27 research outputs found

    VIGOR, an annotation program for small viral genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing.</p> <p>Results</p> <p>We have developed VIGOR (Viral Genome ORF Reader), a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested.</p> <p>Conclusions</p> <p>VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high throughput annotation and closure validation in a post-sequencing production pipeline.</p

    Phylogenetic investigation of enteric bovine coronavirus in Ireland reveals partitioning between European and global strains

    Get PDF
    Background: Bovine coronavirus is a primary cause of neonatal calf diarrhea worldwide, and is also associated with acute diarrhea in adult cattle during the winter season. There are no reports on molecular characterization of bovine coronavirus in Ireland, and little data exists apart from serological studies. Findings: In this study, 11 neonatal (mean age 9 days) calf BCoV strains from the south of Ireland were collected over a one year period and characterized using molecular methods. The spike gene which encodes a protein involved in viral entry, infectivity and immune response shows the most variability amongst the isolates and was subsequently selected for in depth analysis. Phylogenetic analysis of the spike gene revealed that the Irish strains clustered with novel BCoV strains from Europe in a unique clade, possibly indicating lineage partitioning. Direct analysis of alignments identified amino acid changes in the spike protein unique to the Irish clade. Conclusion: Thus, monitoring of bovine coronavirus in Ireland is important as the current isolates in circulation in the south of Ireland may be diverging from the available vaccine strain, which may have implications regarding future BCoV vaccine efficacy

    Detection of respiratory and enteric shedding of bovine coronaviruses in cattle in Northwestern Turkey

    No full text
    Bovine coronavirus (BCoV) is an important cause of diarrhoea in calves, winter dysentery in adult cattle and respiratory tract disease in feedlot cattle. Serum, faecal and nasal swab samples were collected from a total of 96 cattle with clinical signs in 29 barns of 23 villages in Northwestern Turkey. The cattle were subdivided into 3 distinct age groups (0-30 days old, 4-12 months old and 2-7 years old). An indirect antigen-capture ELISA and an antibody-detection ELISA as well as geometric mean BCoV antibody titres were used to detect BoCV shed in the faeces and in the nasal secretions, respectively. Relationships between BCoV shedding and age group, seroconversion and clinical signs in cattle were also analysed. The rate of faecal shedding of BoCV was 37.1% (13/35) in 0-30 days old calves, 25.6% (10/39) in 4-12 months old feedlot cattle and 18.2% (4/22) in 2-7 years old cows. The overall rate of BCoV faecal shedding was 28.1% (27/96) in the cattle examined. Only one animal in the 4-12 months old age group was found to shed BoCV nasally. The analysis showed that there was a significant difference (P < 0.0001) with respect to faecal shedding between the clinical signs and the age groups. BCoV antibody titre in 50% of all cattle was ≤ 100 as detected by ELISA while 27.1% of the cattle had high titres ranging between 1,600 and 25,600. The seroconversion rate was 7.3% (7/96) in animals shedding BoCV in the faeces and 42.7% (41/96) in cattle negative for faecal shedding as detected by ELISA, and 20.8% of cattle with no seroconversion shed BCoV in the faeces. There was no statistically significant association between seroconversion and nasal or faecal BCoV shedding. These findings confirm the presence of BCoV infections in Turkey. Further studies are needed to isolate BCoV strains in Turkey and to investigate their antigenic and genetic properties

    Antigenic variation among bovine enteric coronaviruses (BECV) and bovine respiratory coronaviruses (BRCV) detected using monoclonal antibodies

    No full text
    Bovine coronavirus (BCV) causes neonatal calf diarrhea (CD) and is associated with winter dysentery (WD) in adult dairy cattle. It can also be isolated from the respiratory tracts of cattle entering feedlots. Monoclonal antibodies (MAbs) specific for the hemagglutinin esterase (HE) and spike (S) surface proteins of 2 bovine enteric coronavirus (BECV) strains and two bovine respiratory coronavirus (BRCV) strains were tested against 6 BECV strains and 6 recently isolated BRCV strains, in order to characterize the antigenicity of BCV strains with varied tissue tropisms. All MAbs had high immunofluorescence (LF) titers against BECV and BRCV strains, indicative of conserved cross-reactive epitopes. In hemagglutination inhibition (HI) tests, the S-MAbs were more broadly reactive than HE-MAbs. The BRCV and CD MAbs were more broadly reactive in HI than the WD MAbs. The HA activity of the Mebus vaccine CD strain was not inhibited by any of the MAbs tested. The HI activity of BRCV strain R6 was unique among the 6 BRCV isolates. In virus neutralization assays, MAbs to the BRCV strain R4 neutralized all 6 BECV strains tested. Antigenic variation exists among both BECV and BRCV strains, but it cannot be attributed soley to the clinical origin of the strain

    Detection of respiratory and enteric shedding of bovine coronaviruses in cattle in an Ohio feedlot

