
An Error Correction Solver for Linear

Systems: Evaluation of Mixed Precision

Implementations

Hartwig Anzt

Vincent Heuveline

Björn Rocker

No. 2010-01

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association www.emcl.kit.edu

Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197553776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Preprint Series of the Engineering Mathematics and Computing Lab (EMCL)

ISSN 2191–0693

No. 2010-01

Impressum

Karlsruhe Institute of Technology (KIT)

Engineering Mathematics and Computing Lab (EMCL)

Fritz-Erler-Str. 23, building 01.86

76133 Karlsruhe

Germany

KIT – University of the State of Baden Wuerttemberg and

National Laboratory of the Helmholtz Association

Published on the Internet under the following Creative Commons License:

http://creativecommons.org/licenses/by-nc-nd/3.0/de .

www.emcl.kit.edu



An Error Correction Solver for Linear Systems:

Evaluation of Mixed Precision Implementations

Hartwig Anzt, Björn Rocker and Vincent Heuveline

Karlsruhe Institute of Technology (KIT),
AG Numerical Simulation, Optimization and High Performance Computing,

71628 Karlsruhe

hartwig.anzt@kit.edu, bjoern.rocker@kit.edu,
vincent.heuveline@kit.edu

Abstract. This paper proposes an error correction method for solving
linear systems of equations and the evaluation of an implementation
using mixed precision techniques .
While different technologies are available, graphic processing units (GPUs)
have been established as particularly powerful coprocessors in recent
years. For this reason, our error correction approach is focused on a
CUDA implementation executing the error correction solver on the GPU.
Benchmarks are performed both for artificially created matrices with
preset characteristics as well as matrices obtained from finite element
discretizations of fluid flow problems.

1 Introduction

The development of modern technology is characterized by simulations, that of-
ten are no longer performed through physical experiments, but through mathe-
matical modeling and numerical simulation. In many cases, for example in com-
putational fluid dynamics, massive computation power is needed, in order to
handle large systems of linear equations.

For the solving process, often iterative solvers are chosen which can exploit
the sparse structure of the affiliated matrix to compute an approximation of a
certain accuracy considerably faster than a direct solver.

The computational complexity of this problem depends on the characteristics
of the linear system, the properties of the used linear solver and the floating point
format.

The floating point format determine not only the execution time when per-
forming computations, but also the occurring rounding errors. Generally, a more
complex floating point format usually leads to higher accuracy and higher com-
putational effort. Today, most hardware architectures are configured for the
IEEE 754 standard containing single precision and double precision as the main
floating point formats. As their names indicate, the double precision format has
twice the size of the single precision format, leading to a factor of two in com-
putational cost while offering a higher precision.



In many cases single precision floating point operations are not suitable for
scientific computation. The question arises, whether the whole algorithm has to
be performed in the double precision format, or whether one can gain speed by
computing parts of it in single precision and other parts in double precision, and
still obtain double precision accuracy for the final result.

One approach is to modify the algorithm of an error correction method such
that the inner error correction solver uses a lower format than the working
precision. As the final accuracy only depends on the stopping criterion of the
refinement solver, the solution approximation is not affected. Still, it can be
expected that the mixed precision approach performs faster than a plain solver
in high precision, since the cheaper error correction solver in the low precision
format may overcompensate the additional computations and typecasts.

2 Mixed Precision Error Correction Methods

2.1 Mathematical Background

Error correction methods have been known for more than 100 years, and have
finally become of interest with the rise of computer systems in the middle of the
last century. The core idea is to use the residual of a computed solution as the
right-hand side to solve a correction equation.

The motivation for the error correction method can be obtained from New-
ton’s method. Newton developed a method for finding successively better approx-
imations to the zeros of a function f(·) by updating the solution approximation
xi through

xi+1 = xi − (∇f(xi))
−1f(xi). (1)

We now apply Newton’s method (1) to the function f(x) = b − Ax with
f ′(x) = A. By defining the residual ri := b − Axi, we obtain

xi+1 = xi − (∇f(xi))
−1f(xi)

= xi + A−1(b − Axi)

= xi + A−1ri.

Denoting the solution update with ci := A−1ri, we can design an algorithm.

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b − Ax0

3: while (‖ Axi − b ‖2> ε ‖ r0 ‖) do

4: ri = b − Axi

5: solve: Aci = ri

6: update solution: xi+1 = xi + ci

7: end while

Algorithm 1: Error Correction Method



Here x0 is an initial guess. In each iteration, the inner correction solver
searches for a ci, such that Aci = ri with ri being the residual of the solu-
tion approximation xi. Then, the approximation of the solution xi is updated to
xi+1 = xi + ci.

