101 research outputs found

    Asynchronous and Multiprecision Linear Solvers - Scalable and Fault-Tolerant Numerics for Energy Efficient High Performance Computing

    Get PDF
    Asynchronous methods minimize idle times by removing synchronization barriers, and therefore allow the efficient usage of computer systems. The implied high tolerance with respect to communication latencies improves the fault tolerance. As asynchronous methods also enable the usage of the power and energy saving mechanisms provided by the hardware, they are suitable candidates for the highly parallel and heterogeneous hardware platforms that are expected for the near future

    Overcoming Load Imbalance for Irregular Sparse Matrices

    Get PDF

    Machine learning-aided numerical linear Algebra: Convolutional neural networks for the efficient preconditioner generation

    Get PDF

    Porting Batched Iterative Solvers onto Intel GPUs with SYCL

    Full text link
    Batched linear solvers play a vital role in computational sciences, especially in the fields of plasma physics and combustion simulations. With the imminent deployment of the Aurora Supercomputer and other upcoming systems equipped with Intel GPUs, there is a compelling demand to expand the capabilities of these solvers for Intel GPU architectures. In this paper, we present our efforts in porting and optimizing the batched iterative solvers on Intel GPUs using the SYCL programming model. The SYCL-based implementation exhibits impressive performance and scalability on the Intel GPU Max 1550s (Ponte Vecchio GPUs). The solvers outperform our previous CUDA implementation on NVIDIA H100 GPUs by an average of 2.4x for the PeleLM application inputs. The batched solvers are ready for production use in real-world scientific applications through the Ginkgo library.Comment: 9 pages, 8 figures, submitted to the P3HPC Workshop at SC2

    An Error Correction Solver for Linear Systems: Evaluation of Mixed Precision Implementations

    Get PDF
    • …
    corecore