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Abstract

The development of modern technology is characterized by simulations, that are no longer
performed in physical experiments, but in terms of mathematical modeling by partial dif-
ferential equations. Numerical algorithms have often replaced the necessity of laboratories,
but typically demand for immense computing power. While the hardware manufacturers
try to keep up with the demand for Petaflops, the suitability of the numerical methods
employed in the simulation algorithms decreases constantly. This often stems from a gap
between the design and parallelism of the numerical algorithms forming the simulation code
and the parallelism and complexity provided by today’s and future hardware platforms,
impacting performance, dependability and resource efficiency.

In a nutshell, three main challenges can be identified when aiming for exascale simulation
algorithms: scalability, reliability and energy efficiency. As future hardware architectures
are expected to consist of several millions up to billions of processing units located in differ-
ent devices connected via different communication technologies, the algorithms running on
these machines efficiently are required to scale for this immense processor number, which
implies the reduction of the communication to a minimum. Furthermore, as the high num-
ber of processors also implies a significant failure rate, a high tolerance to hardware error
is essential to ensure the completion of the simulations. While checkpointing strategies
are widespread used in today’s implementations, algorithms will no longer be able to rely
on this technique as soon as the hardware complexity induces a mean time of failure of
the full system smaller than the time for checkpointing and restarting. Finally the power
demand of computing facilities handling the simulation experiments can be identified as a
major hurdle. Already today, the energy costs often exceed the acquisition costs after few
years posing an economical challenge, and moreover question the power demand and the
ecological footprint the resource efficiency of computer simulations. While future hardware
is expected to reduce the power demand by featuring efficient accelerator technology and
energy saving mechanisms, conventional software usually ignores this issue by allowing
only very limited usage of these techniques.

In many simulation applications, generating solution approximations of discretized par-
tial differential equations is the computationally most expensive part in the algorithm
- particularly since the traditional numerical methods require both communication and
synchronization that limit the efficient hardware usage. In this thesis we target the in-
evitable question of how numerical solvers can be adapted to future computing facilities
by proposing unconventional methods, suitable for the highly parallel and hybrid hard-
ware platforms that are expected for the near future. Especially, we address the topic
of hardware-adapted methods by aiming for synchronization-free linear solvers that min-
imize idle times by removing synchronization barriers, and therefore allow the efficient
usage of computer systems consisting of components with different hardware character-
istics. The implied high tolerance with respect to communication latencies improves the
fault tolerance of the simulation method. As asynchronous methods also enable the usage
of the power and energy saving mechanisms provided by the hardware, they address all
challenges we identified for numerical methods in the exascale era and combine the most
important characteristics required for hardware-efficient simulation algorithms. From the
theoretical point we investigate the derived methods with respect to their convergence
properties and analyze the potential of adapting them to a specific problem by accounting
for the discretization method or the matrix characteristics. Also, we provide a compre-
hensive study revealing excellent performance, scalability and fault-tolerance properties as
well as remarkable energy-efficiency of block-asynchronous iteration on different hardware
architectures.
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1. Introduction

1.1. Motivation

In many scientific fields, research and development is characterized by experiments, that
are no longer performed in laboratories, but by means of mathematical modeling and nu-
merical simulations conducted on high-performance clusters. In many engineering areas,
the complexity of the experiments exceeds the laboratories’ capacity, but they may be
evaluated in terms of scientific simulations that provide a virtual reality to investigate the
processes. Nevertheless, the elation about the efficient usage of computer simulations is
confined by the increase in the gap between the numerical methods typically used in the
simulation and the target hardware architectures, as past methods hardly accommodate
the hardware developments towards highly parallel and heterogeneous systems. The chal-
lenge of optimizing the execution of scientific applications on the most recent hardware
systems is still open, and this work aims at providing significant advance in addressing
this topic.

1.1.1. Hardware Evolution on the Road to Exascale

Within the last decades, the hardware architectures for supercomputing have undergone
a process of continuous change asking for the redesign of the numerical algorithms with
each new hardware generation1 [All01, Ber05, MVM09, Rya11].

For almost three decades between 1975 and 2005, supercomputing was mostly dominated
by uni-core processors (comprising from vector processors as those used in the CRAY
architecture [Rus78] to commodity superscalar CPUs). While the chips contained one
single core and the parallelism was realized by the gathering a few, the systems grew
in performance mostly by increasing the complexity of the core architecture, such that
they were able to execute a single task with increasing speed. When targeting one single
processor no changes to the sequential codes were necessary, and the speedup was gained
by faster single-core execution. On the other hand, when the target architecture contained
multiple uni-core processors, the applications were parallelized using machine-dependent
annotations and a parallelizing compiler. Moore’s law [Sch97] was suitable to describe the
performance improvements during this uni-core period.

Around 2005, hardware developers hit the barriers of this trend: The shrinking of the
transistor size, the gathering of transistors in one core, and the growth in clock rate, which

1See http://herbsutter.com/ for a vivid description of the hardware evolution process.
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Figure 1.1.: Overview of the trends in hardware design and the performance development.
N=1 and N=500 denote the systems ranked No.1, and No.500, respectively,
in the TOP500 list [top]. SUM aggregates the computing power of all listed
systems.

had so far been the basic principles of accelerating the processors, were no longer beneficial
due to effects like thermal restrictions, leakage currents and energy considerations [KBD10].
Particularly the limitation in clock rate triggered a trend towards more parallelism, and
instead of designing faster and more complex single-core chips, the hardware developers
started to aggregate multiple cores into one chip - the beginning of the Multicore-Era,
see Figure 1.1. The performance gains of this trend still fit Moore’s law, but exploiting
the computational power became much more difficult. The software developers had to
redesign the code, often even to reformulate their algorithms and applications into parallel
programs that could make efficient use of the parallel hardware. For applications that
already have lots of inherent parallelism, the exponential performance gains attained by
leveraging hardware featuring an increasing core number per CPU continued, but as soon
as several multicore CPUs were combined to one node, and multiple nodes added their
performance to a cluster, also communication became a relevant factor that limited the
applications’ performance. An additional restriction that became obvious was the problem
of energy consumption as gathering thousands of CPUs into one cluster also adds their
power draft.

To address these issues, around 2006, hardware developers started looking back into less
complex cores. Although these often have the drawback of supporting only a reduced
instruction set and featuring a less sophisticated cache hierarchy, they exhibit a clear ad-
vantage in power consumption so that a large number can be aggregated into one device.
Graphics Processing Units (GPUs), even though they have a different historical back-
ground, are one example where the gathering of less-complex cores into one device is taken
to extremes. But while GPUs provide excellent performance for highly parallel applica-
tions (also with respect to their power draft [KBD10]), they are not appropriate to tackle
complex tasks. Therefore, one often merges them into a system which is also equipped
with complex or conventional cores, forming a Heterogeneous Computing platform. While
these architectures usually combine high performance with adequate energy efficiency, the
real challenge is left to the programmers, as leveraging the provided computational power
is even more difficult: now the application has to be broken down into parallel tasks, and
also each task has to be assigned to the suitable hardware device. Despite the difficulties
in leveraging the computational power, it seems that the trend for an increasing level of
heterogeneity will dominate the future in High-Performance Computing, enabling the con-
tinuation of the exponential growth in computing power and paving the way to Exascale
computing [BBC+08].

2



1.1. Motivation 3

1.1.2. Software Impact

In spite of all the elation about exponential growth in performance, the burden of lever-
aging the computational power remains with the software developers and the application
designers, who are supposed to derive algorithms suitable for platforms that, in a near fu-
ture, will typically consist of heterogeneous processors, featuring different instruction sets
and able to execute certain tasks with varying performance. This may become even more
difficult with the additional complexity of the memory models: While the uni-core era was
based on a straight-forward memory hierarchy, the rise of multicore systems came along
with the possibilities of a unified- and/or a distributed-memory address space [KBD10],
both with its advantages and drawbacks.

These hardware shifts have significant impact on the software implementations. The largest
problem arises from the fact that old legacy codes are not able to automatically take
advantage of the new hardware technologies. Due to the growing gap in peak performance
between single core and multi-core/many-core devices, the single-threaded programs tend
to perform even worse on the emerging platforms [Luk12]. Furthermore, applications
designed for clusters often neither utilize the full power potential of modern multi-core
CPUs, due to the different synchronization mechanisms, nor are they able to leverage
the computing power of accelerators, since most many-core platforms support explicit
communication control. Thus, especially in scientific computing, many of the existing
simulation algorithms have to be adapted, reprogrammed or even completely redesigned
by changing the underlying numerical methods in order to achieve full utilization of the
new hardware [BBC+08, DBM+11].

1.1.3. Computational and Technical Challenges to Overcome for Exascale
Computing

Already the most recent hardware developments revealed that the obstacles in transform-
ing theoretical computational power into simulation performance are sufficiently complex
such that a new methodological approach is necessary when aiming for Exascale simula-
tions. Particularly, the interaction between hardware, software and numerical methods
requires that research specialists of the different areas including applied mathematics,
computer science, hardware engineering and ultimately application scientists merge their
competencies and interact as they pursue their own research agendas [ABC+10, DBM+11].
The necessity of collaboration stems from the characteristics of the technical and compu-
tational hurdles that have to be addressed. Many research reports identify three main
challenges [ABC+10, BBC+08, Age10, DBM+11]:

• Exploiting massive parallelism.
Mathematical models, numerical methods and software implementations need new
conceptual and programming paradigms to make effective use of unprecedented lev-
els of concurrency. The scaling with respect to multiple millions up to billions of
processing units requires the exploitation of all types of parallelism in the programs
and the reduction of communication to almost nothing.

• Coping with run-time errors.
An immediate consequence of the high component number of future hardware sys-
tems is that the frequency of hardware errors will increase significantly, while timely
identification and error correction will become even more difficult. The ability to
cope with hardware failure and a strong tolerance of the algorithms with respect to
latencies is essential to maintain the resilience of simulation algorithms.

• Reducing power requirements.
Based on current technology, scaling today’s systems to exaflop level would imply

3
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power consumption of hundreds of megawatts [ABC+10]. While strong efforts from
the hardware manufacturers are required to reduce this resource demand, they come
along with the necessity of shifting the focus from pure runtime performance to more
energy-aware efforts to optimize application algorithms. This demands for adapting
the implementations to the evolving hardware as well as leveraging the power-saving
mechanisms provided by the systems.

1.2. Goal and Thesis Contributions

Implementation of efficient and scalable numerical methods suitable for the next gener-
ation of High Performance Computers is an interdisciplinary task which requires ample
knowledge of applied mathematics and computer science. Especially, the design and im-
plementation of linear system solvers featuring properties required for exascale computing
is a nontrivial venture.

In this thesis this ambitious challenge is addressed by deriving block-asynchronous itera-
tive methods suitable for hardware platforms accelerated by Graphics Processing Units,
since these may belong to the most accepted hardware accelerators or coprocessors. The
proposed methods combine scalability, fault-tolerance and energy efficiency, often identi-
fied as key properties for future Exascale implementations. Tackling this problem at the
node-level can be considered as a first step towards the final goal of solving the problem at
a much larger scale and, ultimately, at Exascale. In this line, it may be assumed that the
asynchronous properties inherently allow for this problem reduction becoming potential
candidates to be considered in future exascale simulation.

The main contributions of the thesis are:

• Derivation of block-asynchronous iteration.
We design a block asynchronous iterative method able to solve linear systems of
equations and suitable for GPU-accelerated heterogeneous hardware platforms. In
our experiments we investigate its convergence and performance as well as the non-
deterministic behavior and the tolerance to hardware failure. We furthermore op-
timize the algorithm to deal with sparse systems and enable the implementation of
multi-GPU usage.

• Problem-aware block-asynchronous iterative methods.
Block-asynchronous iterative methods can be adapted to a given problem by using
weights or, in case of a discretized partial differential equation, by accounting for
the discretization scheme. We provide convergence theorems for different weighting
techniques and analyze in experiments the convergence and performance benefits
when optimizing the algorithms to a specific application.

• Block-asynchronous mixed precision iterative refinement.
We employ block-asynchronous iteration as an error correction solver in a mixed
precision iterative refinement framework and investigate its convergence and perfor-
mance for different GPU architectures. By handling also the residual computations
of the iterative refinement loop asynchronously, we design a block-asynchronous it-
erative refinement. For this algorithm we study its theoretical convergence as well
as provide experimental results analyzing the trade off between synchronous and
asynchronous residual computation.

• Block-asynchronous multigrid smoothers
Since component wise relaxation methods typically provide important contribution
as smoother in multigrid methods, we investigate the potential of replacing the tra-
ditionally applied synchronized algorithms by the block-asynchronous iteration.
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• Energy considerations.
Recent hardware typically features a variety of energy-saving mechanisms. The algo-
rithms’ energy footprint depend on the potential of leveraging these techniques. For
different iterative solvers the optimization potential is evaluated and experimental
results are presented. Furthermore, we put particular focus on analyzing the energy
efficiency of block-asynchronous iteration.

While these contributions are mainly presented in Chapter 4 and 5, some of the theoretical
and experimental results have, at least partially, already been published in conference
proceedings (see Table 1.1).

1.3. Thesis Outline

Chapter 2 provides some theoretical background about iterative methods traditionally
employed when solving linear systems of equations. This includes iterative refinement
methods, relaxation methods, the iterative approach to Krylov subspace solvers as well
as multigrid methods. While these methods all share the common principle of synchro-
nizations in the computing process of the sequence of approximations, in Chapter 3 we
review some existing theory about component wise asynchronous iteration methods. This
background is useful in the derivation of the GPU-adapted block-asynchronous iteration in
Chapter 4. We begin this chapter with some fundamental principles in the context of gen-
eral purpose computing on graphics processing units, motivating for the algorithm design.
In the following sections we examine different aspects of the method. Particularly, we in-
vestigate the non-deterministic behavior when implementing block-asynchronous iteration
on hardware platforms accelerated by graphics processing units and the tolerance to hard-
ware failure. We then analyze how block-asynchronous iteration can efficiently be applied
to dense or sparse linear systems using either one GPU or a cluster of GPUs. After deriving
some theory on how the algorithm can be enhanced by the use of weights and proving con-
vergence for the different weighting techniques, we analyze how block-asynchronous itera-
tion can efficiently be adapted to discretized partial differential equations. We also target
the question whether it is beneficial to employ block-asynchronous iteration as smoother
in multigrid solvers or as error correction solver in mixed precision iterative refinement.
Associated to the latter idea we derive some theory on block-asynchronous iterative re-
finement, where also the residual computation is handled synchronization-free. All these
theoretical studies are supplemented by numerical experiments analyzing convergence be-
havior and runtime performance of the different implementations. Finally we conclude this
chapter, which may be seen as gist of the thesis, by using block-asynchronous iteration in
the solution process of a nonlinear instationary partial differential equation arising in the
simulation of pattern formation in mathematical biology. Later on, we address in Chapter
5 the issue of energy-efficient simulation algorithms. This includes not only the introduc-
tion of different power and energy saving mechanisms, but moreover experimental results
on traditional methods and block-asynchronous iteration obtained from a sophisticated
power measurement setup. In Chapter 6 we summarize the contributions and findings of
this work and provide an outlook how the derived methods can efficiently be applied in
scientific simulation algorithms, and which challenges should be addressed in the further
research on this topic.
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Section Description New contribution

4.1 review of GPU-Computing -
4.2 BAI for GPUs [ATDH12a]
4.3 analysis of non-deterministic behavior of BAI [ATDH12a]
4.4 experiments on BAI [ATDH12a]
4.5 fault-tolerance properties of BAI unpublished
4.6 BAI for multi-GPU sytems unpublished
4.7 experiments on BAI for multi-GPU sytems unpublished
4.8.1 review of CSR-format -
4.8.2 modified CSR for BAI unpublished
4.9 experiments on modified CSR for BAI unpublished
4.10.1 review of weighting techniques -
4.10.2 weighted BAI [ATDH12b]
4.10.2.1 ω-weights for BAI [ATDH12b]
4.10.2.2 convergence of ω-weighted BAI unpublished
4.10.2.3 `1-weights for BAI [ATDH12b]
4.10.2.4 convergence of `1-weighted BAI unpublished
4.10.3 experiments on ω-/`1-weighted BAI [ATDH12b]
4.10.4 θi-weighted BAI unpublished
4.10.5 experiments on θi-weighted BAI unpublished
4.10.6 PDE-aware BAI unpublished
4.10.7 PDE-aware BAI adapted to Helmholtz unpublished
4.10.8 experiments on PDE-aware BAI adapted to Helmholtz unpublished
4.11.1 review of multigrid smoothers -
4.11.2 BAI in multigrid methods [ATG+12]
4.12 BAI in mixed precision iterative refinement [ALDH12]
4.13 asynchronous iterative refinement unpublished
4.13.1 theoretical aspects of asynchronous iterative refinement unpublished
4.13.2 theoretical aspects of asynchronous mixed precis. iter. ref. unpublished
4.13.3 theoretical aspects of block-asynchronous iterative refinement unpublished
4.13.4 experiments on block-asynchronous iterative refinement unpublished
4.14 review of non-linear PDEs -
4-14.1 experiments of BAI applied to a nonlinear PDE unpublished
4.14.2 experiments on BAI applied to pattern formation problem unpublished
5.1 review of energy-aware computing -
5.2.1 energy measurement setup at HPCA -
5.2.2 energy measurement setup EMCL [ABC+]
5.3.1 review of accelerators energy-aware computing -
5.3.2 review of dynamic voltage and frequency scaling (DVFS) -
5.3.3 introduction of idle-wait technique [AHA+11]
5.4.1 experiments on energy-savings by accelerator computing [AHA+11]
5.4.2 experiments on energy-savings by DVFS [AHA+11]
5.4.3 experiments on energy-savings by idle-wait [AHA+11]
5.4.4 experiments on energy-efficiency of BAI unpublished

Table 1.1.: Overview about own contributions in Chapter 4 and 5 and related publications.
The term BAI refers to block-asynchronous iteration.
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2. Classical Iterative Methods

This chapter is dedicated to procure an overview about the classical iteration methods
used for finding an approximation for the solution of systems of linear equations of the
form

Ax = b with A ∈ Rn×n and x, b ∈ Rn. (2.1)

The purpose is not limited to introducing the reference methods for numerical experiments
on the asynchronous schemes we will investigate in Chapter 4, but moreover to provide
the mathematical background necessary to derive the hardware-aware numerics in the fol-
lowing chapters.
First we describe in Section 2.2 the iterative refinement method which is modified in Sec-
tion 2.3 by adapting it to modern hardware systems. We then introduce in Section 2.4
the classical relaxation methods based on matrix splitting like Jacobi and Gauss-Seidel.
The underlying idea of component wise updates will also be used in the asynchronous and
block-asynchronous methods we derive and investigate in Chapter 3 and 4. For the Con-
jugate Gradient method and GMRES we derive the algorithms and show some complexity
estimations based on convergence theory (see Section 2.5.3, 2.5.4). Finally, we introduce
multigrid methods. While these usually base on the properties of the finite element dis-
cretization of a partial differential equation, they may be formulated as iterative method
too.

2.1. Iterative Methods

In numerical mathematics, iterative solvers are methods that compute an approximation
of the solution to a given problem, starting from an initial guess. In each iteration step
of the solver, the solution approximation is improved until a preset accuracy threshold is
reached, and the algorithm is stopped (see e.g. [Ran08, Saa03, Bou01]). Starting from the
initial guess x0, iterative methods usually generate a sequence of solution approximations
x0, x1, x2, . . . xk . . . that, in the convergent case, approaches the exact solution in its limit.
While iterative methods are usually the only choice for nonlinear equations, also in the
case of large linear systems they are often preferred to direct solvers, since they are able to
compute a sufficiently accurate approximation of the solution with comparably low com-
putational effort [Saa03].

7



8 2. Classical Iterative Methods

For a linear system Ax = b, iterative solvers base on an iteration algorithm that is stopped
when a certain stopping criterion is fulfilled, and an initial solution guess. As the absolute
error of a solution approximation is unknown to the point where the exact solution is
computed, one normally uses a threshold for the residual error term rk = b − Axk as
stopping criterion. Especially the threshold is often chosen relative to the initial error,
such that a typical stopping criterion takes the form

‖ rk ‖2
‖ r0 ‖2

≤ ε. (2.2)

An interesting question is, how the absolute error and the residual error depend on each
other. As specified in the notation, we denote ek = x∗ − xk the absolute error in the kth
step, and rk = b−Axk the residual or residual error of the ith step. With some elementary
computations one can obtain

x∗ = A−1b

⇔ x∗ − xk = A−1b− xk

⇔ ek = A−1b−A−1Axk

⇔ ek = A−1 (b−Axk)︸ ︷︷ ︸
=rk

⇔ ek = A−1rk, (2.3)

and especially

‖ ek ‖2 =‖ A−1rk ‖2≤‖ A−1 ‖2‖ rk ‖2 (2.4)

‖ rk ‖2 =‖ Aek ‖2≤‖ A ‖2‖ ek ‖2 (2.5)

which provides the direct dependency between rk and ek.
For the further theory, we introduce the condition number of a matrix A with respect to
a matrix norm ‖ · ‖p as [Gre87]

κp(A) :=‖ A ‖p · ‖ A−1 ‖p . (2.6)

With (2.4) and (2.5) we can derive

1

κp(A)

‖ rk ‖p
‖ b ‖p

≤ ‖ e
k ‖p

‖ x∗ ‖p
≤ κp(A)

‖ rk ‖p
‖ b ‖p

(2.7)

which shows that the condition number of the matrix A has significant influence on the
dependency between error and residual [Gre87].

