25 research outputs found

    Elevated Serum IgE against MGL_1304 in Patients with Atopic Dermatitis and Cholinergic Urticaria

    Get PDF
    ABSTRACTBackground: MGL_1304 secreted by Malassezia globosa is contained in human sweat and induces histamine release from basophils in patients with atopic dermatitis (AD) at a high positive rate. The aims of this study were to establish the enzyme-linked immunosorbent assay (ELISA) measuring specific immunoglobulins against MGL_1304 and to investigate the levels of these immunoglobulins in sera of patients with various allergic diseases.Methods: Purified MGL_1304 from human sweat (QRX) and recombinant MGL_1304 (rMGL_1304) were prepared for ELISA. To quantify the amount of MGL_1304-specific immunoglobulins, the standard serum was created by pooling sera of 20 patients with AD whose basophils released histamine in response to QRX. A monoclonal antibody which exhibited the highest neutralizing ability against QRX was established as Smith-2, and used as a capture antibody for the assay of QRX-specific IgE. A total of 156 subjects [normal controls (n = 23), AD (n = 63), cholinergic urticaria (CU) (n = 24), bronchial asthma (n = 32), and allergic rhinitis (n = 14)] were enrolled in this study.Results: ELISA methods to quantify the specific IgE, IgG and IgG4 against MGL_1304 in sera were successfully established. Levels of QRX-specific IgE in sera of patients with AD and CU were significantly higher than those of normal controls. Moreover, the levels of QRX-specific IgE and rMGL_1304-specific IgE in patients with AD were significantly correlated with their disease severities.Conclusions: These ELISA methods to quantify the specific immunoglobulins against MGL_1304 are easy and useful means to assess allergy to MGL_1304. MGL_1304 contained in sweat is an important antigen for patients with AD and CU

    Evidence for Activation of Toll-Like Receptor and Receptor for Advanced Glycation End Products in Preterm Birth

    Get PDF
    Objective. Individuals with inflammation have a myriad of pregnancy aberrations including increasing their preterm birth risk. Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE) and their ligands were all found to play a key role in inflammation. In the present study, we reviewed TLR and RAGE expression, their ligands, and signaling in preterm birth. Research Design and Methods. A systematic search was performed in the electronic databases PubMed and ScienceDirect up to July 2010, combining the keywords “preterm birth,” “TLR”, “RAGE”, “danger signal”, “alarmin”, “genomewide,” “microarray,” and “proteomics” with specific expression profiles of genes and proteins. Results. This paper provides data on TLR and RAGE levels and critical downstream signaling events including NF-kappaB-dependent proinflammatory cytokine expression in preterm birth. About half of the genes and proteins specifically present in preterm birth have the properties of endogenous ligands “alarmin” for receptor activation. The interactions between the TLR-mediated acute inflammation and RAGE-mediated chronic inflammation have clear implications for preterm birth via the TLR and RAGE system, which may be acting collectively. Conclusions. TLR and RAGE expression and their ligands, signaling, and functional activation are increased in preterm birth and may contribute to the proinflammatory state

    婦人科手術術後の症候性肺血栓塞栓症予防スクリーニングの有用性についての検討

    Get PDF
    OBJECTIVE: To evaluate a sequential screening method's efficacy in predicting symptomatic pulmonary thromboembolism (PTE) after gynecologic surgery. METHODS: A prospective study employing a two-stage screening process was conducted among consecutive asymptomatic adults who underwent outpatient evaluation for gynecologic surgery at Nara Medical University Hospital, Japan, between April 1, 2004, and December 31, 2013. Patients with a preoperative plasma D-dimer level greater than or equal to 1.0μg/mL underwent compression ultrasonography of the lower extremities. The primary outcome measure was postoperative detection of symptomatic PTE. RESULTS: Overall, 1729 patients were included. The mean D-dimer level was 1.7±3.3μg/mL. Compression ultrasonography was conducted among 470 (27.1%) patients with positive D-dimer test results; symptomatic deep vein thrombosis (DVT) was preoperatively detected among 94 (20.0%) of them. Patients with DVT (n=94) had higher D-dimer levels than patients (n=1635) without (7.8±12.8μg/mL vs 1.1±1.8μg/mL; P<0.001). Despite anticoagulant therapy, symptomatic PTE was detected postoperatively among two of these 94 patients. Symptomatic PTE was also detected among four of 376 patients with positive D-dimer test results but no evidence of DVT by ultrasonography. No clinical onset of postoperative PTE was observed among 1259 patients with D-dimer levels below the cut-off value. CONCLUSION: The PROVEN screening strategy (Preoperative surveillance using a sequential strategy) was ineffective at predicting postoperative symptomatic PTE.博士(医学)・乙第1375号・平成28年3月15日Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    A case of variant angina treated with a pacemaker for cardiopulmonary arrest due to complete atrioventricular block and pulseless electrical activity

    No full text
    A 55-year-old woman with variant angina was hospitalized for cardiopulmonary arrest because of pulseless electrical activity (PEA). Despite intensive postresuscitation drug therapy, another episode of angina occurred, with complete atrioventricular block and PEA. There was no confirmed ventricular fibrillation or ventricular tachycardia. Coronary arteriography did not show significant stenosis, and acetylcholine-loading test was positive. The patient was diagnosed with coronary spastic angina, and a pacemaker was implanted to stabilize hemodynamics during attacks. The pacemaker settings required some ingenuity: a high output was selected to avert pacing failure, and a rate drop response setting was selected to ensure efficient pacing
    corecore