41 research outputs found

    Treatment of non-small cell lung cancer with intensity-modulated radiation therapy in combination with cetuximab: the NEAR protocol (NCT00115518)

    Get PDF
    BACKGROUND: Even today, treatment of Stage III NSCLC still poses a serious challenge. So far, surgical resection is the treatment of choice. Patients whose tumour is not resectable or who are unfit to undergo surgery are usually referred to a combined radio-chemotherapy. However, combined radio-chemotherapeutic treatment is also associated with sometimes marked side effects but has been shown to be more efficient than radiation therapy alone. Nevertheless, there is a significant subset of patients whose overall condition does not permit administration of chemotherapy in a combined-modality treatment. It could be demonstrated though, that NSCLCs often exhibit over-expression of EGF-receptors hence providing an excellent target for the monoclonal EGFR-antagonist cetuximab (Erbitux(®)) which has already been shown to be effective in colorectal as well as head-and-neck tumours with comparatively mild side-effects. METHODS/DESIGN: The NEAR trial is a prospective phase II feasibility study combining a monoclonal EGF-receptor antibody with loco-regional irradiation in patients with stage III NSCLC. This trial aims at testing the combination's efficacy and rate of development of distant metastases with an accrual of 30 patients. Patients receive weekly infusions of cetuximab (Erbitux(®)) plus loco-regional radiation therapy as intensity-modulated radiation therapy. After conclusion of radiation treatment patients continue to receive weekly cetuximab for 13 more cycles. DISCUSSION: The primary objective of the NEAR trial is to evaluate toxicities and feasibility of the combined treatment with cetuximab (Erbitux(®)) and IMRT loco-regional irradiation. Secondary objectives are remission rates, 3-year-survival and local/systemic progression-free survival

    Replication-Independent Generation and Morphological Analysis of Flavivirus Replication Organelles

    No full text
    Positive-strand RNA viruses replicate in distinct membranous structures called replication organelles (ROs). Mechanistic studies of RO formation have been difficult because perturbations affecting viral replication have an impact on viral protein amounts, thus affecting RO biogenesis. Here, we present a detailed guide on how to use a replication-independent expression system, designated pIRO (plasmid-induced replication organelle formation), inducing bona fide flavivirus ROs in transfected cells. This will be useful for mechanistic studies of viral and cellular factors driving flavivirus RO biogenesis. For complete details on the use and execution of this protocol, please refer to Cerikan et al. (2020)

    A role for gp210 in mitotic nuclear-envelope breakdown

    No full text
    International audienc

    A Non-Replicative Role of the 3′ Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation

    No full text
    Cerikan et al. devise an RNA replication-independent expression system designated pIRO (plasmid-induced replication organelle formation) phenocopying DENV/ZIKV-induced vesicle packets (VPs), the viral replication organelle. The authors find that RNA elements residing in the 3′ untranslated region of either virus genome are required for VP generation

    Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing

    No full text
    The aggregation of proteins as a result of intrinsic or environmental stress may be cytoprotective, but is also linked to pathophysiological states and cellular ageing. We analysed the principles of aggregate formation and the cellular strategies to cope with aggregates in Escherichia coli using fluorescence microscopy of thermolabile reporters, EM tomography and mathematical modelling. Misfolded proteins deposited at the cell poles lead to selective re-localization of the DnaK/DnaJ/ClpB disaggregating chaperones, but not of GroEL and Lon to these sites. Polar aggregation of cytosolic proteins is mainly driven by nucleoid occlusion and not by an active targeting mechanism. Accordingly, cytosolic aggregation can be efficiently re-targeted to alternative sites such as the inner membrane in the presence of site-specific aggregation seeds. Polar positioning of aggregates allows for asymmetric inheritance of damaged proteins, resulting in higher growth rates of damage-free daughter cells. In contrast, symmetric damage inheritance of randomly distributed aggregates at the inner membrane abrogates this rejuvenation process, indicating that asymmetric deposition of protein aggregates is important for increasing the fitness of bacterial cell populations

    Mechanosensing in actin stress fibers revealed by a close correlation between force

