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Abstract There are multiple real-world problems in which training data is unavail-
able, and still, the ambition is to learn values of the system parameters, at which
test data on an observable is realised, subsequent to the learning of the functional
relationship between these variables. We present a novel Bayesian method to deal
with such a problem, in which we learn a system function of a stationary dynam-
ical system, for which only test data on a vector-valued observable is available,
and training data is unavailable. This exercise borrows heavily from the state space
probability density function (pd f ), that we also learn. As there is no training data
available for either sought function, we cannot learn its correlation structure, and in-
stead, perform inference (using Metropolis-within-Gibbs), on the discretised form
of the sought system function and of the pd f , where this pdf is constructed such that
the unknown system parameters are embedded within its support. Likelihood of the
unknowns given the available data, is defined in terms of such a pdf. We make an
application to the learning of the density of all gravitational matter in a real galaxy.

1 Introduction

The study of rich correlation structures of high-dimensional random objects, is of-
ten invoked when learning the unknown functional relationship between an observed
random variable, and some other parameters that might inform on the properties of a
system. A problem in which a vector of system parameters (say ρρρ ∈R ⊆ Rp) is re-
lated to an observed response variable (say YYY ∈Y ⊆Rd), is easily visualised by the

Cedric Spire
Loughborough University. Department of Mathematical Sciences. e-mail: c.spire@lboro.
ac.uk

Dalia Chakrabarty
Loughborough University. Department of Mathematical Sciences. e-mail: d.chakrabarty@
lboro.ac.uk

1

ar
X

iv
:1

81
1.

09
20

4v
1 

 [
st

at
.A

P]
  2

2 
N

ov
 2

01
8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362654545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
c.spire@lboro.ac.uk
c.spire@lboro.ac.uk
d.chakrabarty@lboro.ac.uk
d.chakrabarty@lboro.ac.uk


2 Cedric Spire, Dalia Chakrabarty

equation: YYY = ξξξ (ρρρ), where ξξξ : R −→Y . Given training data D= {(ρρρ i,yyyi)}
Ndata
i=1 , we

aim to learn this unknown mapping ξξξ (·) within the paradigm of supervised learning.
By ”training data” we mean here the pairs composed of chosen design points ρρρ i, and
the output yyyi that is generated at ρρρ i; i = 1, . . . ,Ndata. Methods to perform supervised
learning are extensively covered in the literature [12, 16, 17, 18]. Having learnt ξξξ (·),
one could use this model to predict the value ρρρ [5], at which the test datum yyytest on
YYY is realised – either in the conventional framework as ρρρ = ξξξ

−1
(YYY )|YYY=yyytest , or as the

Bayesian equivalent. Such prediction is possible, only subsequent to the learning of
the functional relation between ρρρ and YYY using training data D.

However, there exist physical systems for which only measurements on the ob-
servable YYY are known, i.e. training data is not available. The disciplines affected
by the absence of training data are diverse. In engineering [20], anomaly detection
is entirely sample-specific. There is no training data that allows for the learning of
a functional relationship between anomaly occurrence (parametrised by type and
severity of anomaly) and conditions that the sample is subjected to. Yet, we need to
predict those anomalies. In finance, such anomalies in stock price trends are again
outside the domain of supervised learning, given that the relationship between the
market conditions and prices have not been reliably captured by any ”models” yet.
In neuroscience, [1], a series of neurons spike at different amplitudes, and for differ-
ent time widths, to cause a response (to a stimulus). We can measure the response’s
strength and the parameters of firing neurons, but do not know the relation between
these variables. Again, in petrophysics, the system property that is the proportion
of the different components of a rock (eg. water, hydrocarbons), affects Nuclear
Magnetic Resonance (NMR) measurements from the rock [7, 21]. However, this
compositional signature cannot be reliably estimated given such data, using avail-
able estimation techniques. Quantification of petrological composition using the de-
structive testing of a rock, is highly exclusive, and expensive, to allow for a sample
that is large enough to form a meaningful training data set. Also, the resulting train-
ing data will in general be unrepresentative of any new rock, since the relationship
between the (compositional) system property and (NMR) observable is highly rock-
specific, being driven by geological influences on the well that the given rock is
obtained from. Therefore any training data will need to be substantially diverse, and
as stated before, this is unachievable in general. Equally, this dependence on the
latent geological influence annuls the possibility of using numerical simulations to
generate NMR data, given design compositional information. Thus, generation of
training data is disallowed in general.

