14,835 research outputs found

    A node-wise analysis of the uterine muscle networks for pregnancy monitoring

    Full text link
    The recent past years have seen a noticeable increase of interest in the correlation analysis of electrohysterographic (EHG) signals in the perspective of improving the pregnancy monitoring. Here we propose a new approach based on the functional connectivity between multichannel (4x4 matrix) EHG signals recorded from the women abdomen. The proposed pipeline includes i) the computation of the statistical couplings between the multichannel EHG signals, ii) the characterization of the connectivity matrices, computed by using the imaginary part of the coherence, based on the graph-theory analysis and iii) the use of these measures for pregnancy monitoring. The method was evaluated on a dataset of EHGs, in order to track the correlation between EHGs collected by each electrode of the matrix (called node-wise analysis) and follow their evolution along weeks before labor. Results showed that the strength of each node significantly increases from pregnancy to labor. Electrodes located on the median vertical axis of the uterus seemed to be the more discriminant. We speculate that the network-based analysis can be a very promising tool to improve pregnancy monitoring.Comment: 4 pages, 3 figures, accepted in the IEEE EMBC conferanc

    A critical study of Nahj Al-Balagha

    Get PDF

    Hadron Production in Neutrino-Nucleon Interactions at High Energies

    Get PDF
    The multi-particle production at high energy neutrino- nucleon collisions are investigated through the analysis of the data of the experiment CERN-WA-025 at neutrino energy less than 260GeV and the experiments FNAL-616 and FNAL-701 at energy range 120-250 GeV. The general features of these experiments are used as base to build a hypothetical model that views the reaction by a Feynman diagram of two vertices. The first of which concerns the weak interaction between the neutrino and the quark constituents of the nucleon. At the second vertex, a strong color field is assumed to play the role of particle production, which depend on the momentum transferred from the first vertex. The wave function of the nucleon quarks are determined using the variation method and relevant boundary conditions are applied to calculate the deep inelastic cross sections of the virtual diagram.Comment: 6 pages PDF forma

    Cosmological solutions of massive gravity on de Sitter

    Full text link
    In the framework of the recently proposed models of massive gravity, defined with respect to a de Sitter reference metric, we obtain new homogeneous and isotropic solutions for arbitrary cosmological matter and arbitrary spatial curvature. These solutions can be classified into three branches. In the first two, the massive gravity terms behave like a cosmological constant. In the third branch, the massive gravity effects can be described by a time evolving effective fluid with rather remarkable features, including the property to behave as a cosmological constant at late time.Comment: 6 pages, 1 figure; discussion extended, a few references added, improved analysis in Section

    On the degree conjecture for separability of multipartite quantum states

    Full text link
    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for {\it pure} multipartite quantum states, using the modified tensor product of graphs defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm we mean that the execution time of this algorithm increases as a polynomial in m,m, where mm is the number of parts of the quantum system. We give a counter-example to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.Comment: 17 pages, 3 figures. Comments are welcom

    Fractal dimension and degree of order in sequential deposition of mixture

    Full text link
    We present a number models describing the sequential deposition of a mixture of particles whose size distribution is determined by the power-law p(x)αxα1p(x) \sim \alpha x^{\alpha-1}, xlx\leq l . We explicitly obtain the scaling function in the case of random sequential adsorption (RSA) and show that the pattern created in the long time limit becomes scale invariant. This pattern can be described by an unique exponent, the fractal dimension. In addition, we introduce an external tuning parameter beta to describe the correlated sequential deposition of a mixture of particles where the degree of correlation is determined by beta, while beta=0 corresponds to random sequential deposition of mixture. We show that the fractal dimension of the resulting pattern increases as beta increases and reaches a constant non-zero value in the limit β\beta \to \infty when the pattern becomes perfectly ordered or non-random fractals.Comment: 16 pages Latex, Submitted to Phys. Rev.

    Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Full text link
    Shelf and coastal sea processes extend from the atmosphere through the water column and into the sea bed. These processes are driven by physical, chemical, and biological interactions at local scales, and they are influenced by transport and cross strong spatial gradients. The linkages between domains and many different processes are not adequately described in current model systems. Their limited integration level in part reflects lacking modularity and flexibility; this shortcoming hinders the exchange of data and model components and has historically imposed supremacy of specific physical driver models. We here present the Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de), a novel domain and process coupling system tailored---but not limited--- to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the existing coupling technology Earth System Modeling Framework and on the Framework for Aquatic Biogeochemical Models, thereby creating a unique level of modularity in both domain and process coupling; the new framework adds rich metadata, flexible scheduling, configurations that allow several tens of models to be coupled, and tested setups for coastal coupled applications. That way, MOSSCO addresses the technology needs of a growing marine coastal Earth System community that encompasses very different disciplines, numerical tools, and research questions.Comment: 30 pages, 6 figures, submitted to Geoscientific Model Development Discussion

    Proposed Hybrid Power System for Short Route Ferries

    Get PDF
    A fractional fuel consumption saving as well as pollution cuts will be a thinking pattern or a key concern in modern ship designs. Recent advances in technology for solar cells and photovoltaic (PV) modules have resulted in solar power being a cost-effective fuel reduction alternative for this objective. This paper is intended to provide a hybrid solar diesel power system for short-run ferries. This work proposes and emphasizes the energy efficiency, cost efficiency and minimal environmental impact of hybrid-powered ferries with solar diesel. The proposed system has been studied on the example of passenger-car ferry connecting the two banks of the Suez Canal at Port Said city - Egypt. Economic and environmental analyses have been conducted to determine and measure the advantages of the proposed system. The results show an economically viable and environmentally sustainable system if it were treated as a long-term investment. Compared to the equivalent diesel generator system, this system reduces exhaust emissions by about 375 tonnes per year. The fuel cost savings achieved are also significant
    corecore