It is important to point out the difference between the absolute error term ek and residual
error term ri. In the analysis of iterative solvers one often has to deal with an discrepancy
concerning the different stopping criteria in the theoretical analysis and the numerical
tests on implementations. On the theoretical side, the whole convergence analysis is usu-
ally based on the error term ek and an absolute error stopping criterion. Implementing an
iterative solver, the error is usually unknown, as the exact solution is unknown. Hence, one
usually chooses a residual error stopping criterion. This inconsistency could be avoided
by using the equation (2.3) connecting the residual error to the absolute error. But as
the transformation of the absolute error into the residual error is at least difficult, or even
impossible due to the unknown matrix A−1, we want to limit our information about the
dependency to the fact, that for sufficiently well-conditioned systems, a small absolute
error usually implies a small residual and vice versa (see equation (2.7)).

8
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2.2. Iterative Refinement

Although iterative refinement methods have been known for long time, they have enjoyed
a revival with the rise of computer systems in the middle of the last century [GST07].
The core idea is to use the residual of a computed solution as the right-hand side to solve
a correction equation [GST07]. The algorithm then updates the solution approximation
in every iteration by adding an error correction term computed by an error correction
solver . We want to stress that this error correction solver can be chosen independently:
direct solvers as well as another iterative method are possible options. This implies the
possibility of cascading iterative refinement methods.

Denoting the solution update with ck := A−1rk, the algorithm can be formulated like in
Algorithm 1.

Algorithm 1 Iterative Refinement Methods.

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b−Ax0

3: while (‖ Axk − b ‖2> ε ‖ r0 ‖2) do {outer iteration}
4: rk = b−Axk
5: solve Ack = rk {inner iterations when using an iterative method}
6: update solution xk+1 = xk + ck

7: k=k+1
8: end while

In the beginning of the method, an initial approximation x0 is guessed. In each iteration,
the inner correction solver searches for a ck, such that Ack = rk with rk being the residual
of the solution approximation xk. Then, the approximation of the solution xk is updated
to xk+1 = xk + ck.

2.2.1. Convergence of Iterative Refinement Methods

If we denote the residual in the ith step of the solution process of (2.1) as

rk = b−Axk

we can analyze the improvement gain by performing one iteration loop of the iterative
refinement method.
Applying an error correction solver to the equation Ack = rk which generates a solution
approximation with a relative residual error of at most εinner ‖ rk ‖2, we get an error
correction term ck, fulfilling

rk −Ack = dk, (2.8)

where dk is the residual of the correction solver with the property ‖ dk ‖2≤ εinner ‖ rk ‖2.
In the case of an iterative error correction solver, the threshold εinner ‖ rk ‖2 can be chosen
as residual stopping criterion, while in the case of direct correction solvers, εinner ‖ rk ‖2
is an upper bound for the residual of the solution approximation [AHR10].

9



10 2. Classical Iterative Methods

Updating the solution xk+1 = xk + ck we obtain for the new residual error term

‖ rk+1 ‖2= ‖ b−Axk+1 ‖2
= ‖ b−A(xk + ck) ‖2
= ‖ b−Axk︸ ︷︷ ︸

=rk

−Ack︸ ︷︷ ︸
=dk−rk

‖2

= ‖ dk ‖2≤ εinner ‖ rk ‖2 .

Hence, the accuracy improvement obtained by performing one outer iteration loop equals
the accuracy of the inner error correction solver. Using this fact, one can prove by induction
that after i iteration loops the residual rk fulfills

‖ rk ‖2≤ εkinner ‖ r0 ‖2 . (2.9)

To obtain the number of iterations i necessary to get a residual term ‖ rk ‖2≤ ε ‖ r0 ‖2,
we use the properties of the logarithm and the estimation

‖ rk ‖2≤ε ‖ r0 ‖2
εkinner ‖ r0 ‖2≤ε ‖ r0 ‖2

εkinner ≤ε

i ≥ log ε

log εinner
.

Since outer iterations has to be an integer, the Gaussian ceiling function can be applied
to obtain

outer iterations =

⌈
log(ε)

log(εinner)

⌉
(2.10)

for the number of outer iterations necessary to get a residual below the threshold ‖ rk ‖2≤
ε ‖ r0 ‖2 [AHR10]. Note that this estimation does not provide information about the total
computational cost, since the number of outer iterations does not reflect the computational
work of the error correction solver. Especially, using an iterative error correction solver,
the total number of iterations is usually considerably higher than the number of outer
iterations. The performance in the end depends on the trade-off between stopping criterion
of the inner error correction solver and the number of outer iterations.

2.3. Mixed Precision Iterative Refinement

The iterative refinement method described in the previous section is not only very flexible
in terms of choosing the error correction solver, but also with respect to the floating
point formats used in the different parts. The underlying idea of mixed precision iterative
refinement methods is to leverage this flexibility by computing the error correction term
in lower precision than working precision (see e.g. [GST07, BBD+09, BDL+07] and the
references therein).

In this setup one regards the inner correction solver as a black box, computing a solution
update in lower precision. Using the term high precision (Xhigh) to denote the precision
format that is necessary to display the accuracy of the final solution and low precision
(X low) for values in the lower precision format, we can formulate Algorithm 2 (see Figure
2.1) which, especially when targeting hardware platforms that can compute at higher speed
when using less complex floating point formats, may be beneficial to the overall runtime
performance [AHR11b].

10



2.3. Mixed Precision Iterative Refinement 11

Algorithm 2 Mixed precision approach to iterative refinement.

1: convert system matrix to low precision Alow = Ahigh

2: set initial values: xhigh = 0
3: while ‖ bhigh −Ahighxhigh ‖2≥ ε ‖ r0 ‖2 do
4: compute error in high precision rhigh = bhigh −Ahighxhigh
5: convert residual to low precision for inner solver rlow = rhigh

6: solve the correction equation in lower precision Alowclow = rlow

7: convert error correction term to high precision chigh = clow

8: update outer solution xhigh = xhigh + clow

9: end while
10: give the solution xhigh in high precision

Since especially the conversion of the matrix A into the low precision format is expensive,
implementations of mixed precision iterative refinement usually store it in both precision
formats. Furthermore, in the case of using hybrid hardware, A should be stored in the
local memory of the hardware components in the respectively used format [BBD+09].

Figure 2.1.: Visualizing the mixed precision approach to an iterative refinement solver.

Like in the case of using one format, the computation of the correction loop Alowclow = rlow

is independent and can be handled by a direct solver, or again by an iterative method.
This implies that it is possible to cascade multiple iterative refinement solvers using suc-
cessively decreasing precision. Theoretically, any floating point format can be chosen, but
it is mostly reasonable to employ the widespread used IEEE 754 (see Appendix A.1), as
it is supported by most hardware.

When comparing the algorithm of an iterative refinement solver using a certain iterative
solver as error correction solver to the plain iterative solver in high precision, we real-
ize, that the iterative refinement method has more computations to execute due to the
additional residual computation, solution updates and typecasts. For this reason, one
interesting question is, in which cases the mixed precision iterative refinement method
outperforms the plain solver in high precision. Some aspects on this issue are presented
in [AHR10].

11



12 2. Classical Iterative Methods

2.3.1. Convergence Analysis of Mixed Precision Approaches

When discussing the convergence of the iterative refinement method in Section 2.2.1, we
derived a model for the number of outer iterations that are necessary to obtain a residual
error below a certain residual threshold (ε ‖ r0 ‖): Having a relative residual stopping
criterion εinner for the iterative error correction solver, we need to perform

outer iterations =

⌈
log(ε)

log(εinner)

⌉
iterations to obtain an approximation xk which fulfills

‖ rk ‖2=‖ b−Axk ‖2≤ ε ‖ b−Ax0 ‖2= ε ‖ r0 ‖2 .

If we now use the iterative refinement technique in mixed precision, we have to mod-
ify this convergence analysis to account for the rounding effects triggered by the float-
ing point arithmetic. In fact, two phenomena may occur that require additional outer
iterations[AHR10]:

1. Independently of the type of the inner error correction solver, the low precision
representation of the matrix A and the residual rk contain representation errors
due to the floating point arithmetic. These rounding errors imply that the error
correction solver is applied to a perturbed system (A+δA)ck = rk+δrk. Due to this
fact, the solution update ck may give less improvement to the outer solution than
expected.

2. When using iterative error correction solvers that compute the residual within the
iteration process (e.g. Krylov subspace methods) the iteratively computed residu-
als may differ from the actual residuals due to accumulated rounding errors. This
potentially triggers early or late breakdowns of the error correction solver.

It should also be mentioned, that convergence of the mixed precision iterative refinement
algorithm is only achieved for cases where the iterative error correction solver converges
in the respectively used floating point format. If we denote the total number of additional
outer iterations, induced by the rounding errors and the early breakdowns when using an
iterative error correction solver, with g, we can obtain

outer iterationstotal =

⌈
log ε

log εinner

⌉
+ g (2.11)

for the total number of outer iterations necessary to get an approximation that fulfills
‖ rk ‖2≤ ε ‖ r0 ‖2. At this point we want to mention, that g in fact does not only depend
on the type of the error correction solver and the used floating point formats, but also on
the rounding schemes used for the conversion in-between and the properties of the linear
problem including the matrix structure.

2.4. Component Wise Relaxation Methods

Classical relaxation algorithms are methods for finding an approximate solution for the
linear system of equations (2.1)

Ax = b with A ∈ Rn×n and x, b ∈ Rn

that are based on relaxation of the components, and in a convergent iteration process
they generate a sequence of solution approximations with increasing accuracy. While the

12



2.4. Component Wise Relaxation Methods 13

convergence of relaxation methods is rarely guaranteed for all matrices, there exists a com-
prehensive convergence theory for cases where the coefficient matrix derives from the finite
difference discretization of elliptic partial differential equations [Saa03]. Given an initial
solution approximation, every iteration step modifies one or multiple components, where
the different components are updated in a certain order. Although these techniques are
today rarely directly applied to a linear equation problem, they often provide important
contribution to complex solvers, e.g. as preconditioner or smoother in a multigrid frame-
work (see Section 2.6).

The Banach fixed point theorem [Ban22, SK06] guarantees the existence and uniqueness of
fixed points for self-mapping contraction operators. The idea of component wise relaxation
is to decompose the matrix A to derive a contraction mapping of the form

ϕ(x) = B · x+ d, (2.12)

where the spectral radius ρ(B) is smaller than one. Then, the iteration method is defined
by

xk+1 = B · xk + d

where B is usually denoted the iteration matrix. The various component wise relaxation
methods then basically differ in the choice of B and d. A relaxation method can be derived
by considering an invertible matrix M and decomposing

A = M + (A−M). (2.13)

Then,

xk+1 = M−1(b− (A−M))xk (2.14)

= M−1(M −A)xk +M−1b

= (I −M−1A)xk +M−1b.

Hence, we get for any matrix splitting an iteration method with B = (I −M−1A) and
d = M−1b. Therefore, a relaxation scheme is equivalent to a fixed point iteration applied
to the preconditioned linear equation system [Saa03]

M−1Ax = M−1b.

Every relaxation method can also be written in component wise form:

xk+1
i =

n∑
j=1

bi,j · xkj + di, (2.15)

where B = (bi,j) is the iteration matrix.

The classical relaxation methods can be derived by using different matrix splittings. The
coefficient matrix A in (2.1) can be decomposed into a sum of matrices A = A1 + A2 +
A3 · · ·+An. One very popular decomposition is

A = L+D + U (2.16)

where D contains the diagonal entries of A and L respectively U contain the lower and
upper triangular part of A (see Figure 2.2). Using this decomposition, we may rewrite
(2.1) into

(L+D + U)x = b.

13



14 2. Classical Iterative Methods

Figure 2.2.: Decomposition of A in diagonal, upper and lower triangular part.

This decomposition serves as basis for the Jacobi, Gauss-Seidel and backward Gauss-Seidel
methods we derive in the following sections. At this point it should be mentioned, that the
decomposition in diagonal, upper and lower triangular part is often also used in blockwise
fashion, see Section 2.4.4.

It seems reasonable to introduce some notations that simplify the comparison of the dif-
ferent methods. We denote with

• local iterations the individual component updates,

• global iterations an ordered sequence of local iterations (component updates).

Note, that from one iterate xk we obtain the next global iterate xk+1 by updating every
component exactly once, while the order in which the different components are updated
is in general preset.

2.4.1. Jacobi Method

The Jacobi1 method derives by using the matrix decomposition (2.16) and transforming
the system of linear equations (2.1) into

Ax = b (2.17)

⇔ (L+D + U)x = b

⇔ Dx = b− (L+ U)x

⇔ x =
(
I −D−1A

)︸ ︷︷ ︸
iteration matrix B

x+ D−1b︸ ︷︷ ︸
additive component d

.

Hence, we choose M = D in (2.13) and the iteration matrix becomes B = D−1(−L−U) =
I −D−1A. The obtained Jacobi iteration process

xk+1 = D−1b−D−1(L+ U)xk (2.18)

can also be rewritten in the component wise form

xk+1
i =

1

aii

bi − n∑
j=0,j 6=i

ai,jx
k
j

 =

n∑
j=0

bi,jx
k
j + di (2.19)

where

B = (bi,j) =



0 −a12
a11

−a13
a11

. . . −a1n
a11

−a21
a22

0
. . .

...

−a31
a33

. . . 0
. . .

...
...

. . .
. . .

. . .

− an1
ann

− an2
ann

− an3
ann

. . . 0


(2.20)

and di = bi
aii

.

1Carl Gustav Jacob Jacobi (?1804, †1851)
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2.4. Component Wise Relaxation Methods 15

We observe that the individual components can be updated in parallel for one global
iteration. According to the Banach fixed point theorem, it provides a sequence of solution
approximations with increasing accuracy when the spectral radius of the iteration matrix
B is less than one (i.e., ρ(I −D−1A) < 1) [Bag95].

2.4.2. Gauss-Seidel Method

Like the Jacobi method, the Gauss2-Seidel3 (G.-S.) method derives from the matrix split-
ting (2.16):

Ax = b (2.21)

⇔ (L+D + U)x = b

⇔ (D + L)x = b− Ux
⇔ x = (D + L)−1b− (D + L)−1Ux.

Hence, using M = D + L in (2.13) the Gauss-Seidel iteration method becomes

xk+1 = (D + L)−1(b− Uxk). (2.22)

Similarly to Jacobi, Gauss-Seidel iteration corrects the i-th component of the solution
approximation in the i-th local iteration, but instead of only old values, it uses in the i-th
local iteration the already updated values for the components xj for j < i. Therefore, the
update order for the distinct components is crucial: the scheduling for the local iterations
forming one global iteration has to be adhered. This can also easily be deduced from the
component wise algorithm description

xk+1
i =

1

aii

bi − i−1∑
j=1

ai,jx
k+1
j −

n∑
j=i+1

ai,jx
k
j

 . (2.23)

While Gauss-Seidel updates the components in the order 1, 2 . . . n, we can derive a back-
ward Gauss-Seidel by the update order n, n− 1 . . . 1 with the update algorithm

xk+1
i =

1

aii

bi − i−1∑
j=1

ai,jx
k
j −

n∑
j=i+1

ai,jx
k+1
j

 . (2.24)

This corresponds to the matrix splitting (choose M = D + U in (2.13))

Ax = b (2.25)

⇔ (L+D + U)x = b

⇔ (D + U)x = b− Lx
⇔ x = (D + U)−1b− (D + U)−1Lx.

and the algorithm

xk+1 = (D + U)−1(b− Lxk). (2.26)

A symmetric Gauss-Seidel consists of a forward sweep followed by a backward sweep [Saa03].

2Carl Friedrich Gauß(?1777, †1855)
3Philipp Ludwig von Seidel (?1821, †1896)
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16 2. Classical Iterative Methods

2.4.3. SOR Method

The Jacobi and the Gauss-Seidel iterations are both of the form

xk+1 = M−1 (M −A)xk +M−1b,

where M = D for Jacobi, M = D + L for Gauss-Seidel and M = D + U for backward
Gauss Seidel. A very similar method can be derived, by using a weighted splitting [Var10,
BBC+94]:

ωAx = ωb (2.27)

⇔ (D + ωL)x+ (ωU − (1− ω)D)x = ωb

⇔ x = ω(D + ωL)−1b− (D + ωL)−1(ωU − (1− ω)D)x.

The obtained algorithm reads

xk+1 = (D + ωL)−1(ωb− (ωU − (1− ω)D)xk). (2.28)

and is usually denoted as Successive Over Relaxation (SOR). An interesting connection is,
that this method can also be derived by weighting the Gauss-Seidel algorithm [Saa03]:

xk+1
SOR = ωxk+1

G.−S. + (1− ω)xkG.−S..

Similar to the backward Gauss-Seidel it is possible to define backward SOR. Finally, a sym-
metric SOR (SSOR) step consists of an SOR step followed by a backward SOR step [Saa03].

2.4.4. Block Relaxation Schemes and Two-Stage Iteration Methods

As already indicated, all component wise iteration methods can also be extended to a
block version. In this case, the matrix, the iteration vector and the right hand side of the
system (2.1)

Ax = b

of dimension n is decomposed into the block system
A1,1 A1,2 . . . A1,q

A2,1 A2,2 . . . A2,q
...

...
. . .

...
Aq,1 Aq,2 . . . Aq,q

 ·


x1

x2
...
xq

 =


b1
b2
...
bq

 . (2.29)

Note that while the decomposition into the q× q blocks is not necessarily uniform, it may
happen that some blocks are larger than others, while the diagonal blocks Aii are required
to be square of order ni, i = 1, . . . q, and

∑q
i=1 ni = n [Fro94].

Block versions of component wise iterative methods, also called block relaxation schemes,
are not only very interesting when solving large linear systems on parallel computers [Var10,
BFG+], but also very popular when implementing parallel preconditioners for multigrid
methods [BFKMY11]. The idea is to use a splitting A = M + (A −M) where M is the
block diagonal, denoted M = diag(Mi), with the nonsingular blocks Mi = Ai,i of order
ni, i = 1 . . . q. Using this decomposition, a block iterative method can then be derived as
the solution of the respective block equations

Mixi = ((M −A)x+ b)i (2.30)

and the global update. As, for different update orders, the Jacobi, Gauss-Seidel and SOR
method can be derived with the difference of now taking matrix blocks and subvectors

16



2.4. Component Wise Relaxation Methods 17

instead of scalar components. An interesting case occurs if the system of linear equations
is derived from the finite element discretization of an elliptic partial differential equation on
a rectangular domain. Then, the block size can be chosen according to the discretization
mesh. Adapting the block size to one line of the mesh, one obtains a so-called line relaxation
technique [Saa03].

For example, the blockwise Jacobi iteration can be formulated:

Algorithm 3 Block Jacobi Algorithm [Fro94]

initial solution approximation x0

while (‖ b−Axk ‖2≥ ε ‖ r0 ‖2) do
for (i = 1; i < q; i+ +) do

solve Mix
k+1
i = ((M −A)xk + b)i

end for
end while

The solution process of the sub-equations is independent from the global iteration, and
it is possible to handle it by different processors. Since the exact solution using a direct
solver is usually very expensive, one often prefers to apply iterative methods also to the
sub-problems. In this case the resulting cascaded iterative solvers are often denoted as
two-stage iterative methods [Saa03]. The advantage of these two-stage iterative methods is
the higher parallelism in the iteration process, which stems from the fact that, depending
on the solver chosen for the sub-problems, all components aggregated in one subvector can
be updated at the same time [Saa03].

2.4.5. Convergence of Relaxation methods

All the derived methods can be written as a sequence of iterates of the form (2.15)

xk+1 = Bxk + d,

with iteration matrix B. We now want to focus on the convergence properties of this
algorithm, especially we are interested in whether the iteration process converges, how fast
the convergence is, and whether the limit is the solution of the linear equation problem
(2.1). If the iteration (2.15) converges, its limit x satisfies for the general matrix splitting
(2.13)

x = Bx+ d

= M−1(M −A)x+M−1b

= (I −M−1A)x+M−1b

= x−M−1Ax+M−1b.

Hence, it obviously is a solution of Ax = b. The question whether the iteration converges
can be answered by the following theorem:

Theorem 2.4.1. [Saa03] Let B be a square matrix such that the spectral radius ρ(B) < 1.
Then, I −B is nonsingular and the iteration (2.15)

xk+1 = Bxk + d,

converges for any d and x0. Conversely, if the iteration (2.15) converges for any d and
x0, then ρ(B) < 1.

17



18 2. Classical Iterative Methods

While it is usually very difficult to determine the spectral radius of the iteration matrix,
an upper bound is sometimes sufficient such as ρ(B) ≤‖ B ‖ for any matrix norm ‖ · ‖.
In [Bag95], Roberto Bagnara provides a convergence proof for the Jacobi and Gauss-Seidel
iteration for the cases where A is strictly diagonally dominant or A is diagonally dominant
and irreducible.