    No full text
    Recently. bovine coronavirus (BCV) has been isolated from new cattle arrivals to feedlots, but the association between respiratory and enteric infections with BCV in feedlot cattle remains uncertain. Fecal and nasal swab samples from 85 Ohio Agricultural Research and Development Center (OARDC) feedlot cattle averaging 7 months of age were collected at arrival (0) and at 4, 7 14, and 21 days postarrival (DPA). An antigen capture enzyme-linked immunosorbent assay (ELISA) was used to detect concurrent shedding of BCV in fecal and nasal samples. All samples ELISA positive for BCV were matched with an equal number of BCV ELTSA-negative samples and analyzed by reverse transcription-polymerase chain reaction (RT-PCR) of the N gene. Paired sera were collected at arrival and 21 DPA and tested for antibodies to BCV using an indirect ELISA. Information oil clinical signs, treatments provided, and cattle weights were collected. The overall rates of BCV nasal and fecal shedding were 48% (41/85) and 53% (45/85) by ELISA and 84% (71/85) and 96% (82/85) by RT-PCR, respectively. The peak of BCV nasal and fecal shedding occurred at 4 DPA. Thirty-two cattle (38%) showed concurrent enteric and nasal shedding detected by both tests. Eleven percent of cattle had antibody titers against BCV at 0 DPA and 91% of cattle seroconverted to BCV by 21 DPA. The BCV fecal and nasal shedding detected by ELISA and RT-PCR were statistically correlated with ELISA antibody sero-conversion (P < 0.0001); however, BCV fecal and nasal shedding were not significantly related to clinical signs. Seroconversion to BCV was inversely related to average daily weight gains (P < 0.06). Twenty-eight respiratory and 7 enteric BCV strains were isolated from nasal and fecal samples of 32 cattle in HRT-18 cell cultures. These findings confirm the presence of enteric and respiratory BCV infections in feedlot calves. Further studies are needed to elucidate the differences between enteric and respiratory strains of BCV and their role in the bovine respiratory disease complex of feedlot cattle

    Cross-protection studies between respiratory and calf diarrhea and winter dysentery coronavirus strains in calves and RT-PCR and nested PCR for their detection

    No full text
    A 1-step RT-PCR assay, targeting a 730 bp fragment of the nucleocapsid (N) gene of bovine coronavirus (BCV), and a nested PCR assay, targeting a 407 bp fragment of the N gene, were developed to detect BCV in nasal swab and fecal samples of calves experimentally exposed to BCV. Both 1-step RT-PCR and nested PCR recognized cell culture passaged isolates of 10 bovine respiratory coronavirus (BRCV), 5 calf diarrhea (CD) and 8 winter dysentery (WD) strains of BCV, but not transmissible gastroenteritis coronavirus or bovine rotavirus. The sensitivity of the 1-step RT-PCR and nested PCR was compared to that of an antigen-capture ELISA. The lowest detection limit of the 1-step RT-PCR and nested PCR as determined by using tenfold serial dilutions of the BRCV 255 and 440 strains in BCV negative nasal swab suspensions from preexposure gnotobiotic calves was 2 x 10(4) and 2 x 10(2) TCID50/0.1 ml for each strain, respectively. The lowest detection limit of the antigen-capture ELISA as determined by using the same serially diluted samples was 1 x 10(6) TCID50/0.1 ml for each strain. Therefore, the 1-step RT-PCR and nested PCR assays were 50 and 5000 times, respectively more sensitive than the antigen-capture ELISA to detect BRCV in nasal swab suspensions. To investigate in vivo cross-protection between the BRCV and CD or WD strains of BCV and to detect nasal and fecal shedding of BCV using the 1-step RT-PCR, nested PCR and antigen-capture ELISA, 6 colostrum-deprived and two gnotobiotic calves were inoculated with a BRCV, a CD or a WD strain of BCV and then challenged 3-4 weeks later with either BRCV, CD or WD strains of BCV. All calves developed diarrhea after inoculation and BCV antigen (ELISA) or RNA (RT-PCR) was detected in the diarrheic fecal samples or the corresponding nasal swab samples. In addition, low amounts of BCV were also detected only by nested PCR in the fecal and nasal swab samples before and after diarrhea. No respiratory clinical signs were observed during the entire experimental period, but elevated rectal temperatures were detected during diarrhea in the BCV-inoculated calves. All calves recovered from infection with the BRCV, CID, or WD strains of BCV were protected from BCV-associated diarrhea after challenge exposure with either a heterologous or homologous strain of BCV. However, all calves challenged with heterologous BCV strains showed subclinical BCV infection evident by detection of nasal and fecal shedding of BCV RNA detected only by nested PCR. Such results confirm field and experimental data documenting reinfection of the respiratory and enteric tracts of cattle, suggesting that, in closed herds, respiratory or enteric tract reinfections may constitute a source of BCV transmissible to cows (WD) or neonatal or feedlot calves. In addition, the present 1-step RT-PCR and nested PCR assays were highly sensitive to detect BCV in nasal swab and fecal specimens. Therefore. these assays should be useful to diagnose BCV infections in calves and adult cows
    corecore