2,495 research outputs found

    Indiana WETnet: A Virtual Water Resource

    Get PDF

    A radio continuum survey of the southern sky at 1420 MHz. Observations and data reduction

    Get PDF
    We describe the equipment, observational method and reduction procedure of an absolutely calibrated radio continuum survey of the South Celestial Hemisphere at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full beam brightness) and the angular resolution (HPBW) is 35.4', which matches the existing northern sky survey at the same frequency.Comment: 9 pages with 9 figures, A&A, in pres

    Applying a longitudinal tracer methodology to evaluate complex interventions in complex settings

    Get PDF
    Long-running multi-faceted intervention studies are particularly problematic in large complex organizations where traditional methods prove too resource intensive and can yield inaccurate and incomplete findings. This paper describes the first use of, longitudinal tracer methodology (LTM), a realist approach to evaluation, to examine the links between multiple complex intervention activities (processes) and their outcomes on a construction megaproject. LTM is especially useful when the researcher has little control over intervention delivery but has evidence drawn from multiple sources to evaluate the intervention activities effects over time. This methodology has rarely been deployed in complex organisational settings and not on a construction megaproject. This paper presents a case study of its use over a period of three years, on 24 construction sites forming London’s Thames Tideway Tunnel (Tideway) megaproject. The study examines the ‘transformational’ power of occupational safety and health (OSH) interventions across the multiple organisations and supply chains in the megaproject. The study shows how the method can be adapted in-flight to accommodate shifting lines of inquiry as the intervention activities progress and change. This feature along with its resource efficient operation, make it any attractive option where interventions are likely to have differential effects across multiple sites of enactment

    Galactic emission at 19 GHz

    Full text link
    We cross-correlate a 19 GHz full sky Cosmic Microwave Background (CMB) survey with other maps to quantify the foreground contribution. Correlations are detected with the Diffuse Infrared Background Experiment (DIRBE) 240, 140 and 100 micron maps at high latitudes (|b|>30degrees), and marginal correlations are detected with the Haslam 408 MHz and the Reich & Reich 1420 MHz synchrotron maps. The former agree well with extrapolations from higher frequencies probed by the COBE DMR and Saskatoon experiments and are consistent with both free-free and rotating dust grain emission.Comment: 4 pages, with 4 figures included. Accepted for publication in ApJL. Color figure and links at http://www.sns.ias.edu/~angelica/foreground.html#19 or from [email protected]

    MHD Turbulence as a Foreground for CMB Studies

    Full text link
    Measurements of intensity and polarization of diffuse Galactic synchrotron emission as well as starlight polarization reveal power law spectra of fluctuations. We show that these fluctuations can arise from magnetohydrodynamic (MHD) turbulence in the Galactic disk and halo. To do so we take into account the converging geometry of lines of sight for the observations when the observer is within the turbulent volume. Assuming that the intensity of turbulence changes along the line of sight, we get a reasonable fit to the observed synchrotron data. As for the spectra of polarized starlight we get a good fit to the observations taking into account the fact that the observational sample is biased toward nearby stars.Comment: 10 pages, 6 figures, Astrophyscal J., submitte

    Global 21cm signal experiments: a designer's guide

    No full text
    [Abridged] The spatially averaged global spectrum of the redshifted 21cm line has generated much experimental interest, for it is potentially a direct probe of the Epoch of Reionization and the Dark Ages. Since the cosmological signal here has a purely spectral signature, most proposed experiments have little angular sensitivity. This is worrisome because with only spectra, the global 21cm signal can be difficult to distinguish from foregrounds such as Galactic synchrotron radiation, as both are spectrally smooth and the latter is orders of magnitude brighter. We establish a mathematical framework for global signal data analysis in a way that removes foregrounds optimally, complementing spectra with angular information. We explore various experimental design trade-offs, and find that 1) with spectral-only methods, it is impossible to mitigate errors that arise from uncertainties in foreground modeling; 2) foreground contamination can be significantly reduced for experiments with fine angular resolution; 3) most of the statistical significance in a positive detection during the Dark Ages comes from a characteristic high-redshift trough in the 21cm brightness temperature; and 4) Measurement errors decrease more rapidly with integration time for instruments with fine angular resolution. We show that if observations and algorithms are optimized based on these findings, an instrument with a 5 degree beam can achieve highly significant detections (greater than 5-sigma) of even extended (high Delta-z) reionization scenarios after integrating for 500 hrs. This is in contrast to instruments without angular resolution, which cannot detect gradual reionization. Abrupt ionization histories can be detected at the level of 10-100's of sigma. The expected errors are also low during the Dark Ages, with a 25-sigma detection of the expected cosmological signal after only 100 hrs of integration.Comment: 34 pages, 30 figures. Replaced (v2) to match accepted PRD version (minor pedagogical additions to text; methods, results, and conclusions unchanged). Fixed two typos (v3); text, results, conclusions etc. completely unchange

