of the topological entropy h 5 0.54 day21.

4038 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 70



The curves in Fig. 9 illustrate the growth of the coarse

grained length obtained with box size 0.18 for the situ-

ation of the case study of Fig. 1 in the presence of a

constant horizontal turbulent diffusivity Kh 5 1 and

50m2 s21 (Ky 5 0m2 s21). As expected, the larger the

diffusivity the larger the length at a given time instant.

Figure 9 demonstrates that the topological entropy

seems to hardly change in the presence of horizontal

diffusion. (The topological entropy of the diffusionless

case obtained by this method is h 5 0.87 6 0.03 day21,

which is consistent with the one in section 4 in view of

the error bars.) Note that diffusivity shortens the range

over which a clean exponential growth can be seen.

In another run, we take into account also vertical

diffusivity Ky. It is calculated only within the boundary

layer using Monin–Obukhov similarity theory utilizing

the time-dependent boundary layer height, sensible heat

flux, temperature, and surface stress data (Holtstag and

Boville 1993). The new version of Eq. (4c) includes then

a stochastic term of Ky, similar to that in the horizontal

direction, but, in addition, a new, nonstochastic drift

term also appears containing the vertical gradient ofKy.

Results (not shown) reveal that the impact of the ver-

tical diffusivity hardly modifies the values of the topo-

logical entropy on large scales obtained without Ky for

particles initiated in the free atmosphere.

Besides these preliminary studies, a more detailed

analysis remains for future work to explore how non-

geostrophic effects such as frontal areas and strong

convective storms taken place well below the grid size of

reanalysis data can be parameterized. The use of finer

databases, or wind-field forecasts, would also be worth-

while. It also remains to be seen what the best spatially

smooth parameterization of subgrid turbulence would

be for topological entropy studies.

A recent theoretical development suggests regarding

particle trajectories as braids and determines topologi-

cal entropy based on results taken from braid theory.

The method leads to a new interpretation of the topo-

logical entropy as a measure of the entanglement of

trajectories. Interestingly, even a low number of trajec-

tories appears to be sufficient for a proper estimation of

the entropy. This was applied to the ocean (Thiffeault

2010) and might also be useful in the atmospheric con-

text. Furthermore, topological entropy and braid theory

have recently been suggested (Allshouse and Thiffeault

2012; Thiffeault 2010) to be efficient tools to determine

Lagrangian coherent structures (Shadden et al. 2009;

Peacock and Haller 2013).

We mention in closing that a similar analysis can be

carried out with aerosol particles, too [for a preliminary

result, see Haszpra and T�el (2011)]. In this case, how-

ever, the topological entropy does not reflect merely the

state of the atmosphere; its value can depend on the

properties of the aerosol particles. Such simulations

might be useful to see the dynamics of the spreading

contamination if the pollution consists of aerosol parti-

cles, such as in the case of nuclear accidents and volcanic

eruptions.
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