Theorem 2.4.2. [Bag95] Let A ∈ Rn×n be decomposed as in (2.16), and let BJAC =
D−1(D−A) and BG.−S. = (D+L)−1U , respectively. If furthermore A is strictly diagonally
dominant or is diagonally dominant and irreducible, then

1. D and D + L are invertible

2. ρ(BJAC) < 1 and ρ(BG.−S.) < 1.

Proof. [Bag95]

1. If A is strictly diagonally dominant, we see that aii 6= 0 for all i = 1 . . . n, hence D and
D+L are nonsingular. If A is diagonally dominant and irreducible, A is nonsingular
and has no zero row. On the other hand, if either D or D + L is singular, then
dkk = 0 for some k = 1 . . . n. But then the row k has to be zero, a contradiction.

2. In order to show that the respective spectral radii are less than 1, we define the
following matrices

AJAC = λD + L+ U, (2.31)

AG.−S. = λ(D + L) + U, (2.32)

and establish the following Lemma:
Lemma 2.4.3. [Bag95] For each λ ∈ R, with |λ| ≥ 1, if A satisfies any of the
following properties:

a) A is strictly diagonally dominant (by rows or by columns);

b) A is diagonally dominant (by rows, or by columns);

c) A is irreducible;

then both AJAC and AG.−S. satisfy the same properties.

Proof. [Bag95]

a) Let A be strictly diagonally dominant by rows (the proof for the other case is
almost the same). By hypothesis, for each i = 1, . . . n,

|ai,j | >
∑
j 6=i
|ai,j |.

If |λ| ≥ 1 then, for each i = 1 . . . n,

|λaii| = |λ||aii|

> |λ|
∑
j 6=i
|ai,j |

= |λ|
i−1∑
j=1

|ai,j |+ |λ|
n∑

j=i+1

|ai,j |

≥ |λ|
i−1∑
j=1

|ai,j |+
n∑

j=i+1

|ai,j | for the Gauss-Seidel iteration (AG.−S.),

≥
i−1∑
j=1

|ai,j |+
n∑

j=i+1

|ai,j | for the Jacobi iteration (AJAC).
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2.4. Component Wise Relaxation Methods 19

b) Similar to a) with the difference, that the hypothesis ensures that strict inequal-
ity holds for

|λaii| > |λ|
∑
j 6=i
|ai,j |

for at least one component.

c) Since the three matrices A, AJAC(λ), AG.−S.(λ), for λ 6= 0, have zero com-
ponents in exactly the same locations, it follows that if a permutation matrix
reduces one of these matrices, then it also reduces the other two matrices.

To conclude the Theorem 2.4.2 we note that all eigenvalues λ of BJAC are the
solutions of the equation

det(λI −BJAC) = 0. (2.33)

Since

det(λI −BJAC) = det(λI +D−1(L+ U)

= det(D−1)det(λD + L+ U)

= det(D−1)det(AJAC(λ)).

So, for (2.33) to hold we need det(AJAC(λ)) = 0, as we have already shown that
D is nonsingular. But, since AJAC is nonsingular for |λ| ≥ 1, it follows that all of
the eigenvalues of BJAC are in the interior of the unit circle. Hence, ρ(BJAC) < 1.
Similarly, the eigenvalues of BG.−S. are all and only the solutions of the equation

det(λI −BG.−S.) = 0. (2.34)

From

det(λI +BG.−S.) = det(λI + (D + L)−1U)

= det((D + L)−1)det(λ(D + L) + U)

= det((D + L)−1)det(AG.−S.(λ))

we obtain similar to the Jacobi case, that ρ(−BG.−S.) < 1, and thus ρ(BG.−S.) < 1

2.4.6. Implementational Aspects

The computational effort of one component update is dominated by the multiplication of
the respective row of the iteration matrix with the former iteration vector. Hence, the
computational effort of one global iteration including the update of every component is
in the order of a matrix vector multiplication. The number of iterations necessary to
achieve convergence usually varies for the different splittings. For example, Gauss-Seidel
in many cases converges about twice as fast as Jacobi [QSS00], but at the same time,
the parallelization is limited to a stage where two components can never be updated at
the same time [Saa03]. This is a strong drawback when using highly parallel computing
systems. For blockwise Gauss-Seidel, the components in one subvector can be updated in
parallel, but if these local component updates are conducted in the Jacobi-wise fashion,
the convergence rate suffers again. In terms of memory, Gauss-Seidel is more economical,
since the new approximation can be overwritten over the same vector [Saa03].
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20 2. Classical Iterative Methods

2.5. Krylov Subspace Methods

Another important group of iterative solvers are the Krylov subspace methods [Saa03].
Krylov subspaces of dimension r < n are generated by an n× n matrix A and a vector b
of dimension n as the linear subspace spanned by the images of b under the first r powers
of A, that is

Kr(A, b) = span{b, Ab,A2b, . . . , Ar−1b}.

They were named after the Russian mathematician Alexei Krylov4, and have different
important properties, that are useful in the convergence analysis of the iterative solvers
based on these subspaces [CK01].
For solving a linear system Ax = b of dimension n, Krylov methods use a starting vector
x0 and the initial residual r0 = Ax0 − b to generate a sequence of approximations

x0 → x1 → · · · → xm.

In the absence of rounding errors the exact solution to the equation is reached after n steps
at latest [Saa03, Bou01]. Every step of the algorithm contains a matrix-vector multiplica-
tion that is essential to generate the next vector of the Krylov subspace. Since rounding
errors usually occur when working with floating point numbers, and the approximation
xm for m << n often already provides a good approximation of the exact result, Krylov
subspace methods can also be considered as iterative solvers. Especially in the case of
large dimensions, the Krylov methods as iterative solvers are often preferred to direct
solvers [Saa03].

A first method of this kind is the CG Algorithm (see Section 2.5.3) which was invented
by Hestenes5 and Stiefel6 in 1952, and is able to solve systems of linear equations with
symmetric and positive definite coefficient matrices. First, it was merely considered a
direct solver, and because it is more expensive in terms of computation steps than the
Gaussian elimination, it was given little attention at the time. With the rise of powerful
computers, the method became interesting once again as an iterative solver for computing
an approximation of the solution [Fac00]. In the 1970s, it was modified in various ways,
where the modifications often adapt to one specific problem, concerning the properties of
the matrix A of the linear system Ax = b.

Among the large variety of Krylov subspace solvers, one important algorithm is the
GMRES Algorithm (see Section 2.5.4), able to solve systems in which A is neither sym-
metric nor positive definite [Saa03, Bou01]. Since GMRES is able to solve any linear
non-singular system, and can thus be applied to many different problems, it became the
method of choice for many CFD applications [Bou01].

Aside from the individual characteristics of the different Krylov subspace methods, they
are all based on algorithms generating orthogonal subspaces. One commonly used method
to generate a Krylov subspaces is the Arnoldi Algorithm7, with the Lanczos Algorithm8

as a special case for symmetric matrices. While Axel Facius provides in [Fac00] a descrip-
tive overview about the available Krylov subspace methods and the within used subspace
generators, we summarize in the following sections only some aspects of the Arnoldi and
Lanczos schemes and the CG and GMRES Krylov subspace solvers.

4Alexei Nikolaevich Krylov (?1863, †1945)
5Magnus Rudolph Hestenes (?1906, †1991)
6Eduard Stiefel (?1909, †1978)
7Walter Edwin Arnoldi (?1917, †1995)
8Cornelius Lanczos (?1893, †1974)
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2.5. Krylov Subspace Methods 21

2.5.1. Arnoldi-Process

Arnoldi’s method [Saa03] is an orthogonal projection method, that was originally intro-
duced to reduce a dense matrix into its Hessenberg9 form [Saa03]. Later it was discovered,
that this algorithm simultaneously generates a sequence of Krylov subspaces, leading to
an efficient technique for approximating eigenvalues of large sparse matrices.
Using the normalized vector vj , the Krylov subspace is constructed successively. First, vj
is multiplied with the matrix A, then orthogonalized to all previous vi by a conventional
Gram10-Schmidt11 Conjugation, and then normalized to get vj+1. These iteratively con-
structed vectors {v1, v2 . . . vm} form the orthonormal m-th Krylov subspace. At the same
time, the upper (m+ 1)×m Hessenberg matrix Ĥm is constructed out of the norm of the
vectors vi. The complete Arnoldi-Algorithm can be found in Algorithm 4.

Algorithm 4 Arnoldi’s Algorithm [Saa03].

1: choose a starting vector v1 with ‖ v1 ‖2= 1
2: for (j = 1; j ≤ m; j + +) do
3: for (i = 1; i ≤ j; i+ +) do
4: compute hi,j = 〈Avj , vi〉
5: end for
6: compute wj = Avj −

∑j
i=1 hi,jvi

7: hj+1,j =‖ wj ‖2
8: if (hj+1,j == 0) then
9: stop

10: end if
11: vj+1 =

wj
hj+1,j

12: end for

Implementing Arnoldi’s method, one usually replaces the sum in line 6 and obtains the
modified Algorithm 5.

Algorithm 5 Arnoldi’s Algorithm (modified) [Saa03].

1: choose a starting vector v1 with ‖ v1 ‖2= 1
2: for (j = 1; j ≤ m; j + +) do
3: compute wj = Avj
4: for (i = 1; i ≤ j; i+ +) do
5: compute hi,j = 〈wj , vi〉
6: compute wj = wj − hi,jvi
7: end for
8: hj+1,j =‖ wj ‖2
9: if (hj+1,j == 0) then

10: stop
11: end if
12: vj+1 =

wj
hj+1,j

13: end for

9Karl Hessenberg (?1904, †1959)
10Jørgen Pedersen Gram (?1850, †1916)
11Erhard Schmidt (?1876, †1959)
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22 2. Classical Iterative Methods

From the mathematical point of view, the two algorithms are equivalent in the case of
non-existing rounding errors. As rounding errors usually occur, the second algorithm
is superior, as it is numerically more stable [Saa03]. However, it may happen that the
rounding errors are that severe, that still in the modified algorithm the orthogonalization
steps are not sufficient to obtain proper results. In this case, the Gram-Schmidt orthog-
onalizer can be replaced by a Householder12 scheme or by a Givens13 rotation [GVL96],
which both owns even more numerical stability. Another very efficient workaround would
be to apply an additional Gram-Schmidt orthogonalization step which, according to Ka-
han’s ”twice is enough” [Par80] algorithm, necessarily provides a subspace of orthogonal
vectors [GLRE05]. The Krylov-subspace and the Hessenberg matrix generated by the
Arnoldi-Process have some pleasant properties, that are useful for the convergence anal-
ysis of the algorithms based on the Arnoldi-Process. Since we only want to give a brief
overview, we limit this section to the facts that can be obtained, and refer to Yousef Saad’s
book [Saa03] for further information and the convergence proofs.

(1) Assuming the Arnoldi algorithm does not stop before the m-th step, then the generated
subspace {v1, v2 . . . vm} forms an orthonormal basis of the Krylov subspace Km =
{v1, Av1, A

2v1, . . . A
mv1}.

(2) If we denote the n×m matrix with column vectors v1, v2 . . . vm with Vm, the (m+1)×m
Hessenberg matrix whose nonzero entries hi,j are defined by the Arnoldi algorithm with
Ĥm, and denote the matrix obtained from Ĥm by deleting its last row with Hm, the
following properties hold:

AVm = VmHm + wme
T
m = Vm+1Ĥm,

V T
mAVm = Hm.

(3) Arnoldi’s algorithm breaks down at step j (i.e. hj+1,j = 0) if and only if the minimal
polynomial of A is of degree j. Moreover, in this case the subspace Kj is invariant
under A.

2.5.2. Lanczos Algorithm

In the special case of a symmetric matrix A, Arnoldi’s algorithm can be simplified as one
obtains from

Hm = V T
mAVm = (V T

mA
TVm)T = HT

m

that Ĥm is symmetric too [Saa03]. As then the matrix Ĥm is a symmetric upper Hessenberg
matrix, it even is a symmetric tridiagonal matrix. With αj = hjj and βj = hj−1,j the
matrix Ĥm reduces to

Ĥm :=


α1 β2

β2 α2 β3

. . .
. . .

. . .

βm−1 αm−1 βm
βm αm

 . (2.35)

Taking advantages of the special matrix layout of Ĥm, we obtain the Lanczos Algorithm
(see Algorithm 6, [Saa03]) where the orthogonalization of the new basis vector against
all the previous basis vectors can be reduced to the orthogonalization against the last
two vectors. This leads to large performance advantages, both in terms of necessary
computation steps and memory need.

12Alston Scott Householder (?1904, †1993)
13James Wallace Givens (?1910, †1993)
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2.5. Krylov Subspace Methods 23

Algorithm 6 Lanczos Algorithm [Saa03].

1: choose a starting vector v1 with ||v1||2=1, β1 = 0,v0 = 0
2: for (j = 1; j ≤ m; j + +) do
3: compute wj = Avj − βjvj−1

4: compute αj = 〈wj , vj〉
5: compute wj = wj − αjvj
6: compute βj+1 = ||wj ||2
7: if (βj+1 == 0) then
8: stop
9: end if

10: vj+1 = 1
βj+1

wj
11: end for

2.5.3. Conjugate Gradient Method

The Conjugate Gradient method can be considered as an iterative algorithm for the nu-
merical solution of particular systems of linear equations, namely those whose matrix is
symmetric and positive-definite [Saa03]. Such systems arise regularly when solving partial
differential equations numerically [Bra07].
The algorithm can be motivated by using the Lanczos Algorithm to generate a Krylov
subspace, and to expand Lanczos’ method to obtain a solver for linear systems.

Algorithm 7 Conjugate Gradient Method [Saa03].

1: x0 := 0
2: r0 := b−Ax0

3: s0 := r0

4: for (k = 0; ‖ rk ‖2< ε· ‖ r0 ‖2; k + +) do

5: αk = (rk)T rk

(sk)TAsk

6: xk+1 = xk + αks
k

7: rk+1 = rk − αkAsk

8: βk+1 = (rk+1)T rk+1

(rk)T rk

9: sk+1 = rk+1 + βk+1s
k

10: end for

A detailed derivation of the Conjugate Gradient method (Algorithm 7) can be found
in [She94], including a broad convergence analysis. We limit this section to one central
result for the convergence rate: For a system of linear equations Ax = b with a matrix A
having uniformly distributed eigenvalues and the condition number κ := κ2(A), after

k =

⌈√
κ

2
ln

(
2

εκ

)⌉
(2.36)

iteration steps of the CG algorithm, the residual fulfills ‖ rk ‖2≤ ε ‖ r0 ‖2. While this
upper bound of course only holds for the case of non-existing rounding errors, in most
cases the eigenvalues are clustered together and the algorithm converges even faster.
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24 2. Classical Iterative Methods

Concerning the computational effort of the CG algorithm, every iteration step is dominated
by one matrix-vector multiplication. Additionally, it contains two scalar products and
three vector updates, consisting of a vector addition and a scalar multiplication.
Every scalar product has the computational cost 2n−1 and every vector update, consisting
of a vector addition and a vector multiplication with a scalar, has the computational cost
of 2n. In the case of dense matrices, a matrix-vector multiplication has the computational
cost 2n2−n while for sparse matrices an upper bound is given by 2·nnz, where nnz denotes
the number of non-zeros. As this upper bound is also a reasonable approximation for the
dense case, we can use it independently of the sparsity and obtain that the computational
cost of performing one CG iteration loop can be approximated by

2 · nnz︸ ︷︷ ︸
matrix-vector-multiplication

+ 2 · (2 · n− 1)︸ ︷︷ ︸
two scalar products

+ 3 · (2 · n)︸ ︷︷ ︸
three vector updates (addition+multiplication)

= 2 · nnz + 10 · n− 2. (2.37)

Omitting the constant part, we can estimate the computational cost for the complete CG
solver performing (2.36) iteration loops to guarantee a residual error smaller than ε ‖ r0 ‖2
with [She94]

CCG(ε) =

⌈√
κ

2
ln

(
2

εκ

)⌉
(2 · nnz + 10n) . (2.38)

2.5.4. GMRES Algorithm

The GMRES Algorithm (Generalized Minimum Residual Method) is another projection
method working on Krylov subspaces which was developed by Yousef Saad and Martin
Schultz for linear problems where the coefficient matrix A is neither necessarily symmetric
nor necessarily positive definite [Saa03].

As GMRES uses Arnoldi’s method to generate the Krylov subspace, and the entire Krylov
subspace Kn spans Rn, we note that for non-existing rounding errors an no early break-
down, GMRES evaluates the exact result after n steps [Saa03]. For large linear systems,
problems may occur performing the whole algorithm due to a linear increase in compu-
tational and storage cost, and due to the loss of orthogonality of the Krylov subspaces
triggered by rounding errors. Because choosing a small number m < n of iterations often
already provides a good approximation of the result, one normally uses GMRES as an
iterative solver, with a stopping criterion depending on the residual norm. A detailed
derivation and description of the GMRES method shown in Algorithm 8 can be found in
the work of Yousef Saad [Saa03].

One drawback of Algorithm 8 is that the solver does not provide an approximation of the
solution at each iteration step. Thus, it is possible to set an explicit number of steps that
should be performed, but it remains difficult to estimate the accuracy of the solution a
priori. Additionally, the algorithm does not entail the solution of the minimization problem
‖ βe1 − Ĥmy ‖2 so far. Saad describes a workaround that eliminates both drawbacks at
the same time by applying rotations to the Hessenberg matrix Ĥm, resulting in an upper
triangular system [Saa03]. Using a Givens rotation for orthogonalization, the obtained
algorithm including a residual stopping criterion and a solution computation is given in
Algorithm 9.

One problem still remains in the modified variant too: the algorithm needs to store the
whole Krylov basis until the residual has reached the preset residual threshold. For large
linear systems, this may become very expensive in terms of memory and computational
effort concerning the solving process of Hmy = d. To avoid this, one often uses a variant
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2.5. Krylov Subspace Methods 25

Algorithm 8 GMRES Algorithm [Saa03].

1: compute r0 = b−Ax0, β =‖ r0 ‖2, v1 = r0

β

2: Define the (m+ 1)×m matrix Ĥm = {hi,j}1≤i≤m+1,1≤j≤m. Set Ĥm = 0.
3: for (j = 1; j ≤ m; j + +) do
4: compute wj = Avj
5: for (i = 1; i ≤ j; i+ +) do
6: hi,j = 〈wj , vi〉
7: wj = wj − hi,jvi
8: end for
9: hj+1,j =‖ wj ‖2

10: if (hj+1,j == 0) then
11: set m = j and go to line 15
12: end if
13: vj+1 =

wj
hj+1,j

14: end for
15: compute ym, the minimizer of ‖ βe1 − Ĥmy ‖2
16: compute the approximation xm = x0 + Vmym

called RESTART-GMRES, or GMRES-(m) [Saa03]. The difference to the plain GMRES
algorithm is that in case of the restart-variant, the computation of the Krylov subspace
and the approximation is not executed until the residual has reached the threshold, but
restarted after a certain number of steps m. The restart decreases the memory demand
and the computational effort since the linear problem Hmy = d stays at a lower dimension
and only m Krylov subspace vectors have to be stored. A second advantage is that the
orthogonality of the computed Krylov subspace is preserved to a higher grade, since the
rounding effects are downscaled due to the restart of the Krylov-subspace generator. Before
every restart of the algorithm, the solution approximation is updated and the stopping
criterion is checked. Vincent Heuveline and Miloud Sadkane have proposed in [HS96] an
efficient technique to enhance the method by polynomial acceleration: The underlying
idea is to improve eigenvectors by choosing a polynomial that amplifies the components of
the required eigendirections while damping those in the unwanted ones (also see [HS97b,
HS97a]).

Like for the Conjugate Gradient, also for GMRES there exists some convergence analysis,
see e.g. [Saa03, Bou01, SK06]. We limit this section to a special situation, where the
matrix A of the linear system (2.1) is positive definite, all its eigenvalues lie somewhere
in the ellipse E(c, d, a), with center c, focal distance d, and major semi axis a, and that
this ellipse excludes the origin. Furthermore, we assume A to be diagonalizable such that
there exists a transformation X with A = XΛX−1 for Λ = diag{λ1, λ2, . . . λn}. In this
case we can guarantee a residual error term smaller than ε ‖ r0 ‖2 after

k =


ln
(
κ2(X)
ε

)
ln
(
c+
√
c2−d2

a+
√
a2−d2

)
 (2.39)

iteration steps [Saa03].

Concerning the computational cost, like in the CG case, every iteration step of GMRES
is dominated by the matrix-vector multiplication needed to generate the Krylov subspace.
Additionally, the kth iteration loop includes k + 1 scalar products and k + 1 vector up-
dates consisting of a vector addition and a scalar multiplication. Denoting the number of
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26 2. Classical Iterative Methods

Algorithm 9 GMRES Algorithm based on Givens rotation (Hanke-Bourgeois [Bou01]).