    Accumulation and deposition of triacylglycerols in the starchy endosperm of wheat grain

    Get PDF
    A combination of lipidomics, transcriptomics and bioimaging has been used to study triacylglycerol synthesis and deposition in the developing starchy endosperm of wheat. The content of TAG increased between 14 and 34 days after anthesis, from 50 to 115 mg/g dry wt and from about 35 to 175 mg/g dry wt in two experiments. The major fatty acids were C16 (palmitic C 16:0 and palmitoleic C16:1) and C18 (stearic C18:0, oleic C18:1, linoleic C18:2 and linolenic C18:3), with unsaturated fatty acids accounting for about 75-80% of the total throughout development. Linoleic acid (C18:2) was the major component at all stages and the proportion increased during development. Transcript profiling indicated that predominant route to TAG synthesis and oil accumulation is via the Kennedy pathway and diacylglycerol acyltransferase (DGAT) activity. Confocal microscopy of stained tissue sections showed that TAG accumulated in droplets concentrated in the cells below the sub-aleurone cells which are associated with protein. Transcripts encoding 16kd oleosins were also expressed, indicating that the oil droplets are stabilised by oleosin proteins

    The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis

    Full text link
    The results of the Tenerife Cosmic Microwave Background (CMB) experiments are presented. These observations cover 5000 and 6500 square degrees on the sky at 10 and 15 GHz respectively centred around Dec.~ +35 degrees. The experiments are sensitive to multipoles l=10-30 which corresponds to the Sachs-Wolfe plateau of the CMB power spectra. The sensitivity of the results are ~31 and \~12 microK at 10 and 15 GHz respectively in a beam-size region (5 degrees FWHM). The data at 15 GHz show clear detection of structure at high Galactic latitude; the results at 10 GHz are compatible with these, but at lower significance. A likelihood analysis of the 10 and 15 GHz data at high Galactic latitude, assuming a flat CMB band power spectra gives a signal Delta T_l=30+10-8 microK (68 % C.L.). Including the possible contaminating effect due to the diffuse Galactic component, the CMB signal is Delta T_l=30+15-11 microK. These values are highly stable against the Galactic cut chosen. Assuming a Harrison-Zeldovich spectrum for the primordial fluctuations, the above values imply an expected quadrupole Q_RMS-PS=20+10-7 microK which confirms previous results from these experiments, and which are compatible with the COBE DMR.Comment: 17 pages, 7 figures. Submitted to Ap

    Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function

    Full text link
    In this second paper in a series dedicated to developing efficient numerical techniques for the deblurring Cosmic Microwave Background (CMB) maps, we consider the case of asymmetric point spread functions (PSF). Although conceptually this problem is not different from the symmetric case, there are important differences from the computational point of view because it is no longer possible to use some of the efficient numerical techniques that work with symmetric PSFs. We present procedures that permit the use of efficient techniques even when this condition is not met. In particular, two methods are considered: a procedure based on a Kronecker approximation technique that can be implemented with the numerical methods used with symmetric PSFs but that has the limitation of requiring only mildly asymmetric PSFs. The second is a variant of the classic Tikhonov technique that works even with very asymmetric PSFs but that requires discarding the edges of the maps. We provide details for efficient implementations of the algorithms. Their performance is tested on simulated CMB maps.Comment: 9 pages, 13 Figure

    An upper limit on anomalous dust emission at 31 GHz in the diffuse cloud [LPH96]201.663+1.643

    Full text link
    [LPH96]201.663+1.643, a diffuse H{\sc ii} region, has been reported to be a candidate for emission from rapidly spinning dust grains. Here we present Cosmic Background Imager (CBI) observations at 26-36 GHz that show no evidence for significant anomalous emission. The spectral index within the CBI band, and between CBI and Effelsberg data at 1.4/2.7 GHz, is consistent with optically thin free-free emission. The best-fitting temperature spectral index from 2.7 to 31 GHz, ÎČ=−2.06±0.03\beta=-2.06 \pm 0.03, is close to the theoretical value, ÎČ=−2.12\beta=-2.12 for Te=9100T_{e}=9100 K. We place an upper limit of 24% ~ (2\sigma) for excess emission at 31 GHz as seen in a 6\arcmin FWHM beam. Current spinning dust models are not a good fit to the spectrum of LPH96. No polarized emission is detected in the CBI data with an upper limit of 2% on the polarization fraction.Comment: 5 pages, 3 figures, submitted to ApJ
    • 

    corecore