23 research outputs found

    Development of High Dose Oseltamivir Phosphate Dry Powder for Inhalation Therapy in Viral Pneumonia

    Get PDF
    Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP was formulated as a dry powder for inhalation, which allows drug targeting to the site of action and potentially reduces the dose, aiming a more efficient therapy. Binary formulations were based on micronized excipient particles acting like diluents, which were blended with the drug OP. Different excipient types, excipient ratios, and excipient size distributions were prepared and examined. To investigate the feasibility of delivering high doses of OP in a single dose, 1:1, 1:3, and 3:1 drug/diluent blending ratios have been prepared. Subsequently, the aerosolization performance was evaluated for all prepared formulations by cascade impaction using a novel medium-resistance capsule-based inhaler (UNI-Haler). Formulations with micronized trehalose showed relatively excellent aerosolization performance with highest fine-particle doses in comparison to examined lactose, mannitol, and glucose under similar conditions. Focusing on the trehalose-based dry-powder inhalers' (DPIs) formulations, a physicochemical characterization of extra micronized grade trehalose in relation to the achieved performance in dispersing OP was performed. Additionally, an early indication of inhaled OP safety on lung cells was noted by the viability MTT assay utilizing Calu-3 cells

    The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation

    Get PDF
    Anti-inflammatory therapeutic options for the topical treatment of skin diseases with inflammatory or allergic contribution are mostly limited to topical glucocorticoids and calcineurin inhibitors. Both compound classes induce adverse effects. Elevation of intracellular cyclic adenosine monophosphate (cAMP) by inhibition of phosphodiesterase 4 was shown to induce potent anti-inflammatory effects, but the safety profile of currently available compounds is not sufficient. A different approach to increase intracellular cAMP is the substitution of chemically stabilized cAMP analogues. Bucladesine is a stabilized cAMP analogue with an excellent safety profile which had been marketed as topical treatment of impaired wound healing. In the current study, a novel water free emulsion containing bucladesine was evaluated for anti-inflammatory effects. In the arachidonic acid induced ear oedema model in mice, single or multiple administration of an emulsion containing 1.5% was capable of significantly reducing the inflammatory oedema. The data indicate that bucladesine represents an interesting treatment option for skin diseases where an anti-inflammatory activity is indicated. Due to the established clinical safety, this agent may bridge the gap between potent agents such as glucocorticoids or calcineurin inhibitors and emollients without active compounds

    Impact of Biomechanical Forces on Antibiotics Release Kinetics from Hydroxyapatite Coated Surgical Fixation Pins

    No full text
    This work investigates the impact of biomechanical wear and abrasion on the antibiotic release profiles of hydroxyapa-tite (HA) coated fixation pins during their insertion into synthetic bone. Stainless steel fixation pins are coated with crystalline TiO2 by cathodic arc evaporation forming the bioactive layer for biomimetic deposition of Tobramycin con-taining HA. Tobramycin is either introduced by co-precipitation during HA formation or by adsorption-loading after HA deposition. The samples containing antibiotics are inserted into bone mimicking polyethylene foam after which the drug release is monitored using high performance liquid chromatography. This analysis shows that HA coating wear and delamination significantly decrease the amount of drug released during initial burst, but only marginally influence the sustained release period. Spalled coating fragments are found to remain within the synthetic bone material structure. The presence of HA within this structure supports the assumption that the local release of Tobramycin is not only ex-pected to eliminate bacteria growth directly at the pin interface but as well at some distance from the implant. Further-more, no negative effect of gamma sterilization could be observed on the drug release profile. Overall, the observed results demonstrate the feasibility of a multifunctional implant coating that is simultaneously able to locally deliver clinically relevant doses of antibiotics and an HA coating capable of promoting osteoconduction. This is a potentially promising step toward orthopaedic devices that combine good fixation with the ability to treat and prevent post-surgical infections

    Impact of Biomechanical Forces on Antibiotics Release Kinetics from Hydroxyapatite Coated Surgical Fixation Pins

