1,120 research outputs found

    Effect of nitrogen and phosphorous on Farm Plantations in various agroecological zones of Punjab, Pakistan

    Get PDF
    Against a world average of 25% area under forests, Pakistan has around 5% and Punjab has only 2% area under manageable and productive forests. The present deteriorating condition of the forests in Punjab has bleak prospects of improvement and expansion in near future due to ever increasing demand for agriculture produce. In view of the present situation the best possible solution seems to be offered by Farm forestry/agroforestry that models planting trees and agricultural crops together, which unfortunately, has not been utilized to its full potential. Based on physiographic, climate and ecology, Pakistan is divided into nine major ecological or vegetative zones, which are further sub-divided into 18 habitat types – an arrangement for the development of protected areas system in terms of representative ecotypes. During the survey of farm plantations about 400 soil samples were collected and their physical and chemical analysis was conducted for the comparison of the four Agro ecological zones of the Punjab Province of Pakistan with regards to agroforestry. A comparison of the characteristics of soils taken from various farm plantations necessitated a prior evaluation of nitrogen and phosphorous as well as their composition in order to ascertain whether the soils were texturally similar or not. In case of Agroforestry, the type of soil is one of the major factors for the classification of different suitable species of plants. The results of the soil analysis of various Agro ecological zones and the consequent recommendation of the associated suitable species, aids the agrofarmers to pick out the best possible option.Keywords: Soil analysis, agro-ecological zones, agroforestry, nitrogen and phosphorous

    Characterization of recombinant rat cathepsin B and nonglycosylated mutants expressed in yeast. New insights into the pH dependence of cathepsin B-catalyzed hydrolyses.

    Get PDF
    The cysteine proteinase rat cathepsin B was expressed in yeast in an active form and was found to be heterogeneously glycosylated at the consensus sequence for N-linked oligosaccharide substitution. Purified enzyme fractions containing the highest levels of glycosylation were shown to have reduced activity. A glycosylation minus mutant constructed by site-directed mutagenesis (by changing the Ser to Ala in the consensus sequence) was still secreted by the yeast and was shown to be functionally identical with purified rat liver cathepsin B. Recombinant cathepsin B was used to further characterize the pH dependence of cathepsin B-catalyzed hydrolyses using 7-amido-4-methylcoumarin (AMC) and p-nitroaniline (pNA) substrates with arginine as the P1, and either arginine or phenylalanine as the P2 residue. The AMC and pNA groups give insights into the leaving group binding site (P') of cathepsin B. These studies show for the first time that at least seven dissociable groups are involved in substrate binding and hydrolysis in cathepsin B activity. Two of these groups, with pKa values of 6.9 and 7.7 in the recombinant enzyme, are in the leaving group binding site and are most likely His110 and His111. The same groups in rat liver cathepsin B have higher pKa values than in recombinant cathepsin B, but have identical function in the two enzymes. Two other groups are probably the active site Cys29 and His199 with pKa values of 3.6 and 8.6, respectively. A group with a pKa of 5.1 interacts with substrates containing Arg at P2, and the group is most likely Glu245. The remaining two groups, one with a pKa of about 4.9 and the other about 5.3, are most likely carboxyl residues possibly interacting with Arg at P1 in the substrate. The possible candidates on the basis of the x-ray structure are Asp22, Asp69, Glu171, and Glu122, all found within a 13 A radius from the active site thiol of Cys29

    Wavelength-selectable laser emission from a multistripe array grating integrated cavity laser

    Get PDF
    We report laser operation of a multistripe array grating integrated cavity (MAGIC) laser in which the wavelength of the emission from a single output stripe is chosen by selectively injection pumping a second stripe. We demonstrate a device that lases in the 1.5 ”m fiber band at 15 wavelengths, evenly spaced by ~2 nm. The single-output/wavelength-selectable operation, together with the accurate predefinition of the lasing wavelengths, makes the MAGIC laser a very attractive candidate for use in multiwavelength networks

    TOPICAL REVIEW: Slow light in semiconductor heterostructures

    Full text link
    This paper presents an overview of slow light in semiconductor heterostructures. The focus of this paper is to provide a unified framework to summarize and compare various physical mechanisms of slow light proposed and demonstrated in the past few years. We expand and generalize the discussions on fundamental limitation of slow light and the delay–bandwidth product trade-off to include gain systems and other mechanisms such as injection locking. We derive the maximum fractional delay and compare the differences between material dispersion and waveguide dispersion based devices. The delay–bandwidth product is proportional to the square root of the device length for a material dispersion based device but has a linear relationship for a waveguide dispersion based device. Possible scenarios to overcome the delay–bandwidth product limitation are discussed. The prospects of slow light in various applications are also investigated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58125/2/d7_5_R01.pd

    Characterization of cathepsin B specificity by site-directed mutagenesis. Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization.