    No full text
    The mechanics of the actin cytoskeleton have a central role in the regulation of cells and tissues, but the details of how molecular sensors recognize deformations and forces are elusive. By performing cytoskeleton laser nanosurgery in cultured epithelial cells and fibroblasts, we show that the retraction of stress fibers (SFs) is restricted to the proximity of the cut and that new adhesions form at the retracting end. This suggests that SFs are attached to the substrate. A new computational model for SFs confirms this hypothesis and predicts the distribution and propagation of contractile forces along the SF. We then analyzed the dynamics of zyxin, a focal adhesion protein present in SFs. Fluorescent redistribution after laser nanosurgery and drug treatment shows a high correlation between the experimentally measured localization of zyxin and the computed localization of forces along SFs. Correlative electron microscopy reveals that zyxin is recruited very fast to intermediate substrate anchor points that are highly tensed upon SF release. A similar acute localization response is found if SFs are mechanically perturbed with the cantilever of an atomic force microscope. If actin bundles are cut by nanosurgery in living Drosophila egg chambers, we also find that zyxin redistribution dynamics correlate to force propagation and that zyxin relocates at tensed SF anchor points, demonstrating that these processes also occur in living organisms. In summary, our quantitative analysis shows that force and protein localization are closely correlated in stress fibers, suggesting a very direct force-sensing mechanism along actin bundles

    Mechanosensing in actin stress fibers revealed by a close correlation between force

    No full text
    The mechanics of the actin cytoskeleton have a central role in the regulation of cells and tissues, but the details of how molecular sensors recognize deformations and forces are elusive. By performing cytoskeleton laser nanosurgery in cultured epithelial cells and fibroblasts, we show that the retraction of stress fibers (SFs) is restricted to the proximity of the cut and that new adhesions form at the retracting end. This suggests that SFs are attached to the substrate. A new computational model for SFs confirms this hypothesis and predicts the distribution and propagation of contractile forces along the SF. We then analyzed the dynamics of zyxin, a focal adhesion protein present in SFs. Fluorescent redistribution after laser nanosurgery and drug treatment shows a high correlation between the experimentally measured localization of zyxin and the computed localization of forces along SFs. Correlative electron microscopy reveals that zyxin is recruited very fast to intermediate substrate anchor points that are highly tensed upon SF release. A similar acute localization response is found if SFs are mechanically perturbed with the cantilever of an atomic force microscope. If actin bundles are cut by nanosurgery in living Drosophila egg chambers, we also find that zyxin redistribution dynamics correlate to force propagation and that zyxin relocates at tensed SF anchor points, demonstrating that these processes also occur in living organisms. In summary, our quantitative analysis shows that force and protein localization are closely correlated in stress fibers, suggesting a very direct force-sensing mechanism along actin bundles

    Determinants in nonstructural protein 4A of dengue virus required for RNA replication and replication organelle biogenesis

    No full text
    Dengue virus (DENV) constitutes one of the most important arboviral pathogens affecting humans. The high prevalence of DENV infections, which cause more than 20,000 deaths annually, and the lack of effective vaccines or direct-acting antiviral drugs make it a global health concern. DENV genome replication occurs in close association with the host endomembrane system, which is remodeled to form the viral replication organelle that originates from endoplasmic reticulum (ER) membranes. To date, the viral and cellular determinants responsible for the biogenesis of DENV replication organelles are still poorly defined. The viral nonstructural protein 4A (NS4A) can remodel membranes and has been shown to associate with numerous host factors in DENV-replicating cells. In the present study, we used reverse and forward genetic screens and identified sites within NS4A required for DENV replication. We also mapped the determinants in NS4A required for interactions with other viral proteins. Moreover, taking advantage of our recently developed polyprotein expression system, we evaluated the role of NS4A in the formation of DENV replication organelles. Together, we report a detailed map of determinants within NS4A required for RNA replication, interaction with other viral proteins, and replication organelle formation. Our results suggest that NS4A might be an attractive target for antiviral therapy. IMPORTANCE DENV is the most prevalent mosquito-borne virus, causing around 390 million infections each year. There are no approved therapies to treat DENV infection, and the only available vaccine shows limited efficacy. The viral nonstructural proteins have emerged as attractive drug targets due to their pivotal role in RNA replication and establishment of virus-induced membranous compartments, designated replication organelles (ROs). The transmembrane protein NS4A, generated by cleavage of the NS4A-2K-4B precursor, contributes to DENV replication by unknown mechanisms. Here, we report a detailed genetic interaction map of NS4A and identify residues required for RNA replication and interaction between NS4A-2K-4B and NS2B-3 as well as NS1. Importantly, by means of an expression-based system, we demonstrate the essential role of NS4A in RO biogenesis and identify determinants in NS4A required for this process. Our data suggest that NS4A is an attractive target for antiviral therapy
    corecore