2.2 Mixed Precision Approach

The underlying idea of mixed precision error correction methods is to use dif-
ferent precision formats within the algorithm of the error correction method,
updating the solution approximation in high precision, but computing the error
correction term in lower precision. This approach was also suggested by [1],[2],
[3], and [4].

Hence, one regards the inner correction solver as a black box, computing a
solution update in lower precision. The term high precision refers to the precision
format that is necessary to display the accuracy of the final solution and we can
obtain the following algorithm where .high denotes the high precision value and
.low denotes the value in low precision. The conversion between the formats will
be left abstract throughout this paper. Because especially the conversion of the
matrix A is expensive, it should be stored in both precision formats, high and
low precision. In the case of using hybrid hardware, A should be stored in the
local memory of the hardware devices in the respectively used format.

Using the mixed precision approach to the error correction method, we have
to be aware of the fact that the residual error bound of the error correction solver
may not exceed the accuracy of the lower precision format. Furthermore, each
error correction produced by the inner solver in lower precision cannot exceed the
data range of the lower precision format. This means that the smallest possible
error correction is the smallest number ǫlow, that can be represented in the lower
precision. Thus, the accuracy of the final solution cannot exceed ǫlow either. This
can become a problem when working with very small numbers, because then the
solution correction terms can not be denoted in low precision, but in most cases,
the problem can be avoided by converting the original values to a lower order of
magnitude.

Compute residual

Low Precision Format

High Precision Format

Anzt

Anzt Anzt

Anzt

Set initial Vector Update Solution Check Stopping Criterion Solution

Typecast residual into low precision Typecast solution update into high precision

Solve error correction equation in low precision

Fig. 1: Visualizing the mixed precision approach to an error correction Solver



Using the displayed algorithm we obtain a mixed precision solver. If the final
accuracy does not exceed the smallest number that can be represented in the
lower precision, it gives exactly the same solution approximation as if the solver
was performed in the high precision format. Theoretically, any precision can be
chosen, but in most cases it is comfortable to use the IEEE 754 standard for-
mats.

The computation of the correction loop Alowclow = rlow can be performed
with a direct solver, or again with an iterative method. This implies that it is
even possible to cascade a number of error correction solvers using decreasing
precision.

In the case of an iterative solver as error correction solver, especially the
iterative approaches to the Krylov subspace methods are of interest, since these
provide an approximation of the residual error iteratively in every computation
loop. Hence, one is able to set a certain relative residual stopping criterion for the
iterative error correction solver. Possible Krylov subspace solvers include the CG
Algorithm, GMRES, CGSTAB etc. The mixed precision error correction method
based on a certain error correction solver poses the same demands to the linear
problem, as the within used Krylov subspace solver.

In the case of a direct error correction solver, the solution update usually has
a quality depending on the condition number of the system and the lower preci-
sion format. Hence, the solution improvement normally depends on the system,
but is generally high. Despite the fact that direct methods are computationally
expensive, they are of interest as error correction solver, since some of them own
pleasant characteristics:

Using for example the LU solver as error correction solver, the LU decompo-
sition has to be computed only in the first error correction loop. In the following
loops, the stored decomposition can be used to perform the forward and back-
ward substitution. Since these substitutions imply only low computational effort,
they can, depending on the hardware structure, even be performed in the high
precision format. This leads to accuracy advantages and economizes the algo-
rithm by omitting the computationally expensive typecasts of the residual and
the solution update.

It should be mentioned, that the solution update of the error correction
solver is usually not optimal for the outer system, since the discretization of the
problem in the lower precision format contains rounding errors, and it therefore
solves a perturbed problem. When comparing the algorithm of an error correc-
tion solver to a plain solver, we realize, that the error correction method has
more computations to execute. Each outer loop consists of the computation of
the residual error term, a typecast, an initialization of a vector, the scaling pro-
cess, the inner solver for the correction term, the reconversion of the data and
the solution update. The computation of the residual error itself consists of a
matrix-vector multiplication, a vector addition and a scalar product. Using a
hybrid architecture, the converted data additionally has to be transmitted be-
tween the devices.

The mixed precision refinement approach to a certain solver is superior to the



plain solver in high precision, if the additional computations and typecasts are
overcompensated by the cheaper inner correction solver using a lower precision
format.

