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Abstract—Generating sparsity patterns for effective block-
Jacobi preconditioners is a challenging and computationally
expensive task, in particular for problems with unknown origin.
In this paper we design a convolutional neural network (CNN) to
detect natural block structures in matrix sparsity patterns. For
test matrices where a natural block structure is complemented
with a random distribution of nonzeros (noise), we show that
a trained network succeeds in identifying strongly connected
components with more than 95% prediction accuracy, and the
resulting block-Jacobi preconditioner effectively accelerating an
iterative GMRES solver. Segmenting a matrix into diagonal tiles
of size 128×128, for each tile the sparsity pattern of an effective
block-Jacobi preconditioner can be generated in less than a
millisecond when using a production-line GPU.

Index Terms—Block-Jacobi Preconditioning, Convolutional
Neural Networks, Multilabel Classification

I. INTRODUCTION

In scientific computing, the process of iteratively solving
a linear system of equations often strongly benefits from the
use of a sophisticated preconditioner that carefully adapts to
the linear system properties. A preconditioner is efficient if
the convergence improvement rendered to the iterative solver
compensates for the derivation of the preconditioner. In the
context of high performance computing, the efficiency of the
preconditioner specifically depends on the parallel scalability
of both, the preconditioner generation prior to the start of
the iterative solver and the preconditioner application at each
step of the iteration process. Preconditioners based on Jacobi
(diagonal scaling) and block-Jacobi (block-diagonal scaling)
typically renders moderate improvements to the convergence
of the iterative solver [18]. They are nevertheless attractive, as
(block-)diagonal scaling introduces very small computational
overhead to the solver iterations. Moreover, the application
of a Jacobi-type preconditioner is inherently parallel and,

M. Götz is supported by the Helmholtz Association Initiative and Net-
working Fund under project grant ZT-I-0003. H. Anzt is supported by the
Helmholtz Association Initiative and Networking Fund under project grant
VH-NG-1241.

therefore, highly appealing for massively parallel architectures.
On the other hand, the preconditioner generation can be quite
challenging. In a first step, it requires to map the characteristics
of the system matrix to a block-structure reflecting clusters of
strongly connected variables. In a second step, each block is
inverted. With fast and scalable techniques for diagonal block
inversion being available [4]–[6], the cost of the block-Jacobi
preconditioner generation primarily boils down to the block
pattern generation. In an era of growing hardware parallelism
on a single node, it is important that the pattern generation
also somewhat scales with the available resources—which is
difficult to achieve for the conventional pattern generation
tools based on graph analytics.

Machine learning (ML) [10] has recently gained a lot
of attention in the scientific computing community due to
the improved prediction quality and the efficient usage of
high performance computing architectures. In particular deep
learning using multi-layer neural networks (DNN) [22] can
exploit the available compute power to improve the quality of
the network architecture. The idea here is to use an extensive
learning process to adjust weights connecting the network
layers to efficiently classify input data [29].

In this paper, we attempt to bridge the gap between ma-
chine learning tools and classical linear algebra by employing
DNN technology to quickly generate sparsity patterns for a
block-Jacobi preconditioner. For this purpose, we design in
Section III a convolutional network architecture that we train
and evaluate in Section IV using a set of artificially creates
test matrices. We start in Section II with providing some back-
ground about block-Jacobi preconditioning and convolutional
neural networks. We also put this work into context with
existing research efforts, and outline in Section V plans for
future research.



II. BACKGROUND AND RELATED WORK

A. Block-Jacobi preconditioning

In linear algebra, Block-Jacobi preconditioners are based
on the idea of constructing a preconditioner matrix that prop-
agates information locally, among variables that are adjacent
in the system matrix [18]. In an iterative solution process,
this is complemented by a top-level iterative method that
propagates the information throughout the global system. More
graphically, for a discretized partial differential equation, the
block-Jacobi method corresponds (for an appropriate ordering
of the unknowns) to the solution of independent sub-problems.
The practical realization of this strategy encompasses the
inversion of small diagonal blocks of the system matrix, and
the subsequent composition of the inverted diagonal blocks
into the preconditioner matrix, see Figure 1. Hence, for a
coefficient matrix A ∈ Rn×n, the block-Jacobi method can
be regarded as a straight-forward extension of its (scalar)
Jacobi counterpart [4]. Instead of splitting the coefficient
matrix as A = L + D + U (with diagonal D = ({aii}),
lower triangular L = ({aij : i > j}) and upper triangular
U = ({aij : i < j})), the block-Jacobi variant gathers the
diagonal blocks of A into