    No full text
    This work investigates the impact of biomechanical wear and abrasion on the antibiotic release profiles of hydroxyapa-tite (HA) coated fixation pins during their insertion into synthetic bone. Stainless steel fixation pins are coated with crystalline TiO2 by cathodic arc evaporation forming the bioactive layer for biomimetic deposition of Tobramycin con-taining HA. Tobramycin is either introduced by co-precipitation during HA formation or by adsorption-loading after HA deposition. The samples containing antibiotics are inserted into bone mimicking polyethylene foam after which the drug release is monitored using high performance liquid chromatography. This analysis shows that HA coating wear and delamination significantly decrease the amount of drug released during initial burst, but only marginally influence the sustained release period. Spalled coating fragments are found to remain within the synthetic bone material structure. The presence of HA within this structure supports the assumption that the local release of Tobramycin is not only ex-pected to eliminate bacteria growth directly at the pin interface but as well at some distance from the implant. Further-more, no negative effect of gamma sterilization could be observed on the drug release profile. Overall, the observed results demonstrate the feasibility of a multifunctional implant coating that is simultaneously able to locally deliver clinically relevant doses of antibiotics and an HA coating capable of promoting osteoconduction. This is a potentially promising step toward orthopaedic devices that combine good fixation with the ability to treat and prevent post-surgical infections

    Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects.

    Get PDF
    Nanostructuring of drug delivery systems offers many promising applications like precise control of dissolution and release kinetics, enhanced activities, flexibility in terms of surface coatings, integration into implants, designing the appropriate scaffolds or even integrating into microelectronic chips etc. for different desired applications. In general such kind of structuring is difficult due to unintentional mixing of chemical solvents used during drug formulations. We demonstrate here the successful solvent-free fabrication of micro-nanostructured pharmaceutical molecules by simple thermal evaporation (TE). The evaporation of drug molecules and their emission to a specific surface under vacuum led to controlled assembling of the molecules from vapour phase to solid phase. The most important aspects of thermal evaporation technique are: solvent-free, precise control of size, possibility of fabricating multilayer/hybrid, and free choice of substrates. This could be shown for twenty eight pharmaceutical substances of different chemical structures which were evaporated on surfaces of titanium and glass discs. Structural investigations of different TE fabricated drugs were performed by atomic force microscopy, scanning electron microscopy and Raman spectroscopy which revealed that these drug substances preserve their structurality after evaporation. Titanium discs coated with antimicrobial substances by thermal evaporation were subjected to tests for antibacterial or antifungal activities, respectively. A significant increase in their antimicrobial activity was observed in zones of inhibition tests compared to controls of the diluted substances on the discs made of paper for filtration. With thermal evaporation, we have successfully synthesized solvent-free nanostructured drug delivery systems in form of multilayer structures and in hybrid drug complexes respectively. Analyses of these substances consolidated that thermal evaporation opens up the possibility to convert dissoluble drug substances into the active forms by their transfer onto a specific surface without the need of their prior dissolution

    Analytical Challenges and Regulatory Requirements for Nasal Drug Products in Europe and the U.S.

    No full text
    Nasal drug delivery can be assessed by a variety of means and regulatory agencies, e.g., the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have published a set of guidelines and regulations proposing in vitro test methods for the characterization of nasal drug products. This article gives a summary of the FDA and EMA requirements regarding the determination of droplet size distribution (DSD), plume geometry, spray pattern and shot weights of solution nasal sprays and discusses the analytical challenges that can occur when performing these measurements. In order to support findings from the literature, studies were performed using a standard nasal spray pump and aqueous model formulations. The aim was to identify possible method-, device- and formulation-dependent influencing factors. The literature review, as well as the results from the studies show that DSD, plume geometry and spray pattern are influenced by, e.g., the viscosity of the solution, the design of the device and the actuation parameters, particularly the stroke length, actuation velocity and actuation force. The dominant factor influencing shot weights, however, is the adjustment of the actuation parameters, especially stroke length and actuation velocity. Consequently, for routine measurements assuring, e.g., the quality of a solution nasal spray or, for in vitro bioequivalence studies, the critical parameters, have to be identified and considered in method development in order to obtain reproducible and reliable results
    corecore