3 Numerical Experiments

To be able to compare the performance of different implementation of the GMRES-
(10) solver, we perform tests with different linear systems. In this work 10 denotes
the restart parameter for the GMRES.

All solvers use the relative residual stopping criterion ε = 10−10 ‖ r0 ‖2.
Due to the iterative residual computation in the case of the plain GMRES-
(10) solvers, the mixed GMRES-(10) solvers based on the mixed precision error
correction method usually iterate to a better approximation since they compute
the residual error explicitly, but as the difference is generally small, the solvers
are comparable. In case of the mixed precision GMRES-(10) on the TESLA-
System, the error correction solver is performed on the GPU, while the solution
update is led to the CPU of the same system. This is done to be able to handle
larger problems since the amount of memory on the GPU is limited to 4 GB.

On the one hand, we use matrices with a preset condition number, preset
sparsities, and increase the dimension. Depending on the sparsity, the matrices
are stored in the matrix array storage format (MAS) or the compressed row
storage format (CRS).

On the other hand, we additionally use linear problems that were obtained
out of a discretization of CFD. The three systems of linear equations CFD1,
CFD2 and CFD3 are affiliated with the 2D modeling of a Venturi Nozzle in
different discretization fineness. The distinct number of supporting points yields
to different matrix characteristics concerning the dimension, the number of non-
zeros, and the condition number.

CFD1 CFD2 CFD3

problem: 2D fluid flow
problem size: n = 395009
sparsity: nnz = 3544321
storage format: CRS

problem: 2D fluid flow
problem size: n = 634453
sparsity: nnz = 5700633
storage format: CRS

problem: 2D fluid flow
problem size: n = 1019967
sparsity: nnz = 9182401
storage format: CRS

Tab. 1: Sparsity plots and properties of the CFD test-matrices



��������	
�����

��
�

��
��

�
�
�

�
�
��

�	
�

����� �����
�

���

�����

���
������������
	
������� !��"���������
�
#�������
	
������� !��"���������
���
������������
	
������� !��"���$�����	
�
#�������
	
������� !��"���$�����	
�
#�������
	
������� !��"���%��&'����(�

Fig. 2: Test case: sparse linear system, condition number κ ≈ 8000, relative residual
stopping criterion ε = 10−10;

��������	
�����

��
�

��
��

�
�
�

�
�
��

�	
�

����� �����
�

�����

�����

�����

���
������������
	
�������� ��!���������
�
"�������
	
�������� ��!���������
���
������������
	
�������� ��!���������	
�
"�������
	
�������� ��!���������	
�
"�������
	
�������� ��!���#��$%����&�

���
������������
	
�������� ��!���������
�
"�������
	
�������� ��!���������
���
������������
	
�������� ��!���������	
�
"�������
	
�������� ��!���������	
�
"�������
	
�������� ��!���#��$%����&�

Fig. 3: Test case: sparse linear system, condition number κ ≈ 8000, relative residual
stopping criterion ε = 10−10;

Fig. 4: Speedup of the different solvers for the CFD simulation of the Venturi Nozzle
in different discretization fineness; ε = 10−10; εinner = 0.1;



CFD1

solver type computation time [s]
sequential double GMRES-(10) on IC1 3146.61 sec
sequential mixed precision GMRES-(10) on IC1 1378.56 sec
parallel double GMRES-(10) on IC1 using 4 cores 1656.53 sec
parallel mixed precision GMRES-(10) on IC1 using 4 cores 712.83 sec
mixed precision GMRES-(10) on NVIDIA TESLA S1070 438.13 sec

CFD2

solver type computation time [s]
sequential double GMRES-(10) on IC1 13204.70
sequential mixed precision GMRES-(10) on IC1 5924.32
parallel double GMRES-(10) on IC1 using 4 cores 6843.66
parallel mixed precision GMRES-(10) on IC1 using 4 cores 3495.09
mixed precision GMRES-(10) on NVIDIA TESLA S1070 2092.84

CFD3

solver type computation time [s]
sequential double GMRES-(10) on IC1 60214.50
sequential mixed precision GMRES-(10) on IC1 41927.40
parallel double GMRES-(10) on IC1 using 4 cores 32875.10
parallel mixed precision GMRES-(10) on IC1 using 4 cores 19317.00
mixed precision GMRES-(10) on NVIDIA TESLA S1070 10316.70

4 Hardware Platform and Implementation Issues

The utilized TESLA-System is equipped with one NVIDIA TESLA S1070. The
two host nodes, each connected via a PCIe 2.0 x16 to the S1070, are each
equipped with two Intel Xeon 5450 CPUs. The Intel MKL in version 10.1.1.019
and the Intel compiler in version 11.0.074 was used.

