607 research outputs found
The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect
We present a first measurement of the stellar mass component of galaxy
clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5
um photometry from the Spitzer Space Telescope. Our sample consists of 14
clusters detected by the Atacama Cosmology Telescope (ACT), which span the
redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass
measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14}
MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the
characteristic magnitude (m*) and faint-end slope (alpha) to be similar to
those for IR-selected cluster samples. We perform the first measurements of the
scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy
(BCG) stellar mass and total cluster stellar mass (M500star). We find a
significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2
Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong
constraint on the slope of the relation due to the small sample size.
Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the
scaling with total stellar mass. The mass fraction in stars spans the range
0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL
J0237-4939) having an unusually low total stellar mass and the lowest stellar
mass fraction. For the five clusters with gas mass measurements available in
the literature, we see no evidence for a shortfall of baryons relative to the
cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure
Critical Boundary Sine-Gordon Revisited
We revisit the exact solution of the two space-time dimensional quantum field
theory of a free massless boson with a periodic boundary interaction and
self-dual period. We analyze the model by using a mapping to free fermions with
a boundary mass term originally suggested in ref.[22]. We find that the entire
SL(2,C) family of boundary states of a single boson are boundary sine-Gordon
states and we derive a simple explicit expression for the boundary state in
fermion variables and as a function of sine-Gordon coupling constants. We use
this expression to compute the partition function. We observe that the solution
of the model has a strong-weak coupling generalization of T-duality. We then
examine a class of recently discovered conformal boundary states for compact
bosons with radii which are rational numbers times the self-dual radius. These
have simple expression in fermion variables. We postulate sine-Gordon-like
field theories with discrete gauge symmmetries for which they are the
appropriate boundary states.Comment: 33 pages, 1 figure, references added, typos correcte
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
Survey strategy optimization for the Atacama Cosmology Telescope
In recent years there have been significant improvements in the sensitivity
and the angular resolution of the instruments dedicated to the observation of
the Cosmic Microwave Background (CMB). ACTPol is the first polarization
receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky
with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol
(AdvACT), will observe the CMB in five frequency bands and over a larger area
of the sky. We describe the optimization and implementation of the ACTPol and
AdvACT surveys. The selection of the observed fields is driven mainly by the
science goals, that is, small angular scale CMB measurements, B-mode
measurements and cross-correlation studies. For the ACTPol survey we have
observed patches of the southern galactic sky with low galactic foreground
emissions which were also chosen to maximize the overlap with several galaxy
surveys to allow unique cross-correlation studies. A wider field in the
northern galactic cap ensured significant additional overlap with the BOSS
spectroscopic survey. The exact shapes and footprints of the fields were
optimized to achieve uniform coverage and to obtain cross-linked maps by
observing the fields with different scan directions. We have maximized the
efficiency of the survey by implementing a close to 24 hour observing strategy,
switching between daytime and nighttime observing plans and minimizing the
telescope idle time. We describe the challenges represented by the survey
optimization for the significantly wider area observed by AdvACT, which will
observe roughly half of the low-foreground sky. The survey strategies described
here may prove useful for planning future ground-based CMB surveys, such as the
Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
We report the first detection of the gravitational lensing of the cosmic
microwave background through a measurement of the four-point correlation
function in the temperature maps made by the Atacama Cosmology Telescope. We
verify our detection by calculating the levels of potential contaminants and
performing a number of null tests. The resulting convergence power spectrum at
2-degree angular scales measures the amplitude of matter density fluctuations
on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The
measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology
predictions. Since the amplitude of the convergence power spectrum scales as
the square of the amplitude of the density fluctuations, the 4-sigma detection
of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version
accepted by Physical Review Letters. Likelihood code can be downloaded from
http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization
sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation
of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature
and polarization with arcminute-scale angular resolution. Calibration of the
detector angles is a critical step in producing maps of the CMB polarization.
Polarization angle offsets in the detector calibration can cause leakage in
polarization from E to B modes and induce a spurious signal in the EB and TB
cross correlations, which eliminates our ability to measure potential
cosmological sources of EB and TB signals, such as cosmic birefringence. We
present our optical modeling and measurements associated with calibrating the
detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings
of SPIE; added reference in section 2 and merged repeated referenc
The Herschel Stripe 82 Survey (HerS): maps and early catalog
We present the first set of maps and band-merged catalog from the Herschel Stripe 82 Survey (HerS). Observations at 250, 350, and 500μm were taken with the Spectral and Photometric Imaging Receiver instrument aboard the Herschel Space Observatory. HerS covers 79deg 2 along the SDSS Stripe 82 to an average depth of 13.0, 12.9, and 14.8mJybeam −1 (including confusion) at 250, 350, and 500μm, respectively. HerS was designed to measure correlations with external tracers of the dark matter density field—either point-like (i.e., galaxies selected from radio to X-ray) or extended (i.e., clusters and gravitational lensing)—in order to measure the bias and redshift distribution of intensities of infrared-emitting dusty star-forming galaxies and active galactic nuclei. By locating HerS in Stripe 82, we maximize the overlap with available and upcoming cosmological surveys. The band-merged catalog contains 3.3 × 10 4 sources detected at a significance of ?3σ (including confusion noise). The maps and catalog are available at http://www.astro.caltech.edu/hers/
- …