D = (D1, D2, . . . , DN ), Di ∈ Rmi×mi , i = 1, 2, . . . , N,

with n =
∑N

i=1 mi. The remaining elements of A are then
partitioned into matrices L and U such that L contains the
elements below the diagonal blocks while U comprises those
above them [3].

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

Fig. 1: Block-Jacobi preconditioning strategy [5].

Obviously, this approach works particularly well, if the
diagonal blocks, to be inverted, accumulate multiple, strongly
connected unknowns. Given an appropriate ordering of the
components, these strongly connected unknowns appear as

dense “natural blocks” in the, otherwise sparse, matrix. For-
tunately, many linear systems exhibit some inherent block
structure of this kind, for example because they arise from
a finite element discretization of a partial differential equation
(PDE) with multiple variables associated to each element [3].
The variables belonging to the same element usually share the
same column sparsity pattern, and this set of variables is often
referred to as a supervariable. If the underlying finite element
discretization scheme is known, it is possible to analytically
derive the size and arrangement of the blocks reflecting
supervariables. Conversely, detecting natural blocks in a matrix
coming from an unknown origin is often a tedious procedure.
For finite element discretizations, supervariable blocking [12]
is a strategy that exploits the property of variables of the
same supervariable sharing the same column-nonzero-pattern.
The blocking technique identifies adjacent columns with the
same sparsity pattern, and accumulates those in a diagonal
block. Depending on a pre-defined upper bound for the size
of the Jacobi blocks, multiple supervariables adjacent in the
coefficient matrix can be clustered within the same diagonal
block [12]. However, in particular for matrices that do not
come from a finite element discretization, the effectiveness
of supervariable blocking in deriving a good preconditioner
pattern is limited. Clustering techniques from graph analyt-
ics, and reordering of the unknowns combined with priority
blocking can be used generate efficient preconditioners [12],
but the high computational cost and the inferior scalability
properties of these algorithms make their use questionable. In
consequence, the preprocessing step of generating an efficient
block pattern for a block-Jacobi preconditioner remains a
challenging and computationally expensive task.

Once a suitable diagonal block pattern is identified, the
block-Jacobi matrix D̂ = D−1 derives from inverting the
block-diagonal matrix D = (D1, D2, . . . , DN ). This is an
inherently parallel process that can be realized efficiently using
batched routines [3]–[6]. If D̂ is well-defined, which is the
case if all diagonal blocks D1, D2, . . . , DN are non-singular,
the block-Jacobi matrix can be used as preconditioner, trans-
forming the original system Ax = b into either the left-
preconditioned system

D−1Ax = c (= D−1b), (1)

or the right-preconditioned system

AD−1y = b, with x = D−1y. (2)

Explicitly computing the block-inverse D̂i = D−1
i , i =

1, 2, . . . , N allows to realize the application of a block-Jacobi
preconditioner in (1) in terms of the multiplication with the
block-Jacobi matrix [5]. If the block-Jacobi matrix is not
available is explicit form, every preconditioner application
requires the solution of the block-diagonal linear system (i.e., a
linear system for each block Di [4]). In general, pre-computing
the block-inverse D̂ is advisable if the preconditioner will be
applied several times [5].



B. Deep convolutional neural networks

Convolutional neural networks (CNN [29]) are a subclass
of traditional artificial neural networks (ANN [29]). Similarly
to their classical counterparts, they compose of a number of
weight- trainable neurons arranged in a layer-wise fashion.
Typically, CNNs are tailored towards the pattern matching in
two-dimensional matrices, with the goal of providing function-
ality analogous to the visual cortex enabling image perception
in animals and humans. The main design characteristic of
CNNs is the use of a convolutional layer (or multiple con-
volutional layers) consisting of very particular neurons. Each
neuron is defined by a kernel (also referred to as filter [22])
that composes of a matrix of variable weights of size l × l
(where l < n for an input image of size n × n). The kernel
is convolved with the complete image, which means that a
dot product of the kernel matrix and each l × l subregion of
the image is computed. For an input image of size n×n, this
operation generates a matrix of the size (n−l+1)×(n−l+1).