The InstitutsCluster is located at the Karlsruhe Institute of Technology
(KIT) and consists of 200 computing nodes each equipped with two Intel quad-
core EM64T Xeon 5355 processors, owning 16 GB of main memory. Peak per-
formance of one node is about 85,3 GFlops. For a performance evaluation see
[5]. The software platform is the Intel CMKL in version 10.1.2.024 and the Intel
compiler in version 10.1.022.

5 Conclusions and Future Work

The numerical tests in this paper have shown the high potential of using different
precision formats within the proposed error correction solver.

The obtained algorithm is flexible in terms of choosing the inner correction
solver, and robust in terms of numerical stability. The possibility of performing
the error correction solver on a coprocessor increases the potential of mixed



precision methods, as they can be implemented efficiently on hybrid systems.
Performing the error correction solver of an error correction method in a lower
format leads to an overall increase in performance for a large number of problems.

On a CPU, performing the error correction method in mixed precision, one
often achieves a speedup factor of two compared to the plain solver in double
precision. When using hybrid hardware, consisting of coprocessors specialized on
low precision performance, even higher speedup factors can be expected. In the
numerical tests for the FEM discretization of the Venturi Nozzle we achieved
speedups of more than seven. Still, a very ill-conditioned problem can lead to
a high number of additional outer iterations necessary to correct the rounding
errors, that arise from the use of a lower precision format in the error correction
solver. Due to the fact that we are usually not able to determine a priori whether
the mixed precision method is superior for a specific problem, an optimized
implementation of the solver would execute the first solution update of the mixed
precision error correction method and determine, depending on the improvement
of the solution approximation, whether it should continue in the mixed precision
mode or whether it should use the plain solver in high precision. The next step
beyond this strategy of changing between single and double precision is to use
techniques around adaptive precision, where the precision is adjusted according
to the convergence in the inner solver. FPGAs and related technologies will in
the future provide the capabilities for such algorithms.

For an efficient implementation of the mixed precision error correction tech-
niques in a solver suite, some additional work is necessary, especially concerning
the use of preconditioners. Adding a preconditioner to a solver increases not
only the stability of the solver, but also its performance. In such an environ-
ment, the mixed precision error correction methods form powerful solvers for
FEM simulations.

References

1. D. Göddeke, R. Strzodka, and S. Turek. Performance and accuracy of hardware–
oriented native–, emulated– and mixed–precision solvers in FEM simulations. 2007.

2. D. Göddeke and R. Strzodka. Performance and accuracy of hardware–oriented
native–, emulated– and mixed–precision solvers in FEM simulations (part 2: Double
precision gpus). Technical report, Fakultät für Mathematik, TU Dortmund, 2008.

3. Marc Baboulin, Alfredo Buttari, Jack J. Dongarra, Julie Langou, Julien Langou,
Piotr Luszcek, Jakub Kurzak, and Stanimire Tomov. Accelerating scientific com-
putations with mixed precision algorithms. 2008.

4. Alfredo Buttari, Jack J. Dongarra, Julie Langou, Julien Langou, Piotr Luszcek, and
Jakub Kurzak. Mixed precision iterative refinement techniques for the solution of
dense linear systems. 2007.

5. V. Heuveline, B. Rocker, and S. Ronnas. Numerical simulation on the sicortex
supercomputer platform: a preliminary evaluation. In EMCL Preprint Series, ac-
cepted.



Preprint Series of the Engineering Mathematics and Computing Lab

recent issues

No. 2009-02 Rainer Buchty, Vincent Heuveline, Wolfgang Karl, Jan-Philipp Weiß: A Survey on

Hardware-aware and Heterogeneous Computing on Multicore Processors and

Accelerators

No. 2009-01 Vincent Heuveline, Björn Rocker, Staffan Ronnas: Numerical Simulation on the

SiCortex Supercomputer Platform: a Preliminary Evaluation

The responsibility for the contents of the working papers rests with the authors, not the Institute. Since working papers are of a

preliminary nature, it may be useful to contact the authors of a particular working paper about results or caveats before referring to, or

quoting, a paper. Any comments on working papers should be sent directly to the authors.


