34 research outputs found

    Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation

    Get PDF
    T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.

    No full text
    T cell receptor (TCR) activation and signaling precede immunological synapse formation and are sustained for hours after initiation. However, the precise physical sites of the initial and sustained TCR signaling are not definitively known. We report here that T cell activation was initiated and sustained in TCR-containing microclusters generated at the initial contact sites and the periphery of the mature immunological synapse. Microclusters containing TCRs, the tyrosine kinase Zap70 and the adaptor molecule SLP-76 were continuously generated at the periphery. TCR microclusters migrated toward the central supramolecular cluster, whereas Zap70 and SLP-76 dissociated from these microclusters before the microclusters coalesced with the TCR-rich central supramolecular cluster. Tyrosine phosphorylation and calcium influx were induced as microclusters formed at the initial contact sites. Inhibition of signaling prevented recruitment of Zap70 into the microclusters. These results indicated that TCR-rich microclusters initiate and sustain TCR signaling

    Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation.

    Get PDF
    T cell activation is mediated by microclusters (MCs) containing T cell receptors (TCRs), kinases, and adaptors. Although TCR MCs translocate to form a central supramolecular activation cluster (cSMAC) of the immunological synapse at the interface of a T cell and an antigen-presenting cell, the role of MC translocation in T cell signaling remains unclear. Here, we found that the accumulation of MCs at cSMAC was important for T cell costimulation. Costimulatory receptor CD28 was initially recruited coordinately with TCR to MCs, and its signals were mediated through the assembly with the kinase PKCtheta. The accumulation of MCs at the cSMAC was accompanied by the segregation of CD28 from the TCR, which resulted in the translocation of both CD28 and PKCtheta to a spatially unique subregion of cSMAC. Thus, costimulation is mediated by the generation of a unique costimulatory compartment in the cSMAC via the dynamic regulation of MC translocation

    Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.

    No full text
    T cell receptor (TCR) activation and signaling precede immunological synapse formation and are sustained for hours after initiation. However, the precise physical sites of the initial and sustained TCR signaling are not definitively known. We report here that T cell activation was initiated and sustained in TCR-containing microclusters generated at the initial contact sites and the periphery of the mature immunological synapse. Microclusters containing TCRs, the tyrosine kinase Zap70 and the adaptor molecule SLP-76 were continuously generated at the periphery. TCR microclusters migrated toward the central supramolecular cluster, whereas Zap70 and SLP-76 dissociated from these microclusters before the microclusters coalesced with the TCR-rich central supramolecular cluster. Tyrosine phosphorylation and calcium influx were induced as microclusters formed at the initial contact sites. Inhibition of signaling prevented recruitment of Zap70 into the microclusters. These results indicated that TCR-rich microclusters initiate and sustain TCR signaling

    A quantitative assessment of costimulation and phosphatase activity on microclusters in early T cell signaling

    Get PDF
    Contains fulltext : 125195.pdf (publisher's version ) (Open Access)T cell signaling is triggered through stimulation of the T cell receptor and costimulatory receptors. Receptor activation leads to the formation of membrane-proximal protein microclusters. These clusters undergo tyrosine phosphorylation and organize multiprotein complexes thereby acting as molecular signaling platforms. Little is known about how the quantity and phosphorylation levels of microclusters are affected by costimulatory signals and the activity of specific signaling proteins. We combined micrometer-sized, microcontact printed, striped patterns of different stimuli and simultaneous analysis of different cell strains with image processing protocols to address this problem. First, we validated the stimulation protocol by showing that high expression levels CD28 result in increased cell spreading. Subsequently, we addressed the role of costimulation and a specific phosphotyrosine phosphatase in cluster formation by including a SHP2 knock-down strain in our system. Distinguishing cell strains using carboxyfluorescein succinimidyl ester enabled a comparison within single samples. SHP2 exerted its effect by lowering phosphorylation levels of individual clusters while CD28 costimulation mainly increased the number of signaling clusters and cell spreading. These effects were observed for general tyrosine phosphorylation of clusters and for phosphorylated PLCgamma1. Our analysis enables a clear distinction between factors determining the number of microclusters and those that act on these signaling platforms
    corecore