In this work, we advance the learning of the sought functional relation between
an observable and a system parameter vector, in such a challenging (absent training)
data situation; this could in principle, then be undertaken as an exercise in unsuper-
vised learning, though opting for the more robust supervised learning route is still
possible, as long as the missing training data is generated, i.e. we are able to generate
the ρρρ i at which the measured (test) datum, yyyi on YYY , is available, ∀i ∈ {1, . . . ,Ndata}.
Our new method for accomplishing this, is to invoke a system property that helps
link ρρρ with YYY , and this is possible in physical systems for which we have – at least
partial – observed information. To clarify, what we advance in the face of the absent
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training data, is the pursuit of the probability density function of the observable YYY ,
on which data is available, and employ this to learn the system parameter vector ρρρ .
We undertake such an exercise in a Bayesian framework, in which we seek posterior
of the pdf of the observables, and the system parameters, given the available data.

The sought parameter vector could inform on the behaviour, or structure, of the
system (eg. it could be the vectorised version of the density function of all gravi-
tating matter in a distant galaxy). The state space pdf establishes the link between
this unknown vector, and measurements available on the observable (that may com-
prise complete or incomplete information on the state space variable). We consider
dynamical systems, s.t. the system at hand is governed by a kinetic equation [11];
we treat the unknown system parameter vector as the stationary parameter in the
model of this dynamical system. In the novel Bayesian learning method that we in-
troduce, this parameter is embedded within the support of the state space pdf. We
describe the general model in Section 2, that is subsequently applied to an astronom-
ical application that is discussed in Section 3. Inference is discussed in Section 4,
where inference is made on the state space pdf and the sought system parameters,
given the data that comprises measurements of the observable, using Metropolis-
within-Gibbs. Results are presented in Section 5, and the paper is rounded up with
a conclusive section (Section 6).

2 General Methodology

We model the system as a dynamical one, and define the state space variable as a
p-dimensional vector SSS ∈S ⊆Rp. Let the observable be YYY ∈Y ⊆Rd ; d < p, such
that only some (d) of the p different components of the state space vector SSS can
be observed. In light of this situation that is marked by incomplete information, we
need to review our earlier declaration of interest in the probability density function
of the full state space vector. Indeed, we aim to learn the pdf of the state space
variable SSS, and yet, have measured information on only YYY , i.e. on only d of the p
components of SSS. Our data is then one set of measurements of the observable YYY , and
can be expressed by DDD = {yyy(k)}Ndata

k=1 . If the density of S is to be learnt given data
on YYY , such incompleteness in measured information will have to be compensated
for by invoking some independent information. Such independent information is on
the symmetry of S .

It follows that unobserved components of SSS will have to be integrated out of the
state space pdf, in order to compare against data that comprises measurements of
the observables. This state space pdf that the unobserved variables are integrated
out of, is equivalently projected onto the space Y of observables, and therefore, we
refer to it as the projected state space pdf. The likelihood of the model parameters,
given the data, is simply the product of the projected state space pdf over all the
data points. But until now, the unknown model parameters have not yet appeared in
our expression of the likelihood. The next step is then to find a way for embedding
the sought system parameters, in the support of the projected state space pdf.
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This can be achieved by assuming that our dynamical system is stationary, so that
its state space pdf does not depend on time-dependent variables. In other words, the
rate of change of the state space pdf is 0. This allows us to express the pdf as
dependent on the state space vector SSS, but only via such functions of (some or all
amongst) S1, . . . ,Sp that are not changing with time; in fact, the converse of this
statement is also true. This is a standard result, often referred to as Jeans Theorem
[3, 14]. The model parameters that we seek, can be recast as related to such identified
time-independent functions of all/some state space coordinates of motion. Thus, by
expressing the state space pdf as a function of appropriate constants of motion, we
can embed system parameters into the support of the sought pdf.

As stated above, this pdf will then need to be projected into the space of observ-
ables Y , and we will convolve such a projected pdf with the error density, at every
choice of the model parameters. Then assuming the data to be iid, the product of
such a convolution over the whole data set will finally define our likelihood. Using
this likelihood, along with appropriate priors, we then define the posterior probabil-
ity density of the model parameters and the state space pd f , given the data DDD. Sub-
sequently we generate posterior samples using Metropolis-within-Gibbs. scheme.

