235 research outputs found

    Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β(2)-agonist use

    Get PDF
    BACKGROUND: Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β(2)-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. METHODS: Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β(2)-adrenergic receptor haplotype determination. RESULTS: Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β(2)-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. CONCLUSION: Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased phosphorylation does not appear to be associated with a particular β(2)-adrenergic receptor haplotype. The observed decrease in VASP phosphorylation suggests greater inhibition of actin reorganization which is necessary for altering attachment and migration required during epithelial repair

    A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer

    Get PDF
    A common characteristic of environmental epidemiology is the multi-dimensional aspect of exposure patterns, frequently reduced to a cumulative exposure for simplicity of analysis. By adopting a flexible Bayesian clustering approach, we explore the risk function linking exposure history to disease. This approach is applied here to study the relationship between different smoking characteristics and lung cancer in the framework of a population based case control study

    Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol.

    Get PDF
    Background: This study sought to establish the long-term effects of Covid-19 following hospitalisation. Methods: 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). Findings: 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. Interpretation: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females. Funding: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Department for International Development and the Bill and Melinda Gates Foundation

    Learning in the absence of training data—A galactic application

    Get PDF
    There are multiple real-world problems in which training data is unavailable, and still, the ambition is to learn values of the system parameters, at which test data on an observable is realised, subsequent to the learning of the functional relationship between these variables. We present a novel Bayesian method to deal with such a problem, in which we learn a system function of a stationary dynamical system, for which only test data on a vector-valued observable is available, and training data is unavailable. This exercise borrows heavily from the state space probability density function (pdfpdf), that we also learn. As there is no training data available for either sought function, we cannot learn its correlation structure, and instead, perform inference (using Metropolis-within-Gibbs), on the discretised form of the sought system function and of the pdf{pdf}, where this pdfpdf is constructed such that the unknown system parameters are embedded within its support. Likelihood of the unknowns given the available data, is defined in terms of such a pdf{pdf}. We make an application to the learning of the density of all gravitational matter in a real galaxy

    Spatial analysis of bladder, kidney, and pancreatic cancer on upper Cape Cod: an application of generalized additive models to case-control data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1988, elevated cancer incidence in upper Cape Cod, Massachusetts prompted a large epidemiological study of nine cancers to investigate possible environmental risk factors. Positive associations were observed, but explained only a portion of the excess cancer incidence. This case-control study provided detailed information on individual-level covariates and residential history that can be spatially analyzed using generalized additive models (GAMs) and geographical information systems (GIS).</p> <p>Methods</p> <p>We investigated the association between residence and bladder, kidney, and pancreatic cancer on upper Cape Cod. We estimated adjusted odds ratios using GAMs, smoothing on location. A 40-year residential history allowed for latency restrictions. We mapped spatially continuous odds ratios using GIS and identified statistically significant clusters using permutation tests.</p> <p>Results</p> <p>Maps of bladder cancer are essentially flat ignoring latency, but show a statistically significant hot spot near known Massachusetts Military Reservation (MMR) groundwater plumes when 15 years latency is assumed. The kidney cancer map shows significantly increased ORs in the south of the study area and decreased ORs in the north.</p> <p>Conclusion</p> <p>Spatial epidemiology using individual level data from population-based studies addresses many methodological criticisms of cluster studies and generates new exposure hypotheses. Our results provide evidence for spatial clustering of bladder cancer near MMR plumes that suggest further investigation using detailed exposure modeling.</p

    Spatial analysis of lung, colorectal, and breast cancer on Cape Cod: An application of generalized additive models to case-control data

    Get PDF
    BACKGROUND: The availability of geographic information from cancer and birth defect registries has increased public demands for investigation of perceived disease clusters. Many neighborhood-level cluster investigations are methodologically problematic, while maps made from registry data often ignore latency and many known risk factors. Population-based case-control and cohort studies provide a stronger foundation for spatial epidemiology because potential confounders and disease latency can be addressed. METHODS: We investigated the association between residence and colorectal, lung, and breast cancer on upper Cape Cod, Massachusetts (USA) using extensive data on covariates and residential history from two case-control studies for 1983–1993. We generated maps using generalized additive models, smoothing on longitude and latitude while adjusting for covariates. The resulting continuous surface estimates disease rates relative to the whole study area. We used permutation tests to examine the overall importance of location in the model and identify areas of increased and decreased risk. RESULTS: Maps of colorectal cancer were relatively flat. Assuming 15 years of latency, lung cancer was significantly elevated just northeast of the Massachusetts Military Reservation, although the result did not hold when we restricted to residences of longest duration. Earlier non-spatial epidemiology had found a weak association between lung cancer and proximity to gun and mortar positions on the reservation. Breast cancer hot spots tended to increase in magnitude as we increased latency and adjusted for covariates, indicating that confounders were partly hiding these areas. Significant breast cancer hot spots were located near known groundwater plumes and the Massachusetts Military Reservation. DISCUSSION: Spatial epidemiology of population-based case-control studies addresses many methodological criticisms of cluster studies and generates new exposure hypotheses. Our results provide evidence for spatial clustering of breast cancer on upper Cape Cod. The analysis suggests further investigation of the potential association between breast cancer and pollution plumes based on detailed exposure modeling