The first convolution applied to the original image aims at
matching basic patterns of the size l × l. Subsequent convo-
lutions then enable the matching of larger, or more complex
patterns. The abstraction that is required to perceive particular
entities in an image is achieved by stacking the patterns
matched by layers of convolutions, often interchangeably with
pooling — an operation collating the output of convolutions to
enhance and accelerate the learning of visual generalizations.

A conventional ANN treats each pixel of the image as a dis-
tinct input feature. To preserve all information, this generally
requires the network to contain at least one weight parameter
per pixel of the image, per neuron. Through defining and re-
applying the kernel, the convoulution re-uses the same neurons
(“weight sharing”). This enables abstract pattern detection and
reduces the number of weights required. A predictive CNN
complements the obligatory input and output layer with at least
one convolution and one dense layer. The term deep neural
network is used for networks that compose of multiple layers
and non-linear activation functions.

Deep neural network technology has recently made sig-
nificant advances in a larger spectrum of applications [29].
This stems not only from enforced algorithm research efforts,
but also from technological developments that allow for a
quick learning process via the use of tensor cores in hard-
ware architecture [19], [23], [25]. Also on the software side,
machine learning has reached a state where ready-to-use open
source software ecosystems like TensorFlow [1], PyTorch [27],
or MXNet [9] (containing auto-gradient computation) are
publicly available.

A primary application field of machine learning is image
classification in areas like medicine [31], autonomous driv-
ing [15], and social network filtering [8]. As a result, there
exist well-engineered deep neural network topologies for the
pattern detection in visual images. Such topologies find use be-
yond image analysis, and successfully recognize more abstract
patterns. In the field of scientific computing, for example,
machine learning techniques have been employed to predict

the distribution of the electric potential in a two- and three-
dimensional electromagnetic simulation [32], and for solving
ill-conditioned inverse problems [2]. For sparse numerical
linear algebra, deep learning has facilitated the identification
of a suitable storage format for sparse matrices [33]. Instead
of selecting a suitable matrix storage format, we aim at using
deep neural networks to generate sparsity patterns for efficient
preconditioners.

III. PRECONDITIONER PATTERN PREDICTION USING
NEURAL NETWORKS

The identification of block patterns in two-dimensional
square matrices can be considered as a series of binary
classification problems. For each row i (respectively column)
of the system matrix A, the task is to decide whether or not it
should be considered the start, i.e. the upper (left) bounding
edge, of a diagonal block. As elaborated in Section II, the
diagonal blocks aim at reflecting clusters of strongly connected
components, which implies that these blocks typically appear
“denser” than the rest of the matrix. Hence, one approach
is to view the matrix sparsity pattern as an image, and to
detect the diagonal blocks with a combination of traditional
image processing algorithms, such as edge detection filters,
and thresholded scanline pixel accumulation [7]. As long as
there is a reasonable difference between the “denser” diagonal
blocks and the rest of the matrix, this strategy will achieve
solid prediction results for arbitrary-sized blocks. The smaller
the density differences are, the more “noise” has to be filtered
by the neural network. While it is in principle possible to
manually add and tailor additional filters to denoise the matrix,
it is favorable to derive these automatically from data samples
of the problem space.

Utilizing a convolutional neural network is particularly
suitable for this task, as it is able to learn the necessary
preprocessing and denoising features on its own. This training
process is realized in a supervised fashion, i.e. the weights
of the convolutional filters are inferred from examples where
the block starts have previously been annotated (“labeled
data” [29]). For a matrix A of size n, a label vector y with
y = {0, 1}n is used such that each row is assigned a separate
and independent output neuron where 1 indicates the start of
a block in the respective row. In the prediction process, the
neural network then generates a prediction vector ŷ where each
ŷi ∈ [0, 1] indicates the probability of a block start in row i.
The loss function for this multi-label classification problem is
given as the sum of the binary cross-entropy across all the
individual row predictions and available samples S:

L(y, ŷ) = −
S∑

s=1

n∑
i=1

ys,i ∗ log(ŷs,i)+(1−ys,i)∗ log(1− ŷs,i).