We recall that in absence of training data on a pair of r.v.s, we cannot learn the
correlation structure of the functional relationship between these variables. In such
situations, instead of the full function, we can only learn the vectorised version of the
sought function. In other words, the relevant interval of the domain of the function
is discretised into a bin, and the value of the function held a constant over any such
bin; we can learn the functional value over any such bin.

3 Astrophysics Application

Our astrophysics application is motivated by the wish to learn the contribution of
dark matter, to the density function of all gravitating mass in a distant galaxy. While
information on light-emitting matter is available, it is more challenging to model
the effects of dark matter since, by definition, one cannot observe such matter (as it
does not emit/reflect light of any colour). However, physical phenomena such as: the
distortion of the path of light by gravitational matter acting as gravitational lenses;
temperature distribution of hot gas that is emanating from a galaxy; motions of stars
or other galactic particles that is permitted in spite of the attractive gravitational pull
of the surrounding galactic matter, allow us to confirm that non-observable, dark
matter is contributing to the overall gravitational mass density of the galaxy. In fact,
astrophysical theories suggest that the proportion of dark matter in older galaxies
(that are of interest to us here) is the major contributor to the galactic mass, over the
minor fraction of luminous galactic matter [13]. We can compute the proportion of
this contribution, by subtracting the density of the luminous matter from the overall
density. It is then necessary to learn the gravitational mass density of the whole
system in order to learn the density of dark matter.
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We begin by considering the galaxy at hand to be a stationary dynamical sys-
tem, i.e. the distribution of the state space variable does not depend on time. Let
SSS = (X1,X2,X3,V1,V2,V3)

T ∈S ⊆ R6 define the state space variable of a galactic
particle, where XXX = (X1,X2,X3)

T is defined as its 3-dimensional location vector and
VVV = (V1,V2,V3)

T as the 3-dimensional velocity vector of the galactic particle. Our
data consists of measurement of the one observable velocity coordinate V3, and two
observable spatial coordinates, X1,X2, of Ndata galactic particles (eg. stars). That is,
for each galactic particle, we have measurements of YYY = (X1,X2,V3)

T ∈ Y ⊆ R3.
For Ndata observations, our data is thus DDD = {yyy(k)}Ndata

k=1 .
The system function that we are interested in learning here, is the density func-

tion ρ(X1,X2,X3) of the gravitational mass of all matter in the considered galaxy,
where we assume that this gravitational mass density ρ(·) is a function of the spa-
tial coordinates XXX only. This system function does indeed inform on the structure
of the galactic system – for it tells us about the distribution of matter in the galaxy;
it also dictates the behaviour of particles inside the galaxy, since the gravitational
mass density is deterministically known as a function of the gravitational poten-
tial Φ(X1,X2,X3) via the Poisson equation (∇2Φ(X1,X2,X3) =−4πGρ(X1,X2,X3),
where G is the known Universal Gravitational constant, and ∇2 is the Laplacian op-
erator), which is one of the fundamental equations of Physics [10]. The potential of
a system dictates system dynamics, along with the state space distribution.

Here, we assume that the state space density of this dynamical system does not

vary with time, i.e.
d f [X1(t),X2(t),X3(t),V1(t),V2(t),V3(t)]

dt
= 0. This follows from

the consideration that within a typical galaxy, collisions between galactic particles
are extremely rare [3]. We thus make the assumption of a collisionless system evolv-
ing in time according to the Collisionless Boltzmann Equation (CBE) [3, 6]. As mo-
tivated above, this allows us to express the state space pdf as dependent on those
functions of X1,X2,X3,V1,V2,V3 that remain invariant with time, along any trajec-
tory in the state space S ; such time-invariant constants of motion include energy,
momentum, etc. It is a standard result that the constant of motion that the state space
pd f has to depend on, is the energy E(X1,X2,X3,‖VVV ‖) of a galactic particle [2, 8],
where ‖ · ‖ represents the Euclidean norm of a vector. Here, energy is given partly
by kinetic energy that is proportional to ‖VVV ‖2, and partly by potential energy, which
by our assumption, is independent of velocities. Secondly, given that the state space
is 6-dimensional, the number of constants of motion ≤5, in order to let the galactic
particle enjoy at least 1 degree of freedom, i.e. not be fixed in state space [8].