    Get PDF
    The pH dependence of cathepsin B-catalyzed hydrolyzes is very complex. At least seven dissociable groups are involved in the binding and hydrolysis of 7-amido-4-methyl coumarin and p-nitroaniline (pNA)-based substrates containing a P1 Arg and either a Phe or Arg at the P2 position. By site-directed mutagenesis we show that a previous suggestion, that Arg202 is one of the groups which influences the pH dependence of cathepsin B-catalyzed hydrolysis of the Z-Arg-Arg-pNA substrate, is not valid. However, it was found that Glu245, which has a pKa of 5.1 in rat cathepsin B, is responsible for the S2-P2 specificity for Arg-containing substrates and controls the pH dependence of their hydrolysis. Furthermore, the data indicate that Glu245, which forms a hydrogen bond with the guanidinium group of the substrate's P2 Arg, contributes about 1.8 kcal/mol to transition state stabilization in the protonated state and about 0.6 kcal/mol in the deprotonated state. Mutation of Glu245 to Gln results in a 16-fold decrease in kcat but does not affect Km. While cathepsin B has a 7-fold preference for Phe over Arg at the P2 position of a substrate, binding of the aromatic side chain does not appear to be influenced by Glu245

    Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    Get PDF
    Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency

    Scoping potential routes to UK civil unrest via the food system: results of a structured expert elicitation

    Get PDF
    We report the results of a structured expert elicitation to identify the most likely types of potential food system disruption scenarios for the UK, focusing on routes to civil unrest. We take a backcasting approach by defining as an end-point a societal event in which 1 in 2000 people have been injured in the UK, which 40% of experts rated as “Possible (20–50%)”, “More likely than not (50–80%)” or “Very likely (>80%)” over the coming decade. Over a timeframe of 50 years, this increased to 80% of experts. The experts considered two food system scenarios and ranked their plausibility of contributing to the given societal scenario. For a timescale of 10 years, the majority identified a food distribution problem as the most likely. Over a timescale of 50 years, the experts were more evenly split between the two scenarios, but over half thought the most likely route to civil unrest would be a lack of total food in the UK. However, the experts stressed that the various causes of food system disruption are interconnected and can create cascading risks, highlighting the importance of a systems approach. We encourage food system stakeholders to use these results in their risk planning and recommend future work to support prevention, preparedness, response and recovery planning

    Quantum Noise and Polarization Fluctuations in Vertical Cavity Surface Emitting Lasers

    Get PDF
    We investigate the polarization fluctuations caused by quantum noise in quantum well vertical cavity surface emitting lasers (VCSELs). Langevin equations are derived on the basis of a generalized rate equation model in which the influence of competing gain-loss and frequency anisotropies is included. This reveals how the anisotropies and the quantum well confinement effects shape the correlations and the magnitude of fluctuations in ellipticity and in polarization direction. According to our results all parameters used in the rate equations may be obtained experimentally from precise time resolved measurements of the intensity and polarization fluctuations in the emitted laser light. To clarify the effects of anisotropies and of quantum well confinement on the laser process in VCSELs we therefore propose time resolved measurements of the polarization fluctuations in the laser light. In particular, such measurements allow to distinguish the effects of frequency anisotropy and of gain-loss anisotropy and would provide data on the spin relaxation rate in the quantum well structure during cw operation as well as representing a new way of experimentally determinig the linewidth enhancement factor alpha.Comment: 16 pages and 3 Figures, RevTex, to be published in Phys. Rev.

    Spontaneous emulsification induced by nanoparticle surfactants

    Get PDF
    Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications
    • 

    corecore