1: compute r0 = b−Ax0, d0 = β0 =‖ r0 ‖2, v1 = r0

β0
2: for (m = 1; ;m+ +) do
3: {iteration process of GMRES}
4: compute wm = Avm
5: for (i = 1; i ≤ j; i+ +) do
6: {Arnoldi’s method}
7: hi,m = 〈wm, vi〉
8: wm = wm − hi,mvi
9: end for

10: ω =‖ wm ‖2
11: for (i = 1, i < j, i+ +) do
12: {apply former rotation to hk}
13: h̃ = cihi,m + sihi+1,m

14: hi+1,m = −sihi,m + cihi+1,m

15: hi,m = h̃
16: end for
17: if (ω ≤ |hm,m|) then
18: {compute new rotation}
19: tm = ω

|hm,m|

20: cm =
hm,m

|hm,m|
√

1+t2m

21: sm = tm√
1+t2m

22: else
23: tm =

hm,m
ω

24: cm = tm√
1+t2m

25: sm = 1√
1+t2m

26: end if
27: hm,m = cmhm,m + smω {apply the rotation to the rest of Ĥm}
28: dj = −smdm−1 {apply the rotation to the right-hand-side}
29: dm−1 = cmd

m−1

30: if (|dm| ≤ ε) then
31: stop
32: end if
33: end for
34: solve Hmy = d with the Gauss-Algorithm
35: define the matrix Vm = [v1 . . . vm]
36: compute the approximation xm = x0 + Vmy
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2.6. Multigrid Methods 27

non-zeros within the matrix A with nnz, we get for the kth iteration step of GMRES a
computational complexity of

2 · nnz︸ ︷︷ ︸
matrix multiplication

+ (k + 1)(2 · n− 1)︸ ︷︷ ︸
k+1 scalar products

+ (k + 1)2 · n.︸ ︷︷ ︸
k+1 vector updates (addition+multiplication)

(2.40)

Summing up the first k steps, and assuming large dimension n, we can approximate the
complexity with [Saa03]

k∑
i=1

(2 · nnz) + (i+ 1)(4 · n− 1) ≈ 2k · nnz + (k2 + 3k + 2) · 2 · n. (2.41)

Comparing with (2.37) we can conclude that GMRES is more expensive in terms of com-
putational efforts than the CG Algorithm for the symmetric positive definite case, but at
the same time able to solve non-symmetric systems [Bou01].
Using equation (2.39), we can approximate the total cost of the plain GMRES solver, that
guarantees a residual error smaller than ε by

CGMRES(ε) = 2


ln
(
κ2(X)
ε

)
ln
(
c+
√
c2−d2

a+
√
a2−d2

)
 · nnz (2.42)

+




ln
(
κ2(X)
ε

)
ln
(
c+
√
c2−d2

a+
√
a2−d2

)


2

+ 3


ln
(
κ2(X)
ε

)
ln
(
c+
√
c2−d2

a+
√
a2−d2

)
+ 2

 2n.

As already indicated, GMRES is due to the high computational and memory cost often
replaced by the restart variant GMRES-(m). The problem is that due to the always
recomputed Krylov subspaces in the GMRES-(m) algorithm, no convergence analysis is
possible for the general case. Some estimations for special matrix properties can be found
in [Saa03] and [Bou01], but as we do not want to limit our analysis to these relatively
strict demands, we refrain from showing them in this place.

2.6. Multigrid Methods

Multigrid methods may be formulated as defect correction methods that attempt to find
a solution approximation by using a sequence of problems that are similar with respect to
their structure, but differ in having successively decreasing dimension (see e.g. [Tro00]and
references therein). They are usually applied to problems occurring in the field of finite
element or finite difference discretizations of elliptic partial differential equations. In this
case, choosing different mesh sizes with decreasing granularity for the different discretiza-
tions of the continuous problem can be used to obtain a sequence of discretized problems
with decreasing dimension. This enables splitting the approximation error into high and
low frequency terms that can then be treated with different efficiency on the distinct grid
levels.

Beside the geometric multigrid methods that rely on information about the grid that
was used for the discretization process of the partial differential equation, there also
exist algebraic multigrid methods that only take a linear system of equations as input
data [McC87, Stu01]. They are interesting in cases where the discretization process is
unknown, the grid is irregular, or the matrix was obtained from a different application
than the discretization of a partial differential equation. Since algebraic multigrid meth-
ods are generally not based on grids in the geometrical sense, one also often denotes them
as multilevel methods.
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28 2. Classical Iterative Methods

2.6.1. High- and Low-Frequency Error Smoothing

One motivation for multigrid methods can be taken from decomposing the error of a so-
lution approximation into high- and low-frequency parts which can be handled by re-
laxation methods with different efficiency on the distinct grid levels. Especially, the
higher-frequency components are eliminated considerably faster than the low-frequent
ones [Tro00]. To show this, we consider the linear system of equations

Ahxh = bh (2.43)

on the grid Ωh, and approximate the solution using the Richardson14 algorithm [Mei05]:

xk+1
h = xkh + θ

(
bh −Axkh

)
= (Ih − θhAh)xkh + θhbh (2.44)

where θ ∈ (0, 1] denotes the damping coefficient. For a symmetric, positive definite matrix

Ah we have a system of ortho-normal eigenvectors
{
w

(i)
h , i = 1 . . . nh

}
(nh denoting the

dimension of grid Ωh) with corresponding eigenvalues λmin(Ah) = λ1 ≤ · · · ≤ λmax(Ah) =:
Λh. Therefore, we can write the initial error in the form

e0
h := x0

h − x∗h =

nh∑
i=1

εiw
(i)
h , (2.45)

such that for the error ekh after k iterations, the equation

ekh = (Ih − θhAh)k e0
h =

nh∑
i=1

εi (Ih − θhAh)k w
(i)
h =

nh∑
i=1

εi (1− θhλi)k w
(i)
h

holds. Hence,

‖ ekh ‖22=

nh∑
i=1

ε2
i (1− θhλi)2k . (2.46)

Note that the condition 0 < θh ≤ Λ−1
h is sufficient to guarantee the convergence of the

Richardson iteration [Tro00]. Since then |1− θhλi| << 1 for large λi, and |1− θhλ1| ≈ 1,
the high-frequency components of the error are smoothed faster than the low-frequency
ones [Ran08]. Since the same applies to the residuals rkh = bh − Ahx

k
h = Ahe

k
h, a low

number of iterations already provides a residual satisfying

‖ rkh ‖22=

[nh/2]∑
i=1

ε2
iλ

2
i (1− θhλi)2k , (2.47)

where [nh/2] := max{nh ∈ N|nh ≤ nh
2 }. Furthermore, as the iterated defect term rkh is

smooth on the grid Ωh, a good approximation can be found on the grid Ω2h with grid size
2h. While Hackbusch shows in [Hac85] similar results for the Gauss-Seidel method, one
also often replaces the Richardson algorithm by (weighted) Jacobi or SOR due to their
superior smoothing properties [Tro00]. In Section 4.11 we will later investigate whether
also the Block-asynchronous iteration we derive in Section 4.2 is a suitable replacement,
and for this purpose compare to implementations using Gauss-Seidel smoothers.

14Lewis Fry Richardson (?1881, †1953)
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2.6.2. Multigrid Methods in the Finite Element Context

To derive a multigrid method, we assume a sequence of grids Ωhl , l = 0, . . . , L with
discretization fineness h0 > h1 > · · · > hL and corresponding finite element spaces Vl :=
Vhl ⊂ V where V = H1(Ω) denotes the continuous Banach space in which the partial
differential equation we target is given. For convenience, we furthermore assume these
finite element spaces to form a hierarchical sequence V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VL. Although
this assumption is not a necessary condition for multigrid methods, it simplifies the further
analysis. For the case of a one-dimensional problem and a grid sequence where every second
node is omitted on the successively coarser level, the grid sequence is visualized in Figure
2.3a.

If we now write the partial differential equation in the weak form

a(u, ϕ) = (f, ϕ) ∀ϕ ∈ V, (2.48)

we can obtain for the discretized form on the grid Ωl

a(ul, ϕl) = (f, ϕl) ∀ϕl ∈ Vl.

We now want to derive an iterative process, generating a sequence of successively better
solution approximations on the finest grid ΩL. In a first step, ν1 iterations of the smoother
are applied, which guarantees a smooth error on the coarser grid. While we analyzed the
Richardson method with respect to its smoothing property in the last section, we mention
again that also other relaxation schemes like Jacobi or Gauss-Seidel may be applied pro-
viding similar smoothing properties [Tro00]. We then compute the residual on the coarser
grid ΩL−1 and obtain an error correction equation. The error correction term can then be
computed using a direct method, an iterative solver, or be approximated by again applying
an error correction scheme and successively coarser grids ΩL−2, . . .Ω0. Afterwards, the er-
ror correction term is used for the solution update. The obtained solution approximation
may be improved furthermore, e.g. again by applying another ν2 relaxation steps of the
smoother. Finally, the solution approximation is taken for the next iteration step, which
completes one cycle of the multigrid method on the grid level L.
Every of these cycles therefore consists of ν1 +ν2 iteration steps of the smoother, the solu-
tion of the defect correction problem on the coarser grid and the grid operations. Due to
the coarser grid, and the connected smaller dimension of the linear system, the resulting
error correction equation is computationally less expensive to solve. This process can iter-
atively be cascaded to the coarsest grid, where the error correction equation has finally to
be solved by applying either an iterative or a direct solver. The most important parts of a
multigrid method are therefore the smoothing operations, the transfer operations between
the different grid levels and the solver on the coarsest grid.

Aiming for the derivation of a multigrid algorithm in general form we use on the grid Ωl

the operator Al : Vl → Vl associated to the matrix Al = Ahl by

(Alvl, wl) = A(vl, wl) = 〈Alyl, zl〉 ∀vl, wl ∈ Vl. (2.49)

Furthermore, we denote the smoothing operator with Sl(·) where in case of using the
Richardson iteration Sl = Il − θlAl. Finally, we introduce the transformation operations
between the grid levels:

rl−1
l : Vl → Vl−1 (Restriction)

pll−1 : Vl−1 → Vl (Prolongation)
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30 2. Classical Iterative Methods

(a) Sequence of successively coarser grids. (b) Visualizing V-cycle (upper left),
W-cycle (lower) and F-cycle (up-
per right) [Tro00].

Figure 2.3.: Basic multigrid principles.

In the finite element context with cascaded grid levels, the restriction rl−1
l is the L2-

projection from Ωl into Ωl−1, and the prolongation pll−1 is the identity embedding [Ran08].
In the special case of solving the error correction equation exact on the grid ΩL−1, the
method is called two-grid iteration method [Tro00]. Usually, the process is iteratively
applied to successively coarser grids, motivating for the term mutigrid method. Still, there
exist different schemes how to organize the process as the structure is determined by
the number of error correction computations on every grid level (we denote it by R).
Implementations usually choose R = 1 or R = 2 [Wes92]. The resulting multigrid iteration
schemes are called V-Cylce and W-Cycle, respectively. While the V-Cycle is usually very
efficient in terms of computational cost, it shows inferior convergence properties compared
to the computationally more expensive W-cycle [Tro00]. For R ≥ 3, the multigrid iteration
method becomes inefficient. A trade off between V-Cycle and W-Cycle is the F-Cycle
shown in Figure 2.3b, which achieves convergence rates almost similar to the W-Cycle while
reducing the computational effort. For the introduced notation, the multigrid method for
solving the equation

ALuL = fL (2.50)

on the finest grid TL is is given in Algorithm 10.

Algorithm 10 Basic multigrid method recursively solves Alxl = bl at each level l, using
restriction rl−1

l (·), prolongation pll−1(·) and smoother Sνl (·) operations [Tro00].

1: MultiGrid(xl, bl, l)
2: if (l == 0) then
3: Solve Alxl = bl {exact solution on coarsest grid}
4: else
5: xl = Sν1l (xl, bl) {pre-smoothing}
6: rl−1 = rl−1

l (bl −Alxl) {restriction}
7: vl−1 = 0
8: for (j = 0; j < R; j + +) do
9: MultiGrid(vl−1, rl−1, l − 1) {coarse grid correction}

10: end for
11: xl = xl + pll−1(vl−1) {prolongation of coarse grid correction}
12: xl = Sν2l (xl, bl) {post smoothing}
13: end if
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In [Ran08] Rolf Rannacher provides a descriptive convergence analysis for the multigrid
method in the finite element context and the Richardson operator as smoother. He first
defines a smoothing and approximation property of the two-grid method, and then ex-
tends the results to multiple levels by induction. For multigrid methods using Jacobi or
Gauss-Seidel smoothers, convergence results can for example be found in [Hac85] (also
see [Tro00, Wes92] for more detailed background). Furthermore, there exist some com-
plexity estimations showing that the computational cost for solving a problem with n
unknowns using multigrid stays in the order of O(n) [Ran08, Tro00]. Hence, multigrid
methods are among the most efficient solvers for systems of linear equations arising from
finite element discretizations [Wes92, WLB00].
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3.1. Asynchronous Iteration

With the advent of computing systems consisting of multiple processors, the formerly used
numerical methods and algorithms have to be adapted to the challenge of efficient parallel
execution. An important concept in this framework is Load Balancing which aims for
the equal distribution of the work among the processors. This technique is expected to
increase the performance by minimizing the waiting time of components that have already
finished their tasks [Rab89]. One colorful example is the geometric domain decomposi-
tion applied to a physical problem, where the subdomains are handled by the different
processors [QV99].

A totally different approach is the idea of Asynchronous Methods, where idle times are
avoided by eliminating synchronization points [FS00]. Since these methods imply neither
the exact scheduling of the tasks nor the reproducibility of an application run, asyn-
chronous methods are sometimes also denoted as Chaotic Methods in literature. While it
may happen that some processors perform extra computations that do not contribute to
the algorithm convergence, these methods are very beneficial when the load is not well bal-
anced, or when communication between the processors is expensive in terms of computing
time or energy consumption [FS00].

In the class of asynchronous methods, the very general term Asynchronous Iteration de-
scribes algorithms, where a preset order of the computations forming an iteration method
is not adhered to. A comprehensive overview about the research conducted in this field is
presented by Andreas Frommer and Daniel Szyld in [FS00], including linear methods based
on matrix splitting, nonlinear update functions as well as methods applied to nonlinear
systems of equations. While in literature, the term asynchronous iteration refers to general
class of iteration schemes, we focus in this thesis on component wise relaxation methods
based on the Jacobi splitting that lack any specific update order. Since the publication of
the pioneering paper in 1969 by Chazan and Miranker [CM69], the topic of asynchronous
iteration has been subject to research by many authors. Different papers contributed to
the establishment of a comprehensive convergence theory [FS00, Bau78, BE86] and run-
time results revealed the performance superiority for specific problems [ÜD86], [ÜD96].
Besides, timing models were developed to approximate the algorithm performance for a
certain hardware and problem configuration [BSS99, DB91]. Despite the fact that asyn-
chronous iterations are not considered to belong to the mainstream numerical methods,
especially with the rise of heterogeneous workstation clusters they increasingly also come
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into focus of High-Performance-Computing [EBSMG96, Fro98, EBFS05]. The purpose
of the next sections is to present some theoretical background necessary to understand
the idea of the block-asynchronous iteration for GPUs we introduce in Chapter 4 and
its convergence properties. As a convention, we from now on use the term asynchronous
iteration exclusively for asynchronous relaxation schemes based on the linear update func-
tion obtained from the Jacobi splitting and applied to a linear problem. To derive this
method, we will first recall the Jacobi algorithm we already introduced in Chapter 2, and
then introduce the asynchronous iteration by the approach that was also taken by Chazan
and Miranker in ”Chaotic Relaxation” [CM69]. Additionally, we provide some convergence
analysis that will serve as basis for the convergence theory we establish for the weighted
block-asynchronous iteration in Section 4.10.2.

3.1.1. Jacobi Method

In Chapter 2 we introduced component wise relaxation methods for solving systems of
linear equations of the form (2.1)

Ax = b.

We want to remind that the Jacobi method (2.18)

xk+1 = Bxk + d

with B = I −D−1A and d = D−1b can also be written in the component wise form (2.19)

xk+1
i =

1

ai,i

bi −∑
j 6=i

ai,jx
k
j


=

n∑
j=1

bi,jx
k
j + di

where

B = (bi,j) =



0 −a1,2
a1,1

−a1,3
a1,1

. . . −a1,n
a1,1

−a2,1
a2,2

0
. . .

...

−a3,1
a3,3

. . . 0
. . .

...
...

. . .
. . .

. . .

− an,1
an,n

. . . 0


and di = bi

ai,i
. This implies that for the classical Jacobi method, the component updates

have to be synchronized: no component can be updated twice before all other components
are updated.

If this update order of the iteration process is not adhered to, i.e., the individual com-
ponents are updated independently and without consideration of the current state of the
other components, we denote the resulting algorithm as an asynchronous iteration method.

3.1.2. Traditional Approach to Asynchronous Iteration

We follow the traditional approach to asynchronous iteration methods, taken by Chazan
and Miranker in their pioneering paper on this topic in 1969 [CM69]. Therefore, we may
consider the iterative solution process of the system of linear equations (2.1)

Ax = b,
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by using the Jacobi iteration (2.19)

xk+1 = Bxk + d

asynchronously. The relaxation process can be defined as a sequence of solution approxi-
mations (xt)t=0,1... in which each component is updated by a function of all components.
Without loss of generality, we from now on assume b = 0 in (2.1), and hence also obtain
for the additive component d = 0. Furthermore, we assume the iteration steps t to be in-
teger timesteps, where at each time step t exactly one component is updated (t = 1, 2 . . . ).
Note, that the iteration index t now has a different meaning compared to the former used
m, as every component update already increases the iteration counter. We now introduce
an update function u(·) and a shift function s(·, ·). For each non-negative integer time
step t, the component of the solution approximation x that is updated at step t is given
by u(t). In the update at step t, the m-th component xm of the solution approxima-
tion used in this step is s(t,m) steps back. For a reasonable implementation, and also
for showing convergence, it is necessary to have an upper bound s̄ for this shift function
s(t,m) ≤ s̄, ∀m ∈ {1 . . . n}, ∀(t = 1, 2 . . . ).

While xm+1 = Bxm may provide general information about the iteration scheme without
taking into account the individual component updates, it may be beneficial to break down
the iteration process, and to define an iteration matrix for the update of the i-th compo-
nent, exclusively. The motivation is, that in every step of asynchronous iteration only one
component is updated. To obtain such an iteration matrix which updates only component
i, we define Zi to be the zero matrix with the diagonal element zii = 1

aii
. Let now the

component updated in step t+ 1 be i, then the iteration for this update reads:

xt+1 = (I − ZiA)xt (3.1)

=



1 0 0 . . . . . . 0
0 1 0 0
...

. . . 0
−ai1
aii

−ai2
aii

. . . 0 . . . −ain
aii

...
...

...
0 0 . . . . . . 0 1


xt

If we denote with xν the approximation after ν local iterations starting from x0, we have
for the iterate

xν = (I − ZiνA) . . . (I − Zi3A) (I − Zi2A) (I − Zi1A)x0

where i1, i2, . . . iν ∈ {1, 2 . . . n} and i1, i2, . . . iν is the update order of the components.

Using the introduced notation for updating one component, we can define the asynchronous
iteration method:

Definition 3.1.1. Considering the iteration sequence in an asynchronous iteration, the
value of the i-th component of the solution approximation at time t+ 1 is defined as

xt+1
i =


(I − ZiA) ·


x
t−s(t+1,1)
1

...

x
t−s(t+1,n)
n

 , if u(t+ 1) = i

xti, if u(t+ 1) 6= i

(3.2)

where x0
i = xi,0 ∀i = 1, 2 . . . n (xi,0 is the initial guess) and s(·, ·) denotes the introduced

shift function.
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36 3. Asynchronous Iteration

This representation also provides information about how old the respective components
used in the update function are. Depending on the memory architecture, this may differ
from the information about the last update if the updated value of component i is not
immediately communicated, such that the update of another component uses the former
value. A descriptive example for this situation is the parallel update of the component
values by a multicore processor, where each processing unit owns a local memory, and the
information of the updated values has to be transmitted first [FS00]. An implementation
of the iteration scheme (3.2) is given in Algorithm 11.

Algorithm 11 Asynchronous Iteration [FS00].

for all (i ∈ {1 . . . n}) do {asynchronous update order}
read x from global memory
xnewi = (I − ZiA)x
overwrite xi in global memory with xnewi

end for

3.2. Convergence of Asynchronous Iteration

First we will provide a short overview about the convergence theory for asynchronous
methods in general. Then we will state the convergence theory for the specific case of a
nonsingular linear system of equations and a iteration matrix derived from Jacobi splitting.
A comprehensive treatment can also be found in [FS00].

The first convergence theorems were derived by Chazan and Miranker for nonsingular
linear systems, where the iteration matrix is derived from the Jacobi splitting. We will
state these theorems, including the respective proofs, in Section 3.2.1, since we will need
them for showing convergence of the weighted variants we derive in Section 4.10.2. Later,
these convergence results were generalized by different papers establishing a convergence
theory using a more general approach to asynchronous iteration based on a sequence of
contracting subsets, see e.g. [BE86, Ber89, ÜD86, Bau78]. While there also exists some
theory on the convergence of asynchronous methods based on block Jacobi (see [FS00]), El
Baz was in [EB90] able to show global convergence for the case of having an M -function
(see [OR70]) as iteration operator.