We ease our analysis by assuming that the state space pd f is a function of energy
only. This can be rendered equivalent to designating the symmetry of isotropy to the
state space S , where isotropy implies invariance to rotations in this space, i.e. the
state space pd f is assumed to be such a function of XXX and VVV , that all orthogonal
transformations of XXX and VVV preserve the state space pd f . The simple way to achieve
the equivalence between a isotropic state space pd f and the lone dependence on
energy E of the pd f , is to ensure that the gravitation mass density, (and therefore the
gravitational potential) at all points at a given Euclidean distance from the galactic
centre, be the same, i.e. the distribution of gravitational mass abides by spherical
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symmetry s.t. ρ(·) (and therefore Φ(·)) depends on X1,X2,X3 via the Euclidean
norm ‖ XXX ‖ of the location vector XXX of a particle. Then energy E is given as the sum
of the ‖ VVV ‖2-dependent kinetic energy, and the ‖ XXX ‖-dependent potential energy.
Spherical mass distribution is not a bad assumption in the central parts of “elliptical”
galaxies that are of interest for us, as these have a global triaxial geometry.

To summarise, state space pd f is written as f (E), and we embed ρρρ(·) into the
support of this state space pd f f (E), by recalling that energy E is partly the grav-
itational potential energy Φ(·) that is deterministically related to the gravitational
mass density ρ(·) through Poisson equation.

As there is no training data available to learn the correlation structure of the
sought functions ρ(XXX) and f (E), we can only learn values of these functions at
specified points in their domains, i.e. learn their vectorised forms ρρρ and fff respec-
tively, where ρρρ := (ρ1, ...,ρNX )

T , with ρi = ρ(xxx) for xxx ∈ [xxxi−1,xxxi]; i = 1, . . .Nx. The
discretised form of f (E) is similarly defined, after discretising the relevant (non-
positive) E-values (to indicate that the considered galactic particles are bound to
the galaxy by gravitational attraction), into NE number of E-bins. Then in terms of
these vectorised versions of the state space pd f likelihood of the unknown parame-
ters ρ1, . . .ρNX , f1, . . . , fNE , given data on the observable YYY is:

`
(

ρρρ, fff |{yyy(k)}Ndata
k=1

)
=

Ndata

∏
k=1

ν(yyy(k),ρρρ, fff ), (1)

where ν(.) is the projected state space pdf.
We also require that ρ1 ≥ 0, . . .ρNX ≥ 0, f1 ≥ 0, . . . , fNE ≥ 0, and that ρi ≥

ρi+1, i = 1, . . . ,NX −1. The latter constraint is motivated by how the mass in a grav-
itating system (such as a galaxy) is distributed; given that gravity is an attractive
force, the stronger pull on matter closer to the centre of the galaxy, implies that
gravitational mass density should not increase, as we move away from the centre of
the system. These constraints are imposed via the inference that we employ.

4 Inference

Inference on the unknown parameters – that are the components of ρρρ and fff – is
undertaken using Metropolis-within-Gibbs. In the first block update during any it-
eration, the ρ1, . . . ,ρNX parameters are updated, and subsequently, the f1, . . . , fNE

parameters are updated in the 2nd block, at the updated ρ-parameters, given the
data DDD that comprises Ndata measurements of the observed state space variables
X1,X2,V3 that are the components of the observable vector YYY .

Imposition of the monotonicity constraint on the ρ parameters, s.t. ρi ≥ ρi+1,
i = 1, . . .NX −1, renders the inference interesting. We propose ρi from a Truncated
Normal proposal density that is left truncated at ρi+1, ∀i = 1, . . . ,NX − 1, and pro-
pose ρNX from a Truncated Normal that is left truncated at 0. The mean of the
proposal density is the current value of the parameter and the variance is experi-
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mentally chosen, as distinct for each i ∈ {1, . . . ,NX}. Such a proposal density helps
to maintain the non-increasing nature of the ρi-parameters, with increasing i. At
the same time, non-negativity of these parameters is also maintained. We choose
arbitrary seeds for ρ1, . . . ,ρNX , and using these as the means, a Gaussian prior is
imposed on each parameter. The variance of the prior densities is kept quite large,
and demonstration of lack of sensitivity to the prior choices, as well as the seeds, is
undertaken. As for components of the vectorised state space pd f , there is no corre-

Fig. 1 Results from a MCMC scheme showing the 95% HPDs for all the parameters to learn, for
both PNe (top row) and GC (bottom row) data. Modes are shown as red dots.Top Row: HPDs on
the ρρρ (left), and the fff parameters for the PNe data. Bottom Row: HPDs on the ρρρ (left), and the fff
parameters for the GC data.

lation information to be enjoyed in this case, unlike in the case of the components of
the vectorised gravitational mass density function. We propose f j from a Truncated
Normal (to maintain non-negativity), where the mean of this proposal density is the
current value of the parameter and the variance is chosen by hand. Loose Gaussian
priors are imposed, while the same seed value is used ∀ j ∈ {1, . . . ,NE}.

An important consideration in our work is the choice of NX and NE . We could
have treated these as unknowns and attempted learning these from the data; how-
ever, that would imply that the number of unknowns is varying from one iteration
to another, and we desired to avoid such a complication, especially since the data
strongly suggests values of NX and NE . We choose NX by binning the range of

Rp :=
√

X2
1 +X2

2 values in the data DDD, s.t. each resulting Rp-bin includes at least
one observed value of V3 in it, and at the same time, the number of Rp-bins is max-
imised. Again, we use the available data DDD to compute the empirical values of en-
ergy E, where an arbitrarily scaled histogram of the observed Rp is used to mimic
the vectorised gravitational mass density function, that is then employed to compute
the empirical estimate of the vectorised gravitational potential function, that con-
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tributes to E values. We admit maximal E-bins over the range of the empirically
computed values of E, s.t. each such E-bin contains at least one datum in DDD.

5 Results

We have input data on location and velocities of 2 kinds of galactic particles (called
“Globular Clusters”, and “Planetary Nebulae” – respectively abbreviated as GC and
PNe), available for the real galaxy NGC4494. The GC data comprises 114 mea-
surements of YYY = (X1,X2,V3)

T , for the GCs in NGC4494 [9]. Our second data set
(PNe data), comprises 255 measurements of the PNe [15]. Results of the learnt 95%
HPDs for all parameters, given both PNe (top row) and GC (bottom row) data, are
shown in Figure 1. Significant inconsistencies between the learnt gravitational mass
density parameters can suggest interesting dynamics, such as splitting of the galactic
state space into multiple, non-communicating sub-spaces [4], but for this galaxy, it
is noted that such parameters learnt from the 2 datasets, concur within learnt HPDs.

6 Conclusions

An astronomical implication of our work is that ρ1 learnt from either dataset sug-
gests a very high gravitational mass density in the innermost Rp-bin (≈ 1.6kpc),
implying gravitational mass & 109times mass of the Sun, enclosed within this inner-
most radial bin. This result alone does not contradict the suggestion that NGC4494
harbours a central supermassive blackhole (SMBH) of mass∼ 2.69±2.04×107 so-
lar masses [19]. Very interestingly, our results indicate that for both GCs and PNe,
most particles lie in the intermediate range of energy values; this is also borne by
the shape of the histogram of the empirically computed energy using either dataset,
where this empirical E value computation is discussed in the last paragraph of Sec-
tion 4. However, owing to its intense radially inward gravitational attraction, a cen-
tral SMBH is expected to render the potential energy (and therefore the total energy
E) of the particles closer to the galactic centre, to be much higher negative values,
than those further away, while also rendering the number (density) of particles to
be sharply monotonically decreasing with radius away from the centre. This is ex-
pected to render the energy distribution to be monotonically decreasing as we move
towards more positive E values – in contradiction to our noted non-monotonic trend.
So while our results are not in contradiction to the report of a very large value of
mass enclosed within the inner parts of NGC4494, interpretation of that mass as a
SMBH does not follow from our learning of the state space pd f .

The learning of the gravitational mass density function, and state space pd f –
as well as that of the relation ξξξ (·) between the observable state space coordinates,
and the system function/vector – can be done after generating the training dataset
relevant to the functional learning problem at hand. Applications in Petrophysics
and Finance are also planned.
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