1,905 research outputs found

    Energy dependence of nucleus-nucleus potential close to the Coulomb barrier

    Full text link
    The nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory for mass symmetric reactions 16^{16}O+16{}+^{16}O, 40^{40}Ca+40{}+^{40}Ca, 48^{48}Ca+48{}+^{48}Ca and mass asymmetric reactions 16^{16}O+40,48 +^{40,48}Ca, 40^{40}Ca+48{}+^{48}Ca, 16^{16}O+208^{208}Pb, 40^{40}Ca+90^{90}Zr. When the center-of-mass energy is much higher than the Coulomb barrier energy, potentials deduced with the microscopic theory identify with the frozen density approximation. As the center-of-mass energy decreases and approaches the Coulomb barrier, potentials become energy dependent. This dependence signs dynamical reorganization of internal degrees of freedom and leads to a reduction of the "apparent" barrier felt by the two nuclei during fusion of the order of 2−32-3 % compared to the frozen density case. Several examples illustrate that the potential landscape changes rapidly when the center-of-mass energy is in the vicinity of the Coulomb barrier energy. The energy dependence is expected to have a significant role on fusion around the Coulomb barrier.Comment: 11 pages, 13 figures, 1 table, discussion of effects of coordinate-dependent mass added, accepted for publication in Phys. Rev.

    Stochastic Semi-Classical Description of Fusion at Near-Barrier Energies

    Full text link
    Fusion reactions of heavy ions are investigated by employing a simple stochastic semi-classical model which includes the coupling between relative motion and low frequency collective surface modes of colliding ions similarly to the quantal coupled-channels description. The quantal effect enters into the calculation through the initial zero-point fluctuations of the surface vibrations. Good agreement with the result of coupled-channels calculations as well as data is obtained for the fusion cross sections of nickel isotopes. The internal excitations in non-fusing events as well as the fusion time are investigated.Comment: 8 pages, 8 figures, Published in Phys. Rev.

    From finite nuclei to the nuclear liquid drop: leptodermous expansion based on the self-consistent mean-field theory

    Get PDF
    The parameters of the nuclear liquid drop model, such as the volume, surface, symmetry, and curvature constants, as well as bulk radii, are extracted from the non-relativistic and relativistic energy density functionals used in microscopic calculations for finite nuclei. The microscopic liquid drop energy, obtained self-consistently for a large sample of finite, spherical nuclei, has been expanded in terms of powers of A^{-1/3} (or inverse nuclear radius) and the isospin excess (or neutron-to-proton asymmetry). In order to perform a reliable extrapolation in the inverse radius, the calculations have been carried out for nuclei with huge numbers of nucleons, of the order of 10^6. The Coulomb interaction has been ignored to be able to approach nuclei of arbitrary sizes and to avoid radial instabilities characteristic of systems with very large atomic numbers. The main contribution to the fluctuating part of the binding energy has been removed using the Green's function method to calculate the shell correction. The limitations of applying the leptodermous expansion to actual nuclei are discussed. While the leading terms in the macroscopic energy expansion can be extracted very precisely, the higher-order, isospin-dependent terms are prone to large uncertainties due to finite-size effects.Comment: 13 pages revtex4, 7 eps figures, submitted to Phys. Rev.

    Origin of the neutron skin thickness of 208Pb in nuclear mean-field models

    Get PDF
    We study whether the neutron skin thickness (NST) of 208Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to NST arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical relativistic models, predict a bulk contribution in NST of 208Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that NST of 208Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of NST of 208Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of NST. We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208Pb nucleon densities.Comment: 11 pages, 4 figures; minor stylistic changes in text, new Ref. [56] added (new measurement of the neutron skin thickness of 208Pb

    Cluster formations in deformed states for 28^{28}Si and 32^{32}S

    Full text link
    We study cluster formation in strongly deformed states for 28^{28}Si and 32^{32}S using a macroscopic-microscopic model. The study is based on calculated total-energy surfaces, which are the sums of deformation-dependent macroscopic-microscopic potential-energy surfaces and rotational-energy contributions. We analyze the angular-momentum-dependent total-energy surfaces and identify the normal- and super-deformed states in 28^{28}Si and 32^{32}S, respectively. We show that at sufficiently high angular momenta strongly deformed minima appear. The corresponding microscopic density distributions show cluster structure that closely resemble the 16^{16}O+12^{12}C and 16^{16}O+16^{16}O configurations. At still higher deformations, beyond the minima, valleys develop in the calculated surfaces. These valleys lead to mass divisions that correspond to the target-projectile configurations for which molecular resonance states have been observed. We discuss the relation between the one-body deformed minima and the two-body molecular-resonance states.Comment: 6 pages, 7 figure

    Analysis of bulk and surface contributions in the neutron skin of nuclei

    Get PDF
    The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy having multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here, we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.Comment: 13 pages, 9 figure

    Analysis of bulk and surface contributions in the neutron skin of nuclei

    Get PDF
    The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy having multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here, we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.Comment: 13 pages, 9 figure

    Observation of Three-dimensional Long-range Order in Smaller Ion Coulomb Crystals in an rf Trap

    Full text link
    Three-dimensional long-range ordered structures in smaller and near-spherically symmetric Coulomb crystals of ^{40}Ca^+ ions confined in a linear rf Paul trap have been observed when the number of ions exceeds ~1000 ions. This result is unexpected from ground state molecular dynamics (MD) simulations, but found to be in agreement with MD simulations of metastable ion configurations. Previously, three-dimensional long-range ordered structures have only been reported in Penning traps in systems of ~50,000 ions or more.Comment: 5 pages; 4 figures; to appear in Phys. Rev. Lett.; changed content

    Influence of uniform electron clouds on the coupling impedance

    Get PDF
    The contribution to the longitudinal coupling impedance from an electron cloud in the form of a uniformly distributed non-neutral plasma of electrons is investigated analytically. The beam-pipe is assumed to be of circular cross section with a thick resistive wall. The beam charge distribution is uniform in the transverse direction. The electron contribution to the charge and current densities are obtained from the collective electron response to the beam passage through the pipe. We obtain the radial differential equation governing the field variation in the presence of the electron background and a general closed formula for the longitudinal coupling impedance is derived. The depletion of the coupling impedance with the density of the electron cloud is discussed for the examples of GSI SIS-18 and SIS- 100, CERN SPS and PS, and the KEKB LER, and conditions for the minimum excitation frequency as a function of the electron density are derived. Furthermore, the case of over-dense plasmas is also studied
    • 

    corecore