Apart from considering linear systems of equations, some work was also published on
asynchronous iteration applied to nonlinear systems. Among the most relevant results are
beside the generalizations of Tarazi [ET82] the achievements for the quasi-Newton schemes
(e.g. see [Boj84, Xu99]).

3.2.1. Convergence Theory for Asynchronous Jacobi applied to Nonsin-
gular Systems of Linear Equations

Using the notation given in Definition 3.1.1 introduced in Section 3.1, we now analyze the
convergence characteristics for an iterative scheme of the form (2.12)

xk+1
i =

n∑
j=1

bi,jx
k
j + di, i = 1, 2 . . . n

where the iteration matrix B is obtained from the Jacobi splitting, and again without loss
of generality we set di = 0 for all i = 1, 2 . . . n.

Furthermore, we assume that the following conditions are fulfilled [Str97]:
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3.2. Convergence of Asynchronous Iteration 37

Condition 3.2.1. (a) Every component is updated infinitely often, and therefore, the up-
date function u(·) takes on each value l, 1 ≤ l ≤ n infinitely often.

(b) The shift function s(·, ·) is bounded by some s̄ such that 0 ≤ s(t,m) ≤ s̄ ∀t, ∀m. For
the initial step to be well defined, we furthermore require s(t0,m) ≤ s̄ as well.

Theorem 3.2.2. [CM69] Suppose

xk+1
i =

n∑
j=1

bi,jx
k
j + di, i = 1, 2 . . . n

is an asynchronous iteration scheme where (a) and (b) of Condition 3.2.1 are fulfilled. If
there furthermore exists a positive vector v ∈ Rn and α ∈ R, α < 1 such that

|B| v ≤ αv,

then the sequence of solution approximations xt is component wise convergent to x∗, the
unique solution of (2.1). Especially, the distinct components xti of the solution approxima-
tion converge to the respective solution x∗i .

Proof. [CM69] We recall that we assumed without loss of generality that b = 0 in (2.1) and
therefore di = 0 ∀i = 1, 2 . . . n. The theorem’s proof is based on analyzing the difference
between x∗ = 0, the unique solution to (2.1) and the iterates xt. Let et = x∗ − xt be
the error in the t-th iteration. We now consider the first s̄ iterates in the process. We
required that there exists α < 1, v > 0 with |B| v ≤ αv. Since all components of v are
positive, there exists a positive value γ such that |et| ≤ γv for 0 ≤ t ≤ s̄ (component-wise,
|etj | ≤ γvj ∀j = 1 . . . n). We now consider any component i that is updated using any of
these s̄ vectors forming the first s̄ iterates. Then, since Bxti = −Beti (x̄i = 0 ∀i = 1 . . . n),
the update satisfies

|et+1
i | = |x

∗
i − xt+1

i | = |0− x
t+1
i |

= |
n∑
j=1

bi,jx
t−s(t,j)
j | ≤

n∑
j=1

|bi,jet−s(t,j)j |

≤
n∑
j=1

|bi,j ||et−s(t,j)j | ≤ αγvi.

If t1 is the first instance after s̄ for which all components have been updated, then
|et1 | ≤ αγv. Moreover, |et| ≤ αγv for all t ≥ t1. Similarly, if t2 is the next instance
after t1 for which all components have been updated a second time, then |et| ≤ α2γv for
all t ≥ t2. This way we obtain that the error |et| = |x∗− xt| converges to zero. Hence, the
solution approximation is convergent to x∗, the unique solution.

Theorem 3.2.3. [CM69] Suppose

xk+1
i =

n∑
j=1

bi,jx
k
j + di, i = 1, 2 . . . n

is an asynchronous iteration scheme where (a) and (b) of Condition 3.2.1 are fulfilled. If
furthermore

ρ (|B|) < 1
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where ρ (|B|) is the spectral radius of the component wise non-negative matrix |B|, then
there exists a positive v ∈ Rn and α < 1 such that |B| v ≤ αv. Especially the sequence
of solution approximations xt is component wise convergent to x∗, the unique solution of
(2.1).

Proof. [CM69] Due to Theorem 3.2.2 it is sufficient to show that if ρ (|B|) < 1, there exists
a positive v and α < 1 such that |B| v ≤ αv. While for irreducible matrices this statement
is covered by the Perron-Frobenius Theorem [Fro12], we have to prove it for the case of B
being reducible.

To achieve this, we first show that if a matrix F has the form

F =

(
F1,1 F1,2

0 F2,2

)
(3.3)

where for some vectors v1, v2 > 0 and α1, α2 ∈ R the inequalities

F1,1v1 ≤ α1v1,

F2,2v2 ≤ α2v2

hold, then for any ε > 0 there exists v with Fv ≤ (α+ ε)v, where α = max{α1, α2}.

Indeed, if we choose v = (v1, γv2), then

Fv ≤ (α1v1 + γF12v2, γα2v2).

With γ sufficiently small we get α1v1 + γF12v2 < (α+ ε)v1, without impacting the ap-
proximation γα2v2 ≤ γαv2.

Instead of showing that if ρ(|B|) < 1 there exists a positive v with |B|v < αv, α < 1, we
show the property for the normal form of B in Lemma 3.2.4 by using the statement we
just established. The reason therefore is, that the normal form B̃ of a matrix B can be
derived by applying matrix multiplications of the form

PBP T = B̃,

where P ≥ 0, P TP = I, and

Bv ≤ αv
⇔ PBv ≤ αPv
⇔ PBP TPv ≤ αPv
⇔ B̃Pv ≤ αPv.

Hence, we get that the permutation of rows and columns does not impact the desired
matrix property. Especially, if the property holds for a matrix, it also holds for its normal
form and vice versa, only the vector v has to be replaced by Pv.

Lemma 3.2.4. Let |B| be a component wise non-negative matrix with corresponding nor-
mal form B̃. Then, if ρ(|B|) < 1 there exists v > 0 with |B̃|v < αv, α < 1.

Proof. We show this by induction on the number of elements in the normal form B̃ and
the results from the Perron-Frobenius Theorem [Fro12, Hup90, Mey00]:

Induction base:
The proposition is true if |B̃| is irreducible according to the Perron-Frobenius The-
orem [Mey00, Var10].
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Induction hypothesis:
Suppose it is shown for any |B̃| whose normal form has q block components

|B̃| =

 B̃1,1 B̃1,2 B̃1,q

. . .
...

0 B̃1,q

 .

Induction step:
[CM69] Suppose |B̃| is not irreducible and has n+ 1 components. We can then write
|B̃| in the form

|B̃| =
(
F1,1 F1,2

0 F2,2

)
where F2,2 has n components and F1,1 is irreducible. Then, F1,1v1 ≤ α1v1. Further-
more, F2,2v2 ≤ α2v2 by induction hypothesis, where ρ(|B̃|) < 1 and α2 ≤ 1. Using
the statement from above we get for some γ > 0, v = (v1, γv2):

|B̃| ≤ αv, α < 1

completing the proof.

As already indicated, if this property holds for the normal form of a matrix, we also have it
for the original matrix B. Hence we can find a (possibly different) v > 0 with |B| v < αv,
α < 1.

Conversely, if |B| v ≤ αv, v > 0, α < 1, B is a contraction in the norm defined by

‖x‖ = max{ |xi|vi }. Hence, the spectral radius of |B| is smaller than 1.

Chazan and Miranker also provide an extension to this theorem, stating that the conver-
gence of the asynchronous iteration is remained when using suitable weights:

Theorem 3.2.5. [CM69] Suppose the asynchronous iteration fulfilling (a) and (b) of Con-
dition 3.2.1 is modified by using weights such that Bω = (I − ωD−1A) and dω = ωD−1b.
If the spectral radius ρ(|B|) = α < 1, then the weighted asynchronous iteration converges
for all ω with 0 < ω < 2

α+1 .

Proof. We want to show that ρ(|Bω|) < 1 or alternatively that there exists v > 0 so that
|Bω|v < βv, β < 1. For the case ω = 1 we obtain from Theorem 3.2.3 that there exists
v > 0 so that |B1|v < αv. But then

|Bω|v ≤ (I|(1− ω)|+ ω|B1|)v ≤ |(1− ω)|v + ωαv = (|1− ω|+ ωα)v.

Let β = (|1 − ω| + ωα). It remains to show that β < 1. If 1 < ω < 2
α+1 , then β =

αω + (ω − 1) = (1 + α)ω − 1 < 1. On the other hand, if 0 ≤ ω ≤ 1 we have β =
αω + (1− ω) = (−(1− α)ω + 1) < 1 since α < 1.

Examples for systems of linear equations fulfilling the sufficient convergence conditions
are [CM69, Var10]:
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1. A symmetric and strictly diagonal dominant.

2. A irreducibly diagonal dominant.

3. A symmetric positive definite with non-positive off-diagonal entries.

Now that we have established some theory for the sufficient convergence condition, it may
be interesting to focus on a necessary condition for convergence. But for this, general
results are more involved. Chazan and Miranker provide in [CM69] an example where the
asynchronous iteration does not converge if the condition ρ(|B|) ≤ 1 is not fulfilled. This
is achieved by using a special update pattern, where the shift function s(t,m) depends on
the component. Therefore, it can not be considered as a general result.

Strikwerda attempts to prove that ρ(|B|) ≤ 1 is not only a sufficient but also necessary
condition for the convergence of asynchronous iteration in [Str97]. The basic is to construct
an artificial update pattern for which the method does not converge. Also Berteskas and
Tsistiklis in [BT89] and Su et al. in [SBKK98] provide constructions for non-converging
update patterns for the case ρ(|B|) ≥ 1. One might now conclude, that ρ(|B|) < 1 is not
only a sufficient but also a necessary condition for convergence.

Nevertheless, several papers, including Lubachevsky and Mitra [LM86], show the con-
vergence of asynchronous iteration for systems, where the spectral radius of the non-
negative matrix is exactly one (see also [Pot98]). This result for singular matrices repre-
senting Markov chains seems to contradict the proves based on non-converging sequences.
In [Szy98b] David Szyld resolves this apperent contradiction. In the following, we want
to summarize the most important aspects of this issue. First, let us assume B to be non-
negative. Due to A = D − (D − A) and B = D−1(D − A) = (I − D−1A) we get that
A = D(I −B). We may conclude that A singular implies that 1 is an eigenvalue of B and
ρ(B) = 1. Vice versa, if ρ(B) = 1, 1 is an eigenvalue of B and A is singular. Using this
fact, we now analyze the proofs for the necessary condition.

They all share the assumption of the existence of a unique solution to the system of linear
equations

(I −B)x = b,

i.e. they all assume (I − B) to be nonsingular. But as we have just seen, this is not
possible for ρ(|B|) = 1. In other words, the case ρ(|B|) = 1 is not covered by any of
the constructions of non-converging sequences in literature. Only Su et al. treat the
case ρ(|B|) = 1 separately [SBKK98]: The authors show that in this case, there exists a
sequence of vectors not converging to the zero vector, but the limit is the Perron vector
to which the convergence is desired [Szy98b]. Therefore, this case should not be included
in the necessary condition statement.

To account for the fact that the proofs for the necessary condition all neglect the fact, that
for ρ(|B|) = 1 the system (I − B) becomes singular, Szyld reformulates the convergence
condition for asynchronous iteration:

Theorem 3.2.6. [Szy98b] If ρ(|B|) < 1, the asynchronous iteration fulfilling (a) and (b) of
Condition 3.2.1 converges to the unique solution. If ρ(|B|) = 1, under certain conditions,
convergence can be achieved. If ρ(|B|) > 1 and if 1 is not an eigenvalue of B, an initial
vector x0 and an update pattern can be constructed for which the asynchronous iteration
does not converge.

Hence, ρ(|B|) < 1 is only a sufficient but not a necessary condition for the convergence of
asynchronous iteration.
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3.3. Asynchronous Two-Stage Iteration

In order to adapt asynchronous iteration to modern hardware systems consisting of mul-
tiple processors it is reasonable to split the linear system into blocks, that can then be
handled independently. This approach is similar to the block iterative solvers we intro-
duced in Section 2.4.4. Using an iterative solver on the subsystems, the algorithm splits
into a cascaded iterative method with an inner and an outer iteration. While we denoted
the synchronous versions as two-stage iteration methods, allowing for asynchronism in ei-
ther the inner or the outer or both iteration methods motivates the term Asynchronous
Two-Stage Iteration Methods [BMPS99]. The synchronous block algorithms like block-
Jacobi arise as special cases of this general class for a unique update pattern. While Bru,
Elsner and Neumann propose in [BEN88] two different asynchronous two-staged methods,
Frommer and Szyld generalize these ideas in [Fro94] and provide a more comprehensive
overview about different classes of asynchronous two-staged methods. The main idea is to
distinguish between cascaded iterations where either only the inner, or only the outer, or
none of them are synchronized. Additionally, the communication of the updated compo-
nents provides another parameter for classification.

In the following sections we want to summarize some theory available in the literature
and extend it to a more comprehensive classification, especially we introduce the class of
block-asynchronous iteration we analyze in Chapter 4.

3.3.1. Inner Asynchronous Two-Stage Method

We first consider the case, where the solution process of the sub-equations (2.30) is handled
separately by different processors. While all iterations conducted to the sub-equations in
the (k)-th outer iteration use the same outer values, equivalent to the beginning of the
global iteration, they are independent in the sense that the iteration methods may be
different. This includes the case where the inner iteration methods differ in the number of
local iterations, like in the method ”A” proposed by Bru, Elsner and Neumann [BEN88].
The local iteration count might either be prescribed in advance or it can be determined
at each step using some inner convergence criteria like proposed by Elman and Golub
in [GY97], Golub and Overton [GO11], [GO87] or Golub and Ye [EG93]. As an extension
to the method ”A” proposed in [BEN88], Frommer and Szyld allow in [BMPS99] to apply
an inner iteration method that is derived by using a different matrix splitting than the
outer iteration is based on, e.g. the situation where the outer block Jacobi utilizes Gauss-
Seidel schemes (see Section 2.4.2) for solving the sub-equations.

The obtained algorithms are synchronous in the sense that the (k)-th global iteration
cannot start until all block-components of the (k−1)-th global iteration have been updated.
They may be seen as a special case of Algorithm 4.1 in [LRS90] of Lanzkron, Rose and
Szyld, [BMPS99]. In [Fro94] Frommer and Szyld prove the convergence of this two-stage
iteration schemes. Despite the fact that the iteration count for the individual components
may no longer be consistent due to the different iteration methods on the subdomains,
this class of two-stage iterations is usually not considered as asynchronous.

We now extend the model by allowing for asynchronous methods to solve the sub-problems.
As this extension enables the asynchronous usage of multiple processors for the solution of
the sub-equations, we denote the obtained class as Inner Asynchronous Two-Stage Meth-
ods. It is more general than the model ”A”proposed by Bru, Elsner and Neumann [BEN88],
as it implies a more independent choice of the iteration methods for the respective sub-
problems, and more general as the block two-stage method in [Fro94], since it allows for
asynchronous solvers on the sub-problems.

For these methods, the Algorithm 11 has to be modified: the former iteration function, we
from now on denote it with Hi(x) = I−ZiA) ·x, has to be adapted to the situation, where
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the off-block components stay equal in the local iterations, but the iteration status of the
local components may differ. Therefore, Hi(x) is replaced by Ki(x, y), where y denotes the
local components in the subdomain of the iteration. Using this notation, we can obtain a
model for the inner asynchronous two-stage method, see Algorithm 12.

Algorithm 12 Inner Asynchronous Two-Stage Iteration.

for (J = J1; J < Jq; J + +) do {synchronous outer loop}
read x from global memory
set y = x
for (k = 0; k < iterk; k + +) do {different local stopping criterion}

for all (i ∈ Jk) do {asynchronous local updates}
ynewi = Ki(x, y)
yi = ynewi

end for
end for
overwrite x in global memory with y

end for

3.3.2. Outer Asynchronous Two-Stage Method

We now consider a variation of the inner two-stage iteration, where not only the inner
iteration may be asynchronous, but additionally the outer iteration is no longer synchro-
nized [BMPS99]. A practical example is an implementation, where the processors solving
the distinct sub-problems are allowed to write back their results to the main memory
at any point in time, and always read in the most recent data for the next iteration.
They are allowed to start the computation of the next iterate of the respective block-
component without waiting for the simultaneous completion of the same iterate of the
other block-components, and to write back their respective block at the end of the local
iteration [BMPS99]. Hence, the previous iterate may no longer be available to all pro-
cessors. To stress that the block-components of the solution approximation are updated
using a vector consisting of block-components of different previous, not necessary the lat-
est, iterates, we denote these algorithms with Outer Asynchronous Two-Stage Methods.
They are similar to the model ”B” in [BEN88].

An important property of the outer asynchronous two-stage methods, visualized in Algo-
rithm 13, is the fact, that all component updates in one block use the same values for the
off-block iterates, equal to the values at the beginning of the local iteration phase.

Algorithm 13 Outer Asynchronous Two-Stage Iteration.

for all (Jk ∈ {J1 . . . Jq}) do {asynchronous outer loop}
read x from global memory
set y = x
for (k = 0; k < iterk; k + +) do {different local stopping criterion}

for all (i ∈ Jk) do {asynchronous local updates}
ynewi = Ki(x, y)
yi = ynewi

end for
end for
overwrite x in global memory with y

end for

Note that the inner asynchronous two-stage method we analyzed in the last section is
a special case, where the global updates are synchronized. Other examples for outer
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asynchronous two-staged methods include the asynchronous block-Jacobi, proposed e.g.
by Szyld in [Szy98a] and used as a preconditioner in [CG10]. All these asynchronous block-
Jacobi methods share the property, that the inner iterations are synchronous. The block-
asynchronous iteration we analyze in Chapter 4 arises as a special case of the asynchronous
block-Jacobi, where also the inner iteration is based on a Jacobi splitting.

3.3.3. Block-Asynchronous Methods

One subclass of the outer asynchronous two-stage methods are the inner asynchronous
two-stage methods, where the outer iteration is synchronized but the inner iteration may
be asynchronous. Complementary to those we define the Block-Asynchronous Methods as
another subclass, where the outer iteration may be asynchronous, but the inner iteration,
based on the same matrix splitting, is synchronized (see Algorithm 14). The motivation for
this approach is to use multiple processors to solve the subsystems in parallel with a preset
update order, but to perform the global updates independent and without consideration
of the iteration status of the other components. As this class perfectly fits the demands
of implementations using graphic processing units, it becomes very interesting for modern
High-Performance Computing, and we will put more focus on these methods in Chapter
4, where we base the outer and the inner iteration method on a Jacobi splitting.

Algorithm 14 Block-Asynchronous Iteration.

for all (Jk ∈ {J1 . . . Jq}) do {asynchronous outer loop}
read x from global memory
set y = x
for (k = 0; k < iter; k + +) do {equal local stopping criterion}

for (i = Jk(begin); i < Jk(end); i+ +) do {synchronous local updates}
ynewi = Ki(x, y)
yi = ynewi

end for
overwrite x in global memory with y

end for
end for

3.3.4. Totally Asynchronous Two-Stage Methods

The only restriction of the outer asynchronous two-stage methods is, that the off-block
iterates used for the updates in one block are all equal to the beginning of the local
iterations on the sub-problem. This is equivalent to an implementation where the newly
computed iterates are neither written back to the global memory until the iteration process
on the sub-problem is completed, nor the off-block iterates change during the iteration
process on the sub-problem. If we now drop these restrictions, we obtain algorithms we
denote as Totally Asynchronous Two-Stage Methods [Fro94], see Algorithm 15. In these,
the processors iterating a block take in each inner iteration the most recent iterates from
the other block-components. This implies, that for the different component updates in a
block, different values for the off-block entries of the solution approximation are used. All
asynchronous two-stage methods we analyzed in the last sections are special cases of this
class.

3.3.5. Overlapping Blocks in Asynchronous Two-Stage Methods

All two-stage methods are based on the idea of splitting the global problem into sub-
problems that can then be handled independently. While this corresponds to a block
decomposition of the system matrix, it is also analogous to a domain decomposition of the
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Algorithm 15 Totally Asynchronous Two-Stage Iteration.

for all (Jk ∈ {J1 . . . Jq}) do {asynchronous outer loop}
for (k = 0; k < iterk; k + +) do {different local stopping criterion}

for all (i ∈ Jk) do {asynchronous local updates}
read x from global memory
set y = x
ynewi = Ki(x, y) i ∈ Jj
yi = ynewi

overwrite xi in global memory with yi {during local iterations}
end for

end for
end for

discretized problem. An interesting question in this context is what happens, if some of
the matrix blocks overlap. In domain decomposition methods, the concept of overlapping
domains is often applied, since it allows for faster propagation of the information [HC03,
Cai09]. Similar approaches may be beneficial when targeting the discretized problem by
using overlapping blocks when solving the system of linear equations [CS96]. The models
we introduced for the asynchronous two-stage iterations do in general not preclude the
blocks to overlap. Only for the block-asynchronous iteration, a special case occurs: For
overlapping blocks, the components that are part of several blocks are updated considerably
more often than the other components in this block. Assuming the situation of k local
updates on every sub-problem, components shared by two blocks are updated 2k times,
while all other components are only updated k times in one global iteration. Like in domain
decomposition methods, using overlapping blocks in the matrix splitting we expect the
off-block entries in the matrix to have more influence, which may result in an improved
convergence rate. In [FSS97] Frommer, Schwandt, and Szyld have shown that a certain
degree of overlapping together with a scheme for combining different contributions within
the overlap, potentially accelerates the overall iteration convergence (also see [BMR97]).