The specific challenge of detecting diagonal blocks in a
sparse matrix pattern allows for an optimization step that
1) reduces the amount of data that is processed; and 2) in-
creases the prediction accuracy by mitigating the problem of
false-correlations.
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Fig. 2: Example of an artificially generated block-pattern
matrix. The blocks are gap-free and corner-joint. The red lines
mark the upper and lower boundary of the diagonal image.
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Fig. 3: Diagonal image extracted from the matrix presented in
Fig. 2.

.

The idea is to crop the matrix parallel to the main diagonal,
and to base the prediction process on the diagonal matrix
band only, see Figure 2. This is motivated by the assumption
that any block of strongly connected components is “denser”
than the rest of the matrix also in the area close to the main
diagonal 1. For a diagonal band width w, the reduction of
the sparse matrix image to a “diagonal image” is realized
by cropping parallel to the main diagonal at the pre-defined
distance w, and arranging all elements of the diagonal band
row-wise in a new matrix that is right-aligned. The missing
values on the left are filled with an arbitrary constant c, see
Figure 3 representing the diagonal image extracted from the
matrix image in Figure 2. Considering only the diagonal band
of a matrix efficiently reduces the amount of pixels in the
input images. In our experiments, we consider matrix images
of size 128 × 128 and set w = 10. This results in diagonal
images of size (2∗w+1)×n = 21×128. The neural network
we design in Figure 5 is a feed-forward convolutional neural
network composed of three logical parts. The first major part
of the network, is a modified residual network block [17]
that aims at denoising the sparse matrix image. It consists
of two two-dimensional convolutional layers with post-batch
normalization and scaled exponential linear units (SELU) [21]

1This assumes that some non-block areas are included in the diagonal band.
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Fig. 4: Visualization of the convolution of size (2w + 1) ×
(2k+1) and the padding of size k left and right of the diagonal
image.

as activations. The obtained filtered images are added to the
original matrix image to generate a denoised copy.

In the second major block, consisting of non-standard,
discrete convolutions, the image is reduced to a vector of
length 2w+1. To that end, the convolution with mask height
2w+1 and width 2 ∗ k+1 is applied to each matrix column,
see Figure 4. To accommodate for the k left- and right-
most columns, the diagonal image is horizontally padded with
constant values (here: zeros), such that the convolution is
applied to a matrix with dimensions (2w + 1) × (n+ 2 ∗ k).
Each element within the resulting vector is activated using
the tanh function to model a binary choice between the
two options “block start” or “no block start”. Using a one-
dimensional convolution, the choice is cross-correlated with
the neighboring elements.

Finally, in the third and last part of the network, the
actual prediction is derived using a fully-connected dense layer
and output in the l-sized output. To prevent overfitting and
increase out-of-sample accuracy, the convolutional layers are
regularized with an l2-norm of 0.02, and the fully-connected
layer with dropouts [30]. Applying the argmax function to
the prediction vector ŷ we obtain the rows/column indices
i0, i1 . . . , where the diagonal blocks start.

Block patterns for matrices exceeding the size n can be
generated by tiling the matrix along the main diagonal into
sub-matrices of size n× n (potentially requiring the padding
for the last sub-matrix). The diagonal block detection is then
realized by predicting block starts for each of the tiles inde-
pendently, and combining the results. For detecting blocks in a
matrix containing non-adjacent blocks, i.e. “gaps” in-between
diagonal blocks, it is necessary to additionally predict block
ends. This can be realized by complementing the architecture
with a second network, or by modifying the existing network
to feature an additional vector of n output neurons.

IV. EXPERIMENTAL EVALUATION

A. Dataset

Due to the unavailability of matrix data with annotated
Jacobi block patterns 2, we use an artificially generated dataset
for training and validating the neural network. In total, we
consider 3,000 matrices of size 128×128. All matrices contain
a set of randomly-sized diagonal blocks that are adjacent and

2The usage of automatically generated labels from other block detection
algorithm is undesirable as they do not have a good prediction accuracy, and
will set an upper bound to the prediction performance of the network.



Input (21, 128, 1)
(21, 128, 1)

Batch Norm (21, 128, 1)
(21, 128, 1)

Activation (21, 128, 1)
selu (21, 128, 1)

2D Conv (21, 128, 1)
32, 5x5, l2 = 0.02, same (21, 128, 32)

Batch Norm (21, 128, 32)
(21, 128, 32)

Activation (21, 128, 32)
selu (21, 128, 32)

2D Conv (21, 128, 32)
128, 3x3, l2 = 0.02, same (21, 128, 128)

Add (21, 128, 1), (21, 128, 128)
(21, 128, 128)

Batch Norm (21, 128, 128)
(21, 128, 128)

Zero Padding (21, 128, 128)
(21, 134, 128)

2D Conv (21, 134, 128)
32, 21x7, valid, tanh ( 1, 128, 32)

2D Conv (1, 128, 32)
128, 1x3, valid, tanh (1, 128, 128)

Flatten (1, 120, 128)
(16384)

Dense (16384)
512, sigmoid (512)

Dropout (512)
p(drop) = 0.1 (512)

Dense (512)
128, sigmoid (128)

Fig. 5: Schematic representation of the convolutional neural
network used for predicting the block patterns.

not overlapping in the matrix sparsity pattern. The average
size of the diagonal blocks is 10. The test matrices are all
generated in the following fashion:

1) First, the empty matrix is filled with “background noise”,
which is randomly scattered non-zero values. Across the
test matrices we set the density of the background noise
to values between 0 and 0.5 (30%- 50% nonzero values)
following a uniform distribution.

2) Next, “noise blocks” of arbitrary size are added to the
main diagonal. These noise blocks contain between 30%
and 50% nonzero elements.

3) Finally, the diagonal blocks of arbitrary size with density
values between 0.5 and 0.7 are generated on the main
diagonal. This is realized by generating a vector of size
128, and then randomly selecting 10% of the entries to
be vector block starts.

When using a trained network on other data, this data has to
be normalized to the above described value range. Potentially,
this also entails a statistically stable outlier removal, like Q1-
Q3 interquartile-range-cutoff.

TABLE I: Hyper-parameter settings used for the neural net-
work training.

Parameter Value

Optimizer Nadam
Initial learning rate 1e− 4
Batch size 8
Class weights 0: 0.1, 1: 0.9
Training-test-distribution 80%-20%

For the generated set of test matrices, supervariable blocking
will fail to generate useful diagonal blocks. The reason is
that the supervariable blocking algorithm does not search
for strongly connected components, but instead searches for
similarities in the nonzero pattern of adjacent columns [12].
Obviously, when introducing noise by randomly inserting
nonzero values, the chance of two adjacent columns sharing
the same sparsity pattern is very low.

B. Experimental environment

The convolutional neural network architecture is available
on the authors’ source code repository [16]. It is derived using
the following software packages: Keras 2.1.6 [11], on top
of tensorflow 1.8.0 [1] as compute backend, numpy
1.14.3 [26] for efficient multi-dimensional data structures,
h5py 2.7.1 [13] for accessing HDF5 files using libhdf5
1.8.12. The utilized compute node consists of 32 Intel Xeon
i7 E5-2630 eight-core CPUs clocked at 2.4GHz, eight AMD
DIMM DDR4 16GB (a total of 128GB) RAM banks clocked
at 2133MHz and four Nvidia Tesla K80 GPGPUs with 12GB
VRAM, driver version 396.26 and CUDA 9.0.176 [24].

C. Network training

The network has been trained in a supervised fashion
by minimizing the loss function given in Section III. Due
to the imbalanced label distribution of roughly 90%–10%
“no-blocks” to “blocks,” the individual classes have been
additionally weighted by their inverse distribution, i.e. 0.1 for
“no block” and 0.9 for “block”. As optimizer, a modified
version of the Adam algorithm [20] has been used, which
additionally makes use of the Nesterov-momentum (hence the
name Nadam [14]). The resulting learning curves, including
the training and test loss, as well as prediction accuracy, are
visualized in Figure 6. Training the network with more than
50 epochs results in over-fitting of the network, effectively
reducing the training loss to zero, but not improving the test
accuracy. The complete list of the training hyper-parameters
we used is given in Table I.

To ensure the network has learned the right patterns and
is not simply reacting to the regularities of the artificially
generated noise, we visually investigate the output of the
intermediary convolutional layers of the network. For the
example problem given in Figure 3, we present three of the
128 resulting convolved images from the second convolutional
layer of the first denoising residual network block.

The first image in Figure 7 corresponds to the desired
output of the convolutional layer—a denoised version of
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Fig. 6: Visualization of the training progress of the convolu-
tional network. The prediction accuracy and the loss are given
in blue and orange color, respectively.
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Fig. 7: Examples of the learned convolutional filters of the
neural network taken from the second convolutional layer of
the residual block.

the original diagonal image. The middle image contains the
inverse content, an almost correctly separated image of the
superimposed noise. The third image highlights potential block
boundaries as vertical, sometimes slightly bent, darker lines.

A quantitative evaluation of the performance of CNN block-
ing is given in Table II. The center of the confusion matrix
contains the absolute values of the true and false predictions of
block starts and the lack of these. Additionally, the table lists
the calculated precision and recall for both prediction classes.
For a label vector y and the prediction ŷ, the precision is
defined as:

precision(y, ŷ) =
tp(y, ŷ)

tp(y, ŷ) + fp(y, ŷ)

where tp is true positive rate and fp the false positive rate
of the prediction. Hence, the precision describes the rate of
correctly predicted positive observations. Analogously, recall
is defined as:

recall(y, ŷ) =
tp(y, ŷ)

tp(y, ŷ) + fn(y, ŷ)

TABLE II: Evaluation matrix for the diagonal block predic-
tions of the convolutional neural network on test data.

Actual
Acc.: 0.9617 no block block precision

Pr
ed

. no block 68010 553 0.9919
block 2389 5848 0.7100

recall 0.9661 0.9136 F1: 0.7990

where fn is the false negative rate.
The recall for “no block” is relatively high in comparison

to “block”. This indicates a bias against offensively predicting
blocks. The total accuracy of the block detection in the test
is 96.17%, which indicates a solid prediction performance.
However we note that due to a strong imbalance between the
class labels the accuracy of 90% can be achieved by simply
always predicting “no-block”. The statistically more robust F1-
metric [28] is defined as

F1 (y, ŷ) = 2 ∗ precision(y, ŷ) ∗ recall(y, ŷ)
precision(y, ŷ) + recall(y, ŷ)

.

This harmonic mean of precision and recall may be considered
as a more representative performance indicator.

Considering all predicted diagonal blocks and all test matri-
ces, the average size of the predicted diagonal blocks is 9.85.

TABLE III: Evaluation matrix for the diagonal block predic-
tions of supervariable agglomeration with upper block size
bound 10 on test data.

Actual
Acc.: 0.8261 no block block precision

Pr
ed

. no block 62105 6458 0.9107
block 6895 1342 0.1547

recall 0.9001 0.1721 F1: 0.1673

TABLE IV: Evaluation matrix for the diagonal block predic-
tions of supervariable agglomeration with upper block size
bound 25 on test data.

Actual
Acc.: 0.8695 no block block precision

Pr
ed

. no block 65872 2691 0.9608
block 7328 909 0.1103

recall 0.8998 0.2525 F1: 0.1535

As expected, supervariable blocking fails to actually detect
any blocks for the artificially generated dataset. As no adja-
cent columns share the same sparsity pattern, supervariable
blocking always accumulates blocks of size 1 until the upper
block size bound is reached. Hence, supervariable blocking
generates a sparsity pattern of uniform blocks on the main
diagonal, each of them having the size of the upper bound. We
consider upper bounds in the interval [1, 25]. For completeness,
we provide in Table III and Table IV the confusion matrix
for the block predictions generated by supervariable blocking
using the upper bound of 10 and 25, respectively. We observe



0 5 10 15 20 25

Block size bound

100

105

110

115

120

125

G
M

R
E

S
 i
te

ra
ti
o

n
s

No preconditioner

Supervariable blocking

CNN blocking

Fig. 8: GMRES iteration counts averaged over the set of test
matrices. The GMRES solver uses no preconditioner, a block-
Jacobi based on the sparsity pattern generated with the con-
volutional neural network, and a block-Jacobi preconditioner
based on the sparsity pattern generated with supervariable
blocking, respectively.

that the accuracy with a seemingly high values of 82.61%
and 86.95% are notably smaller than the naı̈ve accuracy-
maximizing prediction of always forecasting “no-block”, i.e. ≈
90% accuracy. More indicative is the F1-metric taking values
of 0.1673 and 0.1535, which is significantly below the 0.7990
achieved by the neural network.

To evaluate the quality of the preconditioner sparsity pattern
generated by the convolutional neural network, we use the
block structure to generate a block-Jacobi matrix, and deploy
the preconditioner inside a GMRES iterative solver. To ensure
non-singularity, we replace all nonzero entries in the test
matrices with values in the range (−1, 0) and set all diagonal
values to 1.0. We derive linear systems by accompanying
these matrices with a right-hand side of all-ones. We set
the relative residual stopping criterion of the non-restarted
GMRES solver to 1e − 5 and start the iterations with an
zero-vector initial guess. The number of iterations necessary
to reach the approximation accuracy differs for the distinct
systems. Averaging over the 3,000 test systems, the block-
Jacobi preconditioner based on the sparsity pattern generated
by CNN blocking reduces the number of necessary iterations
from 125.7 (GMRES without preconditioner) to 103.3 (≈ 22%
reduction). In Figure 8 we visualize the GMRES iteration
counts along with the results from a setup where the sparsity
pattern is derived with supervariable blocking using different
block size bounds. As elaborated, for the noise-containing test
matrices, the supervariable blocking pads the diagonal with
uniform-sized blocks having the size of the upper bound. Since
the system matrices all have a unit-diagonal, an upper bound
of size 1 (resulting in a scalar Jacobi preconditioner) does
not render any improvements to the GMRES convergence. As
expected, larger upper bounds allow for better preconditioners,
effectively improving the GMRES convergence. For the upper

bound of 10, the diagonal blocks generated by supervariable
blocking are on average of the same size like the diagonal
blocks generated by the convolutional neural network (labeled
“CNN blocking” in Figure 8). The preconditioner quality is
however inferior, providing only 7% convergence improve-
ment to the plain GMRES. This indicates that supervariable
blocking fails to detect the strongly coupled variables. Even
for the largest upper bound of 25 (resulting in blocks that are
on average more than twice larger than the CNN-generated
blocks), the resulting block-Jacobi preconditioner is inferior to
the preconditioner based on the sparsity pattern generated with
CNN blocking. This indicates that CNN blocking succeeds in
detecting strongly coupled components.

The convolutional network necessary to generate the CNN
blocking encompasses a total of 9,107,812 parameters. If all
of the parameters are stored in four-byte, tightly-packed binary
format, the model size is 36 431 248B or roughly 34.74MB.
For prototyping purposes we use the more verbose Keras
model serialization format, which additionally stores training
meta-data and the network’s architecture. This results in a total
memory footprint of 105MB. The model’s memory footprint
is relevant as a numerical solver ecosystem utilizing CNN-
based block pattern detection needs to take the additional
memory requirement into account.

In the setting of the network being implemented in Python
(using Keras) and running on an NVIDIA K80 GPU, it takes
2.5 s to predict the block starts for the set of 3.000 matrices
when using a batch size of 1500. This boils down to a block-
pattern generation time of about 1.66ms per matrix.

V. SUMMARY AND OUTLOOK

We propose to employ machine learning techniques to
generate preconditioner sparsity patterns. In this work, we
have shown that a convolutional neural network can efficiently
detect strongly connected components in a matrix sparsity
image, and that a therefrom derived block-Jacobi precondi-
tioner is effective in accelerating the iterative solution process
of the induced linear system. In future work, we plan to
manually label a large set of test matrices taken from scientific
applications which allows to move from artificially created
test matrices to real-world problems. Furthermore, we will
investigate the potential of using machine learning techniques
for generating sparsity patterns for other problem-adapted
preconditioners.
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