    Assessing the impact of a health intervention via user-generated Internet content

    Get PDF
    Assessing the effect of a health-oriented intervention by traditional epidemiological methods is commonly based only on population segments that use healthcare services. Here we introduce a complementary framework for evaluating the impact of a targeted intervention, such as a vaccination campaign against an infectious disease, through a statistical analysis of user-generated content submitted on web platforms. Using supervised learning, we derive a nonlinear regression model for estimating the prevalence of a health event in a population from Internet data. This model is applied to identify control location groups that correlate historically with the areas, where a specific intervention campaign has taken place. We then determine the impact of the intervention by inferring a projection of the disease rates that could have emerged in the absence of a campaign. Our case study focuses on the influenza vaccination program that was launched in England during the 2013/14 season, and our observations consist of millions of geo-located search queries to the Bing search engine and posts on Twitter. The impact estimates derived from the application of the proposed statistical framework support conventional assessments of the campaign

    Scenario trees and policy selection for multistage stochastic programming using machine learning

    Full text link
    We propose a hybrid algorithmic strategy for complex stochastic optimization problems, which combines the use of scenario trees from multistage stochastic programming with machine learning techniques for learning a policy in the form of a statistical model, in the context of constrained vector-valued decisions. Such a policy allows one to run out-of-sample simulations over a large number of independent scenarios, and obtain a signal on the quality of the approximation scheme used to solve the multistage stochastic program. We propose to apply this fast simulation technique to choose the best tree from a set of scenario trees. A solution scheme is introduced, where several scenario trees with random branching structure are solved in parallel, and where the tree from which the best policy for the true problem could be learned is ultimately retained. Numerical tests show that excellent trade-offs can be achieved between run times and solution quality

    Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, mathematical models of person to person infectious diseases transmission had to make assumptions on transmissions enabled by personal contacts by estimating the so-called WAIFW-matrix. In order to better inform such estimates, a population based contact survey has been carried out in Belgium over the period March-May 2006. In contrast to other European surveys conducted simultaneously, each respondent recorded contacts over two days. Special attention was given to holiday periods, and respondents with large numbers of professional contacts.</p> <p>Methods</p> <p>Participants kept a paper diary with information on their contacts over two different days. A contact was defined as a two-way conversation of at least three words in each others proximity. The contact information included the age of the contact, gender, location, duration, frequency, and whether or not touching was involved.</p> <p>For data analysis, we used association rules and classification trees. Weighted generalized estimating equations were used to analyze contact frequency while accounting for the correlation between contacts reported on the two different days.</p> <p>A contact surface, expressing the average number of contacts between persons of different ages was obtained by a bivariate smoothing approach and the relation to the so-called next-generation matrix was established.</p> <p>Results</p> <p>People mostly mixed with people of similar age, or with their offspring, their parents and their grandparents. By imputing professional contacts, the average number of daily contacts increased from 11.84 to 15.70. The number of reported contacts depended heavily on the household size, class size for children and number of professional contacts for adults. Adults living with children had on average 2 daily contacts more than adults living without children. In the holiday period, the daily contact frequency for children and adolescents decreased with about 19% while a similar observation is made for adults in the weekend. These findings can be used to estimate the impact of school closure.</p> <p>Conclusion</p> <p>We conducted a diary based contact survey in Belgium to gain insights in social interactions relevant to the spread of infectious diseases. The resulting contact patterns are useful to improve estimating crucial parameters for infectious disease transmission models.</p

    Computational analyses of eukaryotic promoters

    Get PDF
    Computational analysis of eukaryotic promoters is one of the most difficult problems in computational genomics and is essential for understanding gene expression profiles and reverse-engineering gene regulation network circuits. Here I give a basic introduction of the problem and recent update on both experimental and computational approaches. More details may be found in the extended references. This review is based on a summer lecture given at Max Planck Institute at Berlin in 2005
    corecore