3.3.6. Convergence of Asynchronous Two-Stage Methods

In Table 3.1 we summarize the properties of the different classes of two-stage iterative
methods visualized in Figure 3.1. We observe that having proven the convergence for the
totally asynchronous two-stage methods implies the convergence of all other classes, since
they arise as subsets. The convergence results for asynchronous iteration we stated in
Section 3.2.1 do in general not apply for asynchronous two-stage methods: The different
number of local component updates is crucial in the proofs for convergence [Fro94], as it
is impossible to derive a unique iteration matrix.

However, in the unweighted block-asynchronous methods we have the same number of
local component updates on the sub-problems. Hence, as long as the distinct blocks do
not overlap, the convergence theory previously stated in Section 3.2.1 for asynchronous
iteration also applies to the block-asynchronous iteration.

Since the main focus of this thesis is on these block-asynchronous iteration methods, we
refrain from providing a comprehensive convergence theory for asynchronous two-stage
iteration and refer to the results given by Frommer and Szyld in [Fro94].
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Figure 3.1.: Classification of two-stage iterative methods.

Method inner iter. outer iter. values used for inner iter.

Sync. Two-Stage Iteration sync. sync. beginning of iter.

Inner Async. Two-Stage Iteration async. sync. beginning of iter.

Block-async Iteration sync. async. beginning of iter.

Outer Async. Two-Stage Iteration async. async. beginning of iter.

Totall Async. Two-Stage Iteration async. async. latest available

Table 3.1.: Classification of two-stage iterative methods [BEN88, Fro94, ATDH12a].
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Two-stage iteration methods are suitable for multiprocessors, where the different sub-
problems can be handled independently by distinct processing units (see Section 2.4.4).
But at the same time, the necessary synchronizations between the iterations limit the
level of parallelism when working on heterogeneous clusters, that seem to become more
and more relevant in scientific High Performance Computing. To overcome these limi-
tations, it may be reasonable to allow for asynchronous handling of the subproblems by
different hardware devices. In this chapter we want to derive and analyze the properties of
the Block-Asynchronous Iteration Method we already listed as one class of asynchronous
two-stage iteration adapted to hardware systems accelerated by graphics processing units
(GPUs). For this purpose, we start with the naive asynchronous iteration, then split,
motivated by the hardware architecture, the linear system into blocks that can be handled
independently. Using SIMD devices like GPUs, the component updates on these blocks
can than be conducted with high efficiency. Adding local iterations on the subdomains we
have come full circle to the asynchronous two-stage iterations.
As the non-deterministic behavior of asynchronous methods is an important aspect when
using them in scientific computation, we dedicate Section 4.3 to quantify the impact of
this issue. Using different parameter configurations, we then compare in Section 4.4 con-
vergence and performance of the block-asynchronous iteration to synchronized methods.
Afterwards, we also target multi-GPU systems in Sections 4.6/4.7. In Section 4.8 we de-
rive an algorithm optimized for sparse systems and show performance results in Section
4.9. As the properties of the system of linear equations like sparsity pattern and diagonal
dominance have significant impact on the convergence properties, we introduce in Section
4.10 different techniques that may be applied to adapt to a specific problem setup. This
includes weighting techniques to account for diagnonal dominance (Section 4.10.2) as well
as concepts for the method’s adaption to the discretization of a partial differential equation
(Section 4.10.6). Finally, we show in Section 4.11 how block-asynchronous iteration may
be used to replace the traditionally applied smoothers in multigrid methods, and analyze
in Section 4.12 the performance improvement when employing them as error correction
solver in mixed precision iterative refinement methods [AHR10]. Further, we propose to
handle also the residual computation asynchronously, and derive in Section 4.13 a block-
asynchronous iterative refinement method. Finally we conclude this chapter with Section
4.14.2, where we use block-asynchronous iteration in the solution process of a nonlinear
instationary partial differential equation arising in the simulation of pattern formation in
mathematical biology.
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48 4. Block-Asynchronous Iteration

However, in order to understand the fundamental idea of block-asynchronous iteration on
GPUs we start in Section 4.1 with recalling some basic principles of GPU programming.
While a more comprehensive overview about GPU programming can be found in [Göd10],
the architecture of graphics processing units and of the heterogeneous clusters used in this
thesis are given in Appendix A.

4.1. General Purpose GPU-Computing

While graphics processing units (GPUs) are primarily designed for one particular class
of applications, the rasterization and depth-buffering based interactive computer graph-
ics [Göd10], using them for general purpose computing (GPGPU) is increasingly becoming
interesting, especially when targeting highly parallel applications [KBD10]. To understand
why and how GPUs can be used in scientific computing, it is useful to provide some back-
ground about the historical evolution of graphics processing units, their architecture as
well as programming paradigms. A more comprehensive discussion about the history of
GPUs, the programming concepts, the different hardware architectures, and a list of the
most relevant publications can be found in [Göd10].

As already stated, GPUs were originally designed for graphics purpose only. To meet the
challenges that typically arise in graphics workloads, three properties can be identified,
that make GPUs so different from general-purpose CPUs [Göd10]:

• Graphics workloads are inherently massively parallel. In fact, the huge performance
demands can only be satisfied by exploiting this parallelism to extreme scales, at
least compared with other (single-chip) processors. Basically, the GPU architecture
is centered around a large number of fine-grained parallel processors.

• The bandwidth demand of graphics tasks, in particular multi-texturing with ad-
vanced, anisotropic filtering, are insatiable. Furthermore, the memory subsystem
must be able to serve many concurrent requests.

These requirements ask for a very special architecture and programming concept, the so-
called graphics pipeline. The hardware accounts for this concept by a high core number
organized in several arrays, called streaming multiprocessors, that enable the simultaneous
execution of an operation on a large set of data [OLG+07, Göd10, KBD10].

This concept also removes the necessity of expensive control logic to tackle typical hazards
induced by instruction level parallelism such as read-after-write, write-after-read, syn-
chronization, deadlocks and other race conditions [Göd10]. To maximize throughput over
latency, the pipeline is very deep, with thousands of primitives in flight at a time. In a
CPU, any given operation may take on the order of 20 cycles between entering and leaving
the processing pipeline (assuming a level-1 cache hit for data); on the GPU, in contrast,
operations may take thousands of cycles to finish. In summary, the implementation of the
graphics pipeline in hardware allows to dedicate a much larger percentage of the available
transistors to actual computation rather than to control logic, at least compared with
commodity CPU designs [Göd10].

In the programming model, the graphics pipeline is reflected as data parallelism which
allows to conduct the same operation, usually denoted as kernel operation, on a large
set of data in parallel. Since it is impossible to execute different operations by the dis-
tinct processing units (cores) at the same time, GPUs may be considered to belong to
the class of SIMD architectures (Single-Instruction-Multiple-Data) [PH04]. At this point
it should be mentioned, that NVIDIA, one of the main GPU manufacturers, proposes
to overcome the SIMD model by the introduction of a SIMT model (Single-Instruction-
Multiple-Thread) [NVI09], which may be considered as an extension to the SIMD model
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that handles conditionals somewhat differently. The SIMT model provides the capabil-
ity to switch between threads quickly, such that all processors follow the same path in
the conditional and no core is disabled [HK12], [Lan09], [SZ10]. Still, the basic concept
of the graphics pipeline remains, and also has implications on the memory concept of
GPUs. While CPUs deal with memory bandwidth and latency limitations by using ever-
larger hierarchies of caches, the number of cores in GPUs have grown approximately as
fast as transistor density [Göd10]. Therefore, it is difficult to provide a large enough
caching hierarchy on the GPU chip that delivers a reasonably high cache hit rate and
maintains coherency. For this reason, the GPU caches are relatively small and the main
focus concerning the design of the memory subsystem is put on maximizing the streaming
bandwidth (and hence, throughput) by latency tolerance, page-locality, minimization of
read-write direction changes and even lossless compression [Göd10].

Due to the hardware design and the concept of a graphics pipeline, using GPUs in scientific
computing is especially interesting when targeting applications where the same operations
are applied to a large set of data. While Owens et al. [OLG+07] provide a number of
examples where significant performance increase could be achieved when porting inher-
ently parallel algorithms to graphics processing units, Garland et al. [GLGN+08] provide
a list of applications using NVIDIA’s CUDA, an extension to the C programming lan-
guage [NVI09]. In this programming paradigm, a so-called CUDA program consists of
sequential C code that is executed by the host, and functions (called kernels) that process
a large data set in parallel by the GPU. At the GPU level, the same kernel is executed in
parallel by thousands or even millions of GPU threads. The GPU organizes the threads
into a grid of several 1D, 2D or 3D thread blocks that are distributed among the multipro-
cessors [Göd10]. Each multiprocessor then executes one or multiple thread blocks in SIMD
fashion and, in turn, each core of a multiprocessor runs one or more threads within a block
in SIMT mode. The distinct multiprocessors handle the threads of the thread blocks in
several small groups of threads called warps, where each warp contains 32 threads of 32
consecutive and increasing IDs and the first warp is the owner of thread 0. The threads
of a warp execute concurrently the same instruction of a kernel but operate on different
data and are free to follow the same or different execution paths without any synchroniza-
tion point [OLG+07]. While the different threads within the same thread block execute
the same instruction on different data and can communicate among themselves through
barrier synchronization and the shared memory, there is no synchronization between the
thread blocks of the grid, except that they read/write the input/output data from/to the
global memory [OLG+07].

This concept of data partitioning into thread blocks resolves the problem of how to bring
the necessary data to the computing cores in time, that occurs since the operation exe-
cution itself is usually very fast compared to the memory access. Each thread block is
asynchronously streamed to the computing units, such that the data for the next opera-
tions is already communicated to the computing cores while the operations are executed
on the current data. While this reduces waiting time and accelerates the overall perfor-
mance [ABD+09], the order in which the thread blocks are processed is not determined.
This is the fundamental principle of the block-asynchronous iteration we introduce in this
chapter, which is also based on the efficient partitioning of the data into thread blocks
that are then processed without deterministic order.

Conclusively, we want to mention that the market volume of interactive computer games
amounts to billions of dollars per year, which leads to strong efforts in the hardware devel-
opment of graphics processing units. Since the gamers’ market is focused on performance,
not on reliability or scientific computing features, the consumer line GPUs have a consid-
erably higher number of bit-flips compared to general purpose CPUs and were not always
IEEE compliant concerning precision formats and rounding from the beginning on (see
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Appendix A). To meet the requirements of the scientific computing society using GPUs
for general purpose computing, manufacturers have started to offer a more professional
line of GPUs that fulfill higher reliability demands and often feature (larger) self-correcting
memory called ECC-memory [NVI09].

4.2. Block-Asynchronous Iteration on GPUs

The asynchronous iteration method for GPUs that we propose can be seen as a two-stage
iteration [ATDH12a]. This is due to the design of graphics processing units and the CUDA
programming language [NVI09].
The idea is to split the linear system of equations into blocks of rows, and to assign the
computations for each block to one thread block on the GPU [ATDH12a]. For these
thread blocks, an asynchronous iteration method is used, while on each thread block, a
synchronous Jacobi-like iteration method is performed. We denote this first version of
the algorithm by async-(1), referring that on each subdomain, one Jacobi iteration is con-
ducted.
In a second step, we extend this basic algorithm to a version where the threads in a
thread block perform multiple Jacobi iterations within the block. During the local itera-
tions the x values used from outside the block are kept constant (equal to their values at
the beginning of the local iterations). After the local iterations, the updated values are
communicated. While this approach fits into the framework of asynchronous two-stage
methods (see Section 3.3), the motivation can also be obtained from the well know hybrid
relaxation schemes [BFKMY11, BFG+]. The obtained algorithm is the block-asynchronous
method we already introduced in Section 3.3.3, and its convergence is covered by Theorem
3.2.3, since it occurs as special case of the general asynchronous iteration for a specific
update pattern. In domain-decomposition terminology, the blocks would correspond to
subdomains, and thus we additionally iterate locally on every subdomain. We denote this
scheme by async-(local iters), where local iters denotes the number of Jacobi updates on
every subdomain.

Another motivation for this approach comes from the hardware side. Especially the fact
that the additional iterations almost come for free (as the subdomains are relatively small
and the data needed largely fits into the multiprocessor’s cache) motivates for adding local
iterations on the subdomains. The obtained algorithm, visualized in Figure 4.1, can be
written as component wise update of the solution approximation:

x
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i + =

1

ai,i

bi−
TS−1∑
j=1

ai,jx
(m−s(k+1,j))
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global part

−
TE∑
j=TS

ai,jx
(m)
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local part

−
n∑

j=TE+1

ai,jx
(k−s(k+1,j))
j︸ ︷︷ ︸

global part

 ,

(4.1)

where TS and TE denote the starting and the ending indices of the matrix/vector part
in the thread block. Furthermore, for the local components, the always newest values
are used, while for the global part, the values from the beginning of the iteration are
used [ATDH12a]. The shift function s(k+1, j) denotes the iteration shift for the component
j which can be positive or negative, depending on whether the thread block where the
component j is located in already has conducted more or less iterations. Note that this
may give a block Gauss-Seidel flavor to the updates.
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Block 

Block 

Figure 4.1.: Visualizing the asynchronous iteration in block description used for the GPU
implementation. Al,l denotes the l-th diagonal block, AΓl and AlΓ the block
left, respectively right, of Al,l. Consistent notation is used for the block de-
composition of the vectors.

4.3. Experiments on the Non-deterministic Behavior of Asyn-
chronous Iteration

As already mentioned, asynchronous iteration methods are by definition non-deterministic
[CM69]. While synchronous relaxation algorithms always provide the same solution ap-
proximations for each solver run, the unique pattern concerning the distinct component
updates in their asynchronous counterparts generates a sequence of iteration approxima-
tions, that can usually only be reproduced by choosing exactly the same update order.
This also implies that variations in the convergence rate may occur for the individual
solver runs. If the scheduling for the individual component updates is based on a recur-
ring pattern, these variations in the convergence behavior may increase with the number
of iterations since the component update pattern may multiply its influence for higher
iteration counts. When iterating locally in the block-asynchronous approach (see Section
4.2), the influence of the unique component update order potentially has even more im-
pact since the local iterations do not account for the off-block entries. This may especially
become a critical issue when targeting linear systems with considerable off-diagonal parts.

To investigate the issue of the non-deterministic behavior, we conduct multiple solver
runs using the same experiment setup and monitor the relative residual behavior for the
different approximation sequences. As the main focus of this chapter is on the block-
asynchronous method, we apply the async-(5) algorithm based on a moderate block size of
128, which allows for a strong influence of the non-deterministic GPU-internal scheduling of
the threads [NVI09]. Targeting the matrices fv1 and Trefethen 2000 ensures, that we
include results for very different matrix structures, i.e. these systems have very different
diagonal dominance (see Appendix B). All tests on the non-deterministic behavior are
based on 1000 solver runs using the same hardware and software configuration on the
GPU-accelerated Supermicro system (see Appendix C.1 for details about the hardware).

For each matrix system, we report in Figure 4.2 the variations in convergence as difference
between the largest and smallest relative residual in absolute and relative values (relative
to the average residual). The exact numbers for these plots can be found in Table 4.1
and 4.2. Additionally, we provide in Table 4.3 and 4.4 information about the statistical
parameters variance, standard error and standard deviation [Hen10].

From Figure 4.2a we can deduce that the async-(5) method using the given experiment
setup converges within about 130 global iterations for matrix fv1. Having achieved conver-
gence, also the absolute variations in between the fastest and slowest convergence approach
a limit, see Figure 4.2c. While the absolute values provide an general idea about the mag-
nitude of the variations, investigating the relative variances in Figure 4.2e allows for a
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(b) average convergence, Trefethen 2000
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Figure 4.2.: Visualizing the average convergence, the absolute respectively relative varia-
tions in the convergence behavior of async-(5) depending on the number of
conducted global iterations.
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more efficient quantification of the differences. Obviously, there exist some variations, but
they are very small, and may even be neglected. The large relative variations for >130
iterations can be explained by rounding effects when computing the relative variation us-
ing the very small values (see Table 4.2) on a system with limited accuracy. The overall
small variations were expected due to the design and sparsity pattern of the matrix: fv1
is symmetric and almost all elements are gathered on the diagonal blocks, and therefore
are accounted for in the local iterations. Similar tests on diagonal dominant systems with
the same sparsity pattern but higher condition number reveal, that the latter one has only
small impact on the variations between the individual solver runs, see [ATDH12a].

For the system Trefethen 2000 we converge within about 40 iterations (see Figure 4.2b).
Only very few solver runs have not reached convergence after 45 iterations. Like in the fv1
case, we observe in Figure 4.2d the expected exponential decrease of the absolute varia-
tion. Concerning the relative variations, the results look quite different: All values for the
relative variations are significantly higher than for the test matrix fv1. Close to conver-
gence, the relative difference between largest and smallest relative residual approximates
20 %. This confirms the expectation, that the larger off-block parts in Trefethen 2000
emphasize the non-deterministic GPU-internal scheduling since they are not accounted for
in the local iteration on the subdomains (see Section 4.2 for the algorithm design). Fur-
thermore, we can identify a dependency between iteration count and the relative variation:
The component update orders multiply their impact when conducting a high number of
iterations, and the relative difference between the individual approximations rises (see Fig-
ure 4.2f). The linear growth of the relative variations immediately suggests the existence
of a recurring pattern in the GPU-internal scheduling, which amplifies the variations in
the convergence of the different solver runs.
In Table 4.3 and 4.4 we additionally provide information about statistical parameters like
variance, standard deviation and standard error.

Summarizing the results, we can conclude that the scheduling of the threads has influence
on the convergence behavior of the block-asynchronous iteration. Especially for systems
with significant off-diagonal parts, the effects should be considered when using the method
in scientific computing. For diagonal dominant systems on the other hand, the variations
may be negligible. Furthermore, it seems that the GPU-internal scheduling is based on a
recurring pattern which ensures that at some point of the iteration run, all components
have been updated similarly often. Due to this pattern, it may be useful to apply larger
block-sizes that allow for less possibilities in the scheduling. Larger block-sizes usually
come along with the advantage of accounting for more elements in the local iterations, and
therewith faster convergence. Only for very specific matrix properties it may be reasonable
to choose small block sizes, i.e. if the off-diagonal parts can be reduced or the matrix size
is a multitude of the smaller block size, see Section 4.10.6.) To account for this finding
we will in general stick to large block sizes for all further experiments. However, the main
consequence of the results is a convention for the rest of the thesis:

Although we will not stress it explicitly every time, all further results should be considered
as average using several solver runs.

4.4. Experiments on Block-Asynchronous Iteration on GPUs

The experimental results presented in the following sections are also part of the conference
contribution [ATDH12a].

4.4.1. Convergence rate of Asynchronous Iteration on GPUs

In the first experiment, we analyze the convergence behavior of the async-(1) iteration
method and compare it with the convergence rate of the Gauss-Seidel and Jacobi method.
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# iters averg. residual max. res min. res. abs. variation rel. variation

10 7.8304e-02 7.8313e-02 7.8285e-02 2.8111e-05 3.5885e-04
20 6.3243e-03 6.3251e-03 6.3231e-03 2.0125e-06 3.1782e-04
30 5.1392e-04 5.1400e-04 5.1383e-04 1.6310e-07 3.1716e-04
40 4.1902e-05 4.1912e-05 4.1895e-05 1.7607e-08 4.2002e-04
50 3.4238e-06 3.4244e-06 3.4231e-06 1.3232e-09 3.7969e-04
60 2.8019e-07 2.8026e-07 2.8012e-07 1.3318e-10 4.7467e-04
70 2.2956e-08 2.2961e-08 2.2951e-08 9.7834e-12 4.2254e-04
80 1.8825e-09 1.8829e-09 1.8820e-09 9.6127e-13 5.0995e-04
90 1.5449e-10 1.5453e-10 1.5445e-10 8.4035e-14 5.4372e-04

100 1.2685e-11 1.2689e-11 1.2682e-11 6.6530e-15 5.2025e-04
110 1.0422e-12 1.0426e-12 1.0418e-12 7.2436e-16 6.9082e-04
120 8.5725e-14 8.5753e-14 8.5695e-14 5.7262e-17 6.6724e-04
130 7.1399e-15 7.1458e-15 7.1345e-15 1.1334e-17 1.5823e-03
140 9.2748e-16 9.3342e-16 9.2265e-16 1.0767e-17 1.1608e-02
150 6.5579e-16 6.6219e-16 6.5022e-16 1.1964e-17 1.8243e-02

Table 4.1.: Variations in the convergence behavior for 1000 solver runs on fv1. The iter-
ation number is the global iteration count.

# iters averg. residual max. res min. res. abs. variation rel. variation

5 8.0190e-04 8.1516e-04 7.3689e-04 7.8277e-05 9.7614e-03
10 8.4330e-06 8.6821e-06 7.7307e-06 9.5147e-07 1.1282e-01
15 8.8600e-08 9.2472e-08 7.9658e-08 1.2813e-08 1.4462e-01
20 9.3022e-10 9.8491e-10 8.3319e-10 1.5171e-10 1.6309e-01
25 9.7817e-12 1.0427e-11 8.6158e-12 1.8120e-12 1.8524e-01
30 1.0260e-13 1.1038e-13 8.8065e-14 2.2314e-14 2.1747e-01
35 1.0906e-15 1.1960e-15 9.6899e-16 2.2705e-16 2.0818e-01
40 1.1012e-16 1.1843e-16 1.0755e-16 1.0881e-17 0.9880e-01
45 1.0811e-16 1.1041e-16 1.0692e-16 3.4880e-18 3.2261e-02
50 1.0811e-16 1.1057e-16 1.0723e-16 3.3381e-18 3.0875e-02

Table 4.2.: Variations in the convergence behavior for 1000 solver runs on
Trefethen 2000. The iteration number is the global iteration count.
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# iters variance standard deviation standard error

10 1.6334e-11 4.0415e-06 2.0233e-07
20 1.1244e-13 3.3532e-07 1.6787e-08
30 7.4425e-16 2.7281e-08 1.3657e-09
40 6.7713e-18 2.6021e-09 1.3027e-10
50 4.9401e-20 2.2226e-10 1.1127e-11
60 4.1092e-22 2.0271e-11 1.0148e-12
70 2.9781e-24 1.7257e-12 8.6395e-14
80 2.6892e-26 1.6398e-13 8.2096e-15
90 1.9368e-28 1.3916e-14 6.9672e-16

100 1.4737e-30 1.2139e-15 6.0775e-17
110 1.2855e-32 1.1338e-16 5.6761e-18
120 8.8288e-35 9.3962e-18 4.7039e-19
130 4.6302e-36 2.1518e-18 1.0772e-19
140 3.1601e-36 1.7776e-18 8.8994e-20
150 3.9031e-36 1.9756e-18 9.8905e-20

Table 4.3.: Statistics in the convergence behavior for 1000 solver runs on fv1. The iteration
number is the global iteration count.

# iters variance standard deviation standard error

5 1.6769e-10 1.2949e-05 4.0970e-07
10 2.8159e-14 1.6780e-07 5.3091e-09
15 4.8964e-18 2.2127e-09 7.0009e-11
20 7.0058e-22 2.6468e-11 8.3742e-13
25 9.4666e-26 3.0767e-13 9.7345e-15
30 1.2095e-29 3.4778e-15 1.1003e-16
35 1.5321e-33 3.9142e-17 1.2384e-18
40 2.4862e-36 1.5767e-18 4.9887e-20
45 2.2543e-37 4.7479e-19 1.5021e-20
50 2.2468e-37 4.7400e-19 1.4996e-20

Table 4.4.: Statistics in the convergence behavior for 1000 solver runs on
Trefethen 2000. The iteration number is the global iteration count.
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Note that the residuals in all reported data of this and the following sections are always
in the L2 norm (‖ r ‖2).

The experiment results, summarized in Figure 4.3, show that for test systems Chem97ZtZ,
fv1, fv2, fv3 and Trefethen 2000 the synchronous Gauss-Seidel algorithm converges
in considerably less iterations than the asynchronous iteration. This superior convergence
behavior is intuitively expected, since the synchronization after each component update
allows for the usage of the updated components immediately for the next update in the
same global iteration. For the Jacobi implementation, the synchronization after each
iteration still ensures the usage of all updated components in the next iteration. Since
this is not true for the asynchronous iteration, the convergence depends on the problem
and the update order. While the usage of updated components implies the potential of a
Gauss-Seidel convergence rate, the chaotic properties may trigger convergence slower than
Jacobi.

Still, we observe for all test cases convergence rates similar to the synchronized Jacobi
iteration, which is still low compared to Gauss-Seidel.

The results for test matrix s1rmt3m1 (Figure 4.3e) show an example where neither of
the methods is suitable for direct use. The reason is that here ρ(B) > 1 (in particular,
ρ(B) ≈ 2.65, see Table B.1 in the Appendix). Nevertheless, note that this matrix is
symmetric and positive definite (SPD) and Jacobi-based methods still can be used after
a proper scaling is added, e.g., taking B = I − τD−1A with τ = 2

λ1+λn
, where λ1 and λn

approximate the smallest and largest eigenvalue of D−1A.

4.4.2. Convergence rate of Block-Asynchronous Iteration

Like in [ATDH12a] we now consider the block-asynchronous iteration method introduced
in Section 4.2, which additionally performs a set of Jacobi-like iterations on every sub-
domain. In Table 4.5 we report the overhead triggered by the additional local iterations
conducted on the subdomains. Switching from async-(1) to async-(2) affects the total
computation time by less than 5%, independent of the total number of global iterations.
At the same time, this leads to an algorithm where every component is updated twice
as often. Even if we iterate every component locally by 9 Jacobi iterations, the over-
head is less than 35%, while the total updates for every component differ by a factor of
9 [ATDH12a]. There exists though a critical point, where adding more local iterations
does not improve the overall performance. It is difficult to analyze the trade-off between
local and global iterations [MY11], and we desist from giving a general statement for the
optimal choice of local iterations. This is due to the fact that the choice depends not only
on the characteristics of the linear problem, but also on the iteration status of the thread
block and the local components (as related to the asynchronism), subdomain sizes, and
other parameters. Based on empirical tuning and practical experience (trying to match
the convergence of the new method to that of a Gauss-Seidel iteration) we set the num-
ber of local Jacobi-like updates to five. Therefore we choose async-(5) for all subsequent
analysis of the block-asynchronous iteration method in this chapter. The additional local
iterations in asynchronous methods provide less contribution to the iteration process than
global ones in synchronized algorithms, as they do not take into account off-block entries.
We note that as a consequence, the number of iterations in asynchronous algorithms can
not directly be compared with the number of iterations in a synchronized algorithm. To
account for this mismatch and the fact that the local iterations almost come for free in
terms of computational effort, we from now on use the convention of counting only the
number of of global iterations, where every single component is updated five times as often
by iterating locally.
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Figure 4.3.: Convergence behavior for different test matrices. Relative residuals in L2

norm.
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computation time [sec] for # global iterations
method 100 200 300 400 500

async-(1) 1.376425 2.437521 3.501462 4.563519 5.624792

async-(2) 1.431110 2.546361 3.660030 4.773864 5.891870

async-(3) 1.482574 2.654470 3.819478 4.987472 6.156434

async-(4) 1.532940 2.749808 3.972644 5.191812 6.410378

async-(5) 1.577105 2.838185 4.099068 5.363081 6.655686

async-(6) 1.629628 2.938897 4.255335 5.569045 6.879329

async-(7) 1.680975 3.044979 4.412199 5.778823 7.144304

async-(8) 1.736295 3.148895 4.571684 5.990520 7.409536

async-(9) 1.786658 3.259132 4.730689 6.202893 7.676786

Table 4.5.: Overhead to total execution time by adding local iterations, matrix fv3.

Using this notation we now aim for comparing in Figure 4.4 the convergence rate of async-
(5) with the Gauss-Seidel convergence rate.

As theoretically expected, synchronous relaxation as well as the block-asynchronous async-
(5) are not directly suitable to use for the s1rmt3m1 matrix. Besides this case, the async-
(5) improves the convergence rate of async-(1) for all other test cases. While, depending on
the matrix structure, we may expect an improvement factor of up to five, in the experiments
we observe improvements of up to four.

The rule of thumb expectation for the convergence rate of the async-(5) algorithm is
based on the rate with which values are updated and the rate of propagation for the
updates. For example, this is the observation that Gauss-Seidel often converges about
twice as fast as Jacobi [KK03]. In other words, four Jacobi iterations would be expected
(in general) to provide residual reduction approximating two Gauss-Seidel iterations. The
experiments show that the convergence of async-(5) for Chem97ZtZ is characteristic for
the convergence of the synchronous Jacobi iteration. This can be explained by the fact
that the local matrices for Chem97ZtZ are diagonal and therefore it does not matter how
many local iterations would be performed. An improvement for this case could potentially
be obtained by reordering. The case for Trefethen 2000 is similar: although there is
improvement compared to Jacobi, the rate of convergence for async-(5) is not twice as fast
as Gauss-Seidel, and the reason is again the structure of the local matrices (see Figure
B.3 in the Appendix for the structure of the matrices and Figures 4.4a and 4.4f for the
convergence results). Considering the remaining linear systems of equations fv1, fv2 and
fv3, we obtain approximately twice as fast convergence when replacing Gauss-Seidel by
the async-(5) algorithm (see Figures 4.4b, 4.4c, and 4.4d). Since for these cases most of
the relevant matrix entries are gathered on or near the diagonal and therefore are taken
into account in the local iterations on the subdomains, we observe significant convergence
gain when iterating locally. Hence, as long as the asynchronous method converges and the
off-block entries are“small”, adding local iterations may be used to not only compensate for
the convergence loss due to the chaotic behavior, but moreover to gain significant overall
convergence improvements [ATDH12a].

But the convergence rate alone does not determine whether an iterative method is efficient
or not. The second important metric we have to consider is the time needed to process one
iteration on the respective hardware platform. While the time can be easily measured for
the synchronous iteration methods, the nature of asynchronous relaxation schemes does
not allow the straight forward determination of the time needed per iteration, since not
all components are updated at the same time. Especially, it may happen that some blocks
were already iterated several times, while other blocks were not processed at all. For this
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Figure 4.4.: Convergence rate of block-asynchronous iteration. The relative residual is in
L2 norm, the iteration count denotes in the async-(5) case the number of
global iterations.
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Figure 4.5.: Average iteration timings of CPU/GPU implementations depending on total
iteration number, test matrix fv3.

Matrix name G.-S. (CPU) Jacobi (GPU) async-(5) (GPU)

Chem97ZtZ 0.008448 0.002051 0.001742

fv1 0.120191 0.019449 0.012964

fv2 0.125572 0.020997 0.014729

fv3 0.125577 0.021009 0.014737

s1rmt3m1 0.039530 0.006442 0.004967

Trefethen 2000 0.007603 0.001494 0.001305

Table 4.6.: Average iteration timings in seconds per global iteration.

reason, only an average time per global iteration can be computed by dividing the total
time by the total number of iterations. Therefore, we also use an average time for the
CPU implementation. It should also be mentioned that, while the average timings for
one iteration on the CPU are almost constant, for the GPU implementations the iteration
time differs considerably. This stems from the fact, that all timings include the data
transfers between host and GPU. Hence, we have considerable communication overhead
when performing only a small number of iterations, while the average computation time per
iteration decreases significantly for cases where a large number of iterations is conducted.
This behavior is shown in Figure 4.5, where the average iteration timings for the test
matrix fv3 are reported. For the other test matrices, the average timings for the Gauss-
Seidel implementation on the CPU and the Jacobi and async-(5) iteration on the GPU are
shown in Table 4.6 where we took the average of the cases when conducting 10, 20, 30 . . . 200
iterations for the GPU implementations. Note that the iteration time for Jacobi is, due to
the synchronization after each iteration, higher than for async-(5), despite the five local
updates in the asynchronous method.

Overall, we observe, that the average iteration time for the async-(5) method using the
GPU is only a fraction of the time needed to conduct one iteration of the synchronous
Gauss-Seidel on the CPU. While for small iteration numbers and problem sizes we have a
factor of around 5, it rises to over 10 for large systems and high total iteration numbers.
The question is, whether the faster component updates can compensate for the slower
convergence rate when targeting the matrices Chem97ZtZ and Trefethen 2000. In this
case, the block-asynchronous method using the GPU as accelerator would still outperform
the synchronous Gauss-Seidel on the CPU.
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Figure 4.6.: Relative residual behavior with respect to solver runtime.

4.4.3. Performance of the Block-Asynchronous Iteration Method

While the convergence rate analyzed in Section 4.4.1 and 4.4.2 is especially interesting
from the theoretical point of view, the more relevant metric when using iterative methods
to solve a linear system of equations is the time needed to provide a solution approxima-
tion of a certain accuracy. This depends not only on the convergence rate, but also on
the hardware- and implementation-specific iteration rate. In [ATDH12a] the block asyn-
chronous iteration performance is compared to the performance of Gauss-Seidel and Jacobi.
Now, we extend the analysis by comparing also to a highly tuned GPU implementation
of the CG solver (see Section 2.5.3). Also, instead of reporting only time-to-accuracy,
we show the residual decrease over the computing time. This enables to determine the
optimal solver also for cases where low accuracy approximations are sufficient. Such sce-
narios occur for example in the solution process of nonlinear equations where only coarse
solutions for the first linearization steps are required.

Due to the results in Figure 4.4 it is reasonable to limit the performance analysis to the
matrices Chem97ZtZ, fv1, fv3 and Trefethen 2000: The matrix characteristics and
convergence results for fv2 are very similar to fv1, and for the s1rmt3m1 problem we
observed that neither Gauss-Seidel nor Jacobi or block-asynchronous iteration are suitable
methods.

In Figure 4.6 the time-dependent residuals for the different solver implementations are
reported (relative residuals in L2-norm).

For the very diagonally dominant systems fv1 and fv3 the performance improvement
when switching from Jacobi to block-asynchronous iteration are significant: The async-(5)
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method converges (with respect to computation time) almost twice as fast as Jacobi. At
the same time, both methods outperform the sequential (CPU-based) Gauss-Seidel solver
by orders of magnitude. Still, the performance of the CG method can not be achieved.
This was expected, since the CG method belongs to the most efficient iterative solvers for
symmetric positive definite systems. In Figure 4.6b async-(5) converges about twice as fast
as Jacobi, significantly faster than Gauss-Seidel, but the CG method still shows about one-
third higher performance. For the system fv3 with considerably higher condition number,
the differences are even more significant (see Figure 4.6c): the time-to solution needed by
the synchronized CG is only a fraction of the computation time of Jacobi, async-(5) or
Gauss-Seidel. Only if the approximation accuracy is relevant, applying async-(5) could be
considered to post-iterate the solution approximation.

For strongly coupled problems, which result in matrix systems containing large off-diagonal
parts, the performance differences between Jacobi and block-asynchronous iteration de-
crease. This stems from the fact that the entries located outside the subdomains are
not taken into account for the local iterations in async-(5) [ATDH12a]. Thus, it is ex-
pected that for the problem Chem97ZtZ the performance results for Jacobi and block-
asynchronous iteration are very similar. They are also almost equal to the performance of
the, algorithmically very different, CG solver. Only the CPU-based Gauss-Seidel converges
slower with respect to computation time (see Figure 4.6a). Concerning the three superior
methods, the block-asynchronous iteration outperforms not only the Jacobi method, but
even the highly optimized CG solver.

Probably the most interesting results occur for the Trefethen 2000 problem (see Figure
4.6d). The async-(5) method using the GPU does not reach the Gauss-Seidel performance
on the CPU for small iteration numbers, which may be caused by the characteristics of
the problem: As the linear system combines small dimension with low condition number,
both enabling fast convergence, the overhead triggered by the GPU kernel calls is for small
iteration numbers crucial [ATDH12a]. Going to higher iteration numbers, the async-(5)
outperforms the CPU implementation of Gauss-Seidel also for this matrix. Compared to
CG and Jacobi, the async-(5) method is superior for any approximation accuracy.

We conclude from the analysis in this section, that asynchronous iteration schemes using
parallel devices have to be used carefully, but for suitable systems of linear equations and
appropriate hardware platforms we may expect significant performance advantages when
replacing the synchronous counterparts [ATDH12a].

4.5. Fault-Tolerance of Block-Asynchronous Iteration

This section is dedicated to analyze the block-asynchronous iteration introduced in Section
4.2 with respect to error resilience. Particularly, we want to analyze how hardware failure
impacts the method’s convergence and performance characteristics. The topic of fault
resilient algorithms is of significant importance, as we expect that the high complexity in
future hardware systems comes along with a high failure rate [CGG+09, PBGM09].
Current high performance parallel systems consist of about one million processing ele-
ments, but aiming for Exascale computing, this number has to be increased by about
three orders of magnitude [BBC+08]. This increase in component number is expected to
be faster than the increase in component reliability, with projections in the minutes or
seconds for Exascale systems. From the current knowledge and observations of existing
large systems, it is anticipated that especially a rise of the Silent Errors may take place.
These are errors that get detected after long time having caused serious damage to the
algorithm, or never get detected at all [ABC+10].
For most synchronized iterative solvers hardware failure is crucial, resulting in the break-
down of the algorithm. For implementations that do not feature checkpointing or recovery
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techniques [BHF+12, HH11, MRK10, DBB+11, DLTD11, BDB+12, DBB+12], the com-
plete solution process has to be restarted. While checkpointing strategies are widespread
used in today’s implementations, algorithms will no longer be able to rely on checkpointing
to cope with faults in the Exascale era. This stems from the fact, that the time for check-
pointing and restarting will exceed the mean time of failure of the full system [ABC+10].
Hence, a new fault will occur before the application could be restarted, causing the appli-
cation to get stuck in a state of constantly being restarted. The nature of asynchronous
methods removes the need for checkpointing: the high tolerance to update order and com-
munication delay implies that, as long as all components are updated at some point, they
are resilient to hardware failure. The inherent reliability with respect to detectable hard-
ware failure makes asynchronous methods suitable candidates for exascale systems based
on a high number of processing elements. In case of silent errors that do not get detected,
also the asynchronous methods will usually not converge to the solution. This implies,
that for problems where convergence is expected, a convergence delay or non-converging
sequence of solution approximations indicates that a silent error has occurred. Especially a
delay in the expected convergence may portend that a temporal hardware failure has taken
place, e.g. the power-off of one component due to overheating. Hence, additionally to the
fault-tolerance with respect to detectable hardware errors, it is also possible to imagine
scenarios where asynchronous methods can be used to detect silent errors.

To investigate the issue of fault tolerance experimentally, we consider the following sce-
nario:
Block-asynchronous iteration is used on a system with a high core number to solve a
linear system of equations. At some point, a certain number of the cores iterating the dis-
tinct components break down. Within a certain time frame, the operating system detects
the hardware failure and may reconfigure the algorithm during runtime by assigning the
respective components to other (e.g. additional) cores or fix the corrupted ones.

This setup is realistic as it may occur due to several reasons. One example is the failure
of computing units of the different layers (cores, CPUs, nodes), a common hardware error
scenario [CGG+09]. Operating system software may detect hardware breakdown after
some time, and it is a question of the implementation how these hard errors are handled.

In our experiments we simulate the introduced scenario the following way:

At a certain time t0, a preset number of randomly chosen components is no longer consid-
ered in the iteration process. We report the residual behavior of different implementations
that either detect the failure and reassigns the components to other cores after a certain
recovery time tr, or do not recover at all. While we expect a delay in the convergence for
the recovery case, the algorithms not reassigning the components handled by broken cores
may generate a solution approximation with significant residual error. We consider the
test matrices Chem97ZtZ, fv1 and Trefethen 2000, that are due to their very differ-
ent characteristics suitable candidates (see Appendix B). For all experiments, we simulate
the hardware breakdown of 25% of the computing cores after about t0 = 10 global iter-
ations. This implies, that one fourth of the components (randomly chosen) is no longer
updated. We implement different versions, where the algorithm detects and reassigns the
components after tr = 10, 20, 30 global iterations, or does not recover at all.

In Figure 4.7 we report the relative residual behavior for the different implementations
and observe very similar results for all matrix systems. In the non-recovering case, the
algorithm generates a solution approximation that differs significantly from the exact so-
lution. Especially, continuing the iteration process for the remaining components (handled
by the working cores) has no influence on the generated values for the symmetric positive
definite test matrices. As soon as the iteration process recovers by assigning the workload
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Figure 4.7.: Convergence of async-(5) for hardware failure. The implementations either
recover by reassigning the components to other cores after the recovery time
tr (denoted with recover-(tr)), or generate a solution approximation with sig-
nificant residual error.
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recovering async-(5) recover-(10) recover-(20) recover-(30)

Chem97ZtZ 8.22 13.67 20.45

fv1 8.16 19.50 31.66

Trefethen 2000 8.16 11.45 16.61

Table 4.7.: Additional computation time in % needed for the async-(5) featuring different
recovery times tr to provide the solution approximation.

GPU 1

GPU 2

Block 

Block 

Block 

Figure 4.8.: Visualizing the block-asynchronous iteration for multi-GPU implementation.

of the broken cores to other hardware components, the convergence is retrieved. With
some problem specific delay (see Table 4.7), the same solution approximation is generated
like for the case of no error. This reveals the high resilience of block-asynchronous iteration
with respect to hardware failure, and the high reliability of the methods.

4.6. Block-Asynchronous Iteration on Multi-GPU Systems

Using multiple graphics processing units, an additional layer of asynchronism is added
to the block-asynchronous iteration method. Now we may split the original system into
blocks that are addressed to the different devices, whereas the local blocks of rows are
again split into even smaller blocks of rows, that are then assigned to the different thread
blocks on the respective GPUs. In between the GPUs as well as in between the different
thread blocks, an asynchronous iteration method is conducted, while on each thread block,
multiple Jacobi-like iteration steps can be applied (see Figure 4.8). For this reason, one
could consider the multi-GPU implementation of the block-asynchronous iteration also
as three-stage iteration, but as both outer (block) updates are asynchronous, there is no
algorithmic difference to the two-stage iteration. The inter-GPU and inter-block iterations
are then considered as one asynchronous block-component update.

For implementing the asynchronous iteration on multi-GPU systems, the central question
is how the updated values can be communicated efficiently. In the classical approach to
multi-GPU implementations, the main memory serves as communication facility, transfer-
ring data to the different devices. This usually triggers a high CPU workload and, due
to the PCI-connection, a bottleneck in the algorithm. CUDA 4.0 offers a whole set of
possibilities, replacing the former slow communication via the host [NVI11]. While the
asynchronous multi-copy technique allows for copying data from the host to several devices
and vice versa simultaneously, GPU-direct introduces the ability to transfer data between
the memory of distinct GPUs without even involving the CPU. It also features the ability
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to access GPU memory located in a different device inside a kernel call.

Despite the fact that more implementations can be realized, we want to limit our analysis
to the following possibilities:

1. Asynchronous Multicopy (AMC) Like in the classical approach, the host mem-
ory serves as communication facility. The performance is improved by allowing for
asynchronous data transfers from and to the distinct graphics processing units. The
data is put in streams, that are then handled independently and without synchro-
nization. This allows the simultaneous data transfer between host and multiple
devices. While for computing the next iteration requires the communication of all
components of the iteration vector, every GPU sends only the new values of the
respectively updated components back to the host. We want to stress that this ap-
proach is only possible due to the asynchronism in the iteration method, otherwise
the performance would suffer from synchronization barriers managing the update
order. This approach, illustrated in Figure 4.9a may especially be interesting for
architectures where different GPUs are accessed with different bandwidths, or the
distinct GPUs processing with different speed.

2. GPU-Direct Memory Transfer (DC) One feature of CUDA 4.0 is the GPU-
direct, allowing the data transfer between different GPUs via PCI without involving
the host. If the complete iteration vector is stored on one GPU, say the master-GPU,
it can be transferred to the other devices without using the main memory of the
host. Again, after every GPU has completed the kernels, the updated components
are copied back to the memory of the master-GPU, serving as central storage, see
Figure 4.9b. While connection to the master-GPU now becomes the bottleneck, the
CPU of the host system is not needed, and can be used for other tasks.

3. GPU-Direct Memory Kernel Access (DK) The possibility to access data lo-
cated in another device inside a kernel allows even another implementation, avoiding
any explicit data transfer in the code. In this algorithm, the components of the
iteration vector are exclusively stored in the memory of the master-GPU, and the
kernels handled by the different devices directly access the data in the master-GPU,
see Figure 4.9c. Like in the GPU-direct memory transfer implementation, the CPU
of the host system is not needed, and can be used for other tasks.

4.7. Experiments of Block-Asynchronous Iteration on Multi-
GPU Systems

In experiments we now want to analyze the properties of the different approaches to
block-asynchronous iteration using multi-GPU systems. First, we focus on the impact of
using multiple GPUs on the convergence rate and the performance. Therefore, we apply
the different approaches to the test matrix Trefethen 20000 matrix (see Appendix B),
which is due to its size and structure suitable for the experiment.

In the first test, we use the asynchronous multicopy (AMC, see Section 4.6) with one, two,
three and four GPUs, which can efficiently be realized since the used Supermicro system
features multiple PCI controllers, see Appendix C.1.

In Figure 4.10a we report the iteration times, in Figure 4.10b the respective residual
improvements. We observe that the initialization process takes about 0.8 seconds, inde-
pendent of the number of devices. Since it includes the memory transfer of the system
matrix to the respective devices, using multiple GPUs and copying only the respectively
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(a) Asynchronous multicopy (AMC)
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(b) GPU-direct memory transfer (DC), GPU1
serves as master-GPU.
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(c) GPU-direct memory kernel access (DK), GPU1
serves as master-GPU.

Figure 4.9.: Visualizing the different Multi-GPU memory handling. The dotted lines indi-
cate the explicit data transfers.
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Figure 4.10.: Performance of asynchronous multicopy (AMC) using different device num-
bers.
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Figure 4.11.: Performance differences depending on data locality using one GPU for the
asynchronous multicopy.

necessary matrix parts to the different GPUs in parallel via different IO interfaces may
trigger a small reduction in the initialization process. Furthermore, we observe that the
average time needed for one global iteration can be decreased considerably when switching
from one to two GPUs: Drawing the initialization overhead, even the optimal speedup
factor of two can be achieved. This stems from the fact, that each GPU only handles half
the components, and due to the asynchronous data transfer using different PCI controller
and different PCI connections, the two devices can add their performance.

Switching from two to three GPUs we observe a performance decrease. While we iterate
still faster than when using only one GPU, we are about 20 % slower than for the dual-GPU
case. To understand a possible explanation for this effect, we have to consider the used
hardware. The Supermicro system consists of two CPUs connected via QPI, where each
CPU is connected to respectively two GPUs (see Appendix C.1). This architecture implies
that, depending on the location of the data in main memory, when computing on a GPU,
the data has to be transferred via the QPI connection between the two CPUs. Eventually,
the data has to be transferred even twice. This case occurs if the data is located in the
Memory of CPU1, the algorithm uses CPU2 for the host operations, but the used GPU is
connected to CPU1. Then, the data has to be accessed via the QPI connection, and then
communicated to the GPU via the QPI again.

For a better understanding of this issue, we conduct an experiment using the async-(5)
algorithm on GPU0 connected to CPU1 We then execute the algorithm several times for
different iteration counts and report the overall execution time in Figure 4.11. Beside the
number of iterations, the only parameter we change is the CPU handling the host opera-
tions and the location of the data in main memory. Either the memory of CPU1 or CPU2
is chosen, which leads to different communication effort. In the results we can identify
two distinct lines where the timing results are located on. This suggests the speculation
that depending on the location of the data in main memory, the overall execution time is
increased by the data transfers.

If we now consider the asynchronous multiycopy algorithm using three GPUs, we neces-
sarily include the communication via the QPI. We may consider this as an explanation
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why the performance decreases when switching from two to three GPUs in Figure 4.10a.

Increasing the GPU number from three to four, we again benefit from the reduced com-
ponent number handled per device. This stems from the fact that the application now
includes the communication via the QPI anyway, and using more GPUs pays off, as the
number of components handled by one GPU and the therewith associated average time for
one global iteration is decreased. Although this configuration outperforms the dual-GPU
performance, the speedup is, due to the additional communication overhead, considerably
smaller than the factor of two.

For the convergence characteristics, using less devices may be beneficial. A possible rea-
son is that additional hardware components may, despite the faster component handling,
trigger additional delay in the communication, having negative impact on the convergence
rate. Nevertheless, we observe in Figure 4.10b that the variations are negligible, and an
interesting observation is, that using four instead of three GPUs even increases the con-
vergence rate. The reason may again be due to the system architecture, where always two
GPUs are connected to one CPU. In Figure 4.10c we combine the results for iteration tim-
ing and convergence by reporting the average computation time needed to obtain a certain
approximation accuracy. We can conclude, that the slightly slower convergence rate with
respect to iteration numbers has almost no impact: the time-to-solution performance is
very similar to the iteration performance.

We now want to analyze the other implementations leveraging the GPU-direct technology.
Unfortunately, for the specific architecture of the Supermicro system (see Appendix C.1)
CUDA does not yet support GPU-direct between more than two GPUs as CUDA’s GPU-
GPU communication is only supported for GPUs connected to the same CPU [NVI09].
Therefore, we have to limit our analysis of the GPU-direct memory transfer (DC, see
Section 4.6) and the GPU-direct memory kernel access (DK, see Section 4.6) to the cases
where we are using one or two GPUs.

First, we consider the GPU-direct memory transfer (DC). In Figure 4.12 we report the
iteration timings, the residual improvement and the time-to-solution.

We observe, that the difference in any of the metrics is negligible. The average iteration
timing is improved by less then 10 %, the convergence behavior shows almost no difference,
and also for the time-to-solution we notice only small improvement. Considering the
implementational overhead and the additional power usage when computing on multiple
GPUs we may conclude that this approach is not beneficial for the given experiment setup.

The GPU-direct memory kernel access (DK) differs from the GPU-direct memory transfer
approach in the way that the remote GPU cores only fetch the respectively needed data,
and write back. The memory copy transferring the complete set of the remotely handled
components in the DC approach is replaced by very particular communication. In Figure
4.13a we report the average iteration times and observe that the results are very similar
to the DC approach. This was expected due to the very similar algorithm design. A
difference can be observed for the convergence rate (see Figure 4.13b): the component-
specific communication may trigger additional communication delay, resulting in slower
convergence. Like in the DC approach, the term average iteration number in this case
really is an average including large variations, since the components handled locally may
be updated far more often than the components handled by the remote GPU. The result
is a slower convergence with respect to average iteration numbers. This also impacts the
time-to-solution performance: the improvement by using an additional device is almost
outweighed by the slower convergence (Figure 4.13c).

Since we have seen that for all implementations, the solution approximation accuracy al-
most linearly depends on the run-time, for comparing the performance of the different
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Figure 4.12.: Performance of GPU-direct memory transfer (DC) using different numbers
of devices.
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Figure 4.13.: Performance of GPU-direct memory kernel access (DK) using different num-
bers of devices.
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Figure 4.14.: Time-to-solution for the different Multi-GPU implementations for test matrix
Trefethen 20000.

implementations it is sufficient to report the time-to-convergence. In Figure 4.14 we sub-
tracted the respective initialization overhead. For the case using only one GPU, the DC
and DK approach is slightly faster than the asynchronous multicopy since the iteration
vector resides in the GPU memory and is not transferred back and forth between CPU and
GPU. Other than that, the algorithms of asynchronous multicopy, GPU-direct memory
transfer and GPU-direct memory kernel access do not differ when running on only one
GPU. As soon as we include a second GPU, the asynchronous multicopy performs con-
siderably faster. The total run-time is almost cut in half, while for the GPU-direct based
implementations, only small improvements can be observed. The reason for the excellent
speedup of the AMC becomes possible by using different PCI connections, such that every
GPU may leverage the complete bandwidth, which is essential since the application seems
to be memory bound. Using the memory located in one of the GPUs, like we do in the
GPU-direct approaches, puts a lot of pressure on the PCI connection of this GPU: all data
has to be transferred via this connection.

4.8. Block-Asynchronous Iteration for Sparse Systems

In the following sections, we want to introduce a matrix storage format that allows a more
efficient usage of block-asynchronous iteration when targeting sparse systems. The motiva-
tion is that for systems where most matrix entries equal zero, using a dense representation
induces considerable overhead to the computational complexity and the required memory.
The latter one may be crucial for the communication when using GPU-accelerated systems.
While the widely used CRS format is usually very efficient when handling sparse systems,
we apply small modifications to this format to optimize it for the block-asynchronous
algorithm.

4.8.1. CRS Format

When using finite elements for the discretization of partial differential equations, most of
the coefficients in the obtained linear system equal zero. Therefore, it is usually not neces-
sary to store the complete matrix. While storing only the nonzero entries usually leads to
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significant performance improvement when conducting computations, memory constraints
often do not allow any other choice, e.g. if the system has to be stored in limited device
memory.
The challenge when storing only the nonzero entries is how to remain the locality in-
formation. While the most intuitive idea of adding two arrays containing the row- and
column-index of every nonzero entry would lead to a memory demand of three arrays of
the length nnz where nnz is the number of nonzero elements in the matrix, a more effi-
cient and widespread used format is the ”compressed row storage” (CRS). The following
description is largely taken from [BBC+94].

The underlying idea of the compressed row storage is to put the subsequent nonzeros of
the matrix rows in contiguous memory locations. Assuming a nonsymmetric sparse matrix
A, it creates three vectors: one for floating-point numbers val (of length nnz), and the
other two for integers where col (of length nnz) contains the column indices and row (of
length n + 1) pointers to the first element in every row. The val vector stores the val-
ues of the nonzero elements of the matrix A, as they are traversed in a row-wise fashion.
The col vector stores the column indexes of the elements in the val vector. That is, if
val(k) = ai,j then col(k) = j. The row pointer vector stores the locations in the val vector
that start a row, that is, if val(k) = ai,j then row (i) ≤ k < row(i + 1). By convention,
row(n + 1) = nnz, where nnz is the number of nonzeros in the matrix A. The storage
savings for this approach may be significant: Instead of storing n2 elements, memory for
2nnz + n+ 1 elements is needed. While for dense systems (nnz = n2) this approach even
causes an overhead, it is beneficial for sparse systems where where typically 2nnz << n2.

But despite the efficient storage and the good performance for most algebraic operations,
the CRS format has one drawback that may for some algorithms, especially relaxation
schemes, be crucial: There exists no direct access to the diagonal elements. The reason is,
that there is no information stored about whether an element is on the diagonal. To get the
diagonal element of a row, it is necessary to pass through the part of the col array where
the column information of the respective row can be found until the diagonal element is
identified. This not only demands for if statements in the code that are difficult to par-
allelize, but also for a high number of memory jumps that usually cause poor performance.

In order to avoid this problem we introduce a matrix format that is optimized for diagonal-
focused algorithms like the Jacobi method (see Section 2.4.1). Therefore we split the matrix
into two parts, one containing the diagonal block elements with adjustable block-size, and
one containing the remaining off-diagonal part. In the matrix containing the diagonal
blocks, we reorder every row such that the diagonal element is always first. It should be
mentioned though, that this reordering is only beneficial for our application where fast
access to the diagonal elements is crucial. For other operations, it may cause poor perfor-
mance due to additional memory jumps.
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4.8.2. Modified Sparse Matrix Storage for Asynchronous Iteration Method

Algorithm 16 Asynchronous iteration for sparse matrices stored in CRS format.

1: for all (index ∈ {1 . . . n}) do
2: int start = row[index];
3: int end = row[index+ 1];
4: double tmp = 0.0;
5: double diag = 0.0;
6: for (i = start; i < end; i+ +) do
7: if (col[i] == index) then
8: diag = val[i];
9: tmp+ = val[i] · x[col[i]];

10: else
11: tmp+ = val[i] · x[col[i]];
12: end if
13: end for
14: x[index] = x[index] + 1.0/diag · (b[index]− tmp);
15: {/*—————— possibility to add more local iterations —————— */}
16: for (iters = 0; iters < local iters; iters+ +) do
17: double tmp = 0.0;
18: double diag = 0.0;
19: for (i = start; i < end; i+ +) do
20: if (col[i] == index) then
21: diag = val[i];
22: tmp+ = val[i] · x[col[i]];
23: else
24: tmp+ = val[i] · x[col[i]];
25: end if
26: end for
27: x[index] = x[index] + 1.0/diag · (b[index]− tmp);
28: end for
29: end for

In Algorithm 16, a straight-forward parallel implementation of the asynchronous iteration
for sparse matrices stored in CRS format can be found. But especially when targeting
highly parallelized devices like GPUs, the if-statements identifying the diagonal element
may cause poor performance. Since the diagonal element is located at a different place
for every row, also the SIMT model provided by CUDA may not improve the situation,
see Section 4.1. A possible expedient to this issue is to replace the requests by a feature
of the C programming language, see Algorithm 17. However, when executing the code on
GPUs, we observe almost no performance difference between the codes, which suggests
that the additional multiplication and type conversion generates an overhead comparable
to the version using predication.

The situation can finally be improved by reordering the elements in one row, such that the
diagonal element is always first. Additionally, performance may benefit from splitting the
matrix into parts such that diagonal blocks can be used for local iterations like in Section
4.2.
Therefore, we propose the following matrix layout for asynchronous iteration methods:

1. The matrix currently stored in CRS format is split into two matrices, that are then
again stored in CRS format.

2. One matrix contains only diagonal blocks, the other one the off-diagonal blocks.
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Algorithm 17 Asynchronous iteration for sparse matrices stored in CRS format, the
layout of the if-conditions is replaced by the expression in lines 7 and 16.

1: for all (index ∈ {1 . . . n}) do
2: int start = row[index];
3: int end = row[index+ 1];
4: double tmp = 0.0;
5: double diag = 0.0;
6: for (i = start; i < end; i+ +) do
7: diag+ = int(col[i] == index) · val[i];
8: tmp+ = val[i] · x[col[i]];
9: end for

10: x[index] = x[index] + 1.0/diag · (b[index]− tmp);
11: {/*—————— possibility to add more local iterations —————— */}
12: for (iters = 0; iters < local iters; iters+ +) do
13: double tmp = 0.0;
14: double diag = 0.0;
15: for (i = start; i < end; i+ +) do
16: diag+ = int(col[i] == index) · val[i];
17: tmp+ = val[i] · x[col[i]];
18: end for
19: x[index] = x[index] + 1.0/diag · (b[index]− tmp);
20: end for
21: end for

The block size is chosen according to the matrix decomposition that is optimized to
hardware and problem-dependent parameters.

3. If one of the matrices contains no elements in one row, a zero-element is artificially
created in this row. This allows for processing the matrices uniformly in the block-
asynchronous iteration algorithm, and causes negligible memory and computational
overhead.

4. The matrix containing the diagonal blocks is reordered in memory, such that the
diagonal element of every row is always first. This allows easy access to the diagonal
elements, since now every row element points to the diagonal element in the respec-
tive row. The order of the remaining elements in the row is immaterial, and can be
left unchanged.

5. The memory overhead triggered by the new data layout is at most 2n+ 1 additional
integers and 2n floating point numbers, which is the case if one of the created matrices
is the zero-matrix. Usually, for both matrices there exist elements in all rows, which
results in a memory overhead of only one additional integer, since now the nonzero
information of two matrices has to be stored.

Visualized in Figure 4.15, the introduced data layout has the potential to significant per-
formance increase since the original code can be redesigned, see Algorithm 18. We may
denote this modified CRS format as Block-CRS . Note that it always has to be adapted
to the block decomposition of the matrix. An open question in this context is the com-
putational cost of rearranging the data. Depending on the specific matrix properties, the
overhead caused may have considerable impact on the overall algorithm performance.
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Figure 4.15.: Splitting a CRS matrix into a diagonal-block and a non-diagonal-block part
for a block-size of 3 elements. Note that in the matrix containing the diag-
onal blocks, the row vector element points to the diagonal element in every
row, and the non-diagonal-block matrix contains an artificially created zero
element in the second row.

Algorithm 18 Asynchronous iteration for the block-CRS format. Notice that ind diag is
the index where the diagonal block starts, local iter is the number of the local iterations,
and diag, offdiag denote the matrices containing the diagonal blocks and the offdiagonal
blocks, respectively.

1: Convert the CRS data layout into the block-CRS data layout;
2: for all (index ∈ {1 . . . n}) do
3: initialize inddiag with start of the block index is located in;
4: int start = row offdiag[index];
5: int end = row offdiag[index+ 1];
6: double tmp = 0.0;
7: double v = 0.0;
8: double diag = 0.0;
9: for (i = start; i < end; i+ +) do

10: v+ = val offdiag[i] · x[col offdiag[i]];
11: end for
12: start = row diag[index];
13: end = row diag[index+ 1];
14: for (i = start; i < end; i+ +) do
15: tmp+ = val diag[i] · x[col diag[i]];
16: end for
17: v = b[index]− v;
18: {/*—————— possibility to add more local iterations —————— */}
19: local x[index− ind diag] = x[index] + (v − tmp)/val diag[start];
20: for (j = 0; j < local iters; j + +) do
21: tmp = 0.0;
22: for (i = start; i < end; i+ +) do
23: tmp+ = val diag[i] local x[col diag[i]− ind diag];
24: end for
25: local x[index− ind diag]+ = (v − tmp)/val diag[start];
26: end for
27: x[index] = local x[index− ind diag];
28: end for
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Figure 4.16.: Block-asynchronous iteration performance for test matrix A318 using CRS
and block-CRS data layout, respectively.

4.9. Experiments on Block-Asynchronous Iteration for Sparse
Systems

In this section we want to compare the performance of the two block-asynchronous it-
erations for sparse systems using the CRS and the block-CRS format introduced in the
last section. Using the block-CRS format in Algorithm 16 triggers, additionally to the
GPU initialization, some more overhead at the beginning since the linear system matrix
has to be converted into the new format. While this overhead is small for our large but
very sparse test case, depending on the matrix structure it may become a crucial factor in
the algorithm’s performance. Once this is arranged, we may benefit from the new format
optimized to the method’s design. This may be true for the plain asynchronous iteration
as well as the block-asynchronous iteration. In order to analyze this trade-off, we conduct
experiments on the large sparse system A318 (see Appendix B). Neglecting small round-
ing effects that may occur, we know that the same global iteration count generates the
same solution approximations. In Figure 4.16 we report the computation time for different
numbers of global iterations.

Analyzing the runtimes we realize that the overhead by the data conversion into the block-
CRS format may pay off for the block-asynchronous iteration using multiple local iterations
as well as the block-asynchronous iteration using only one local update. For the latter one
(see (async-(1), Figure 4.16a), using the block-CRS data layout is beneficial when conduct-
ing more than 25 iterations. Comparing the data given in Table 4.8 we realize that the
improvements using the modified format results for high iteration numbers in speedups of
more than two. As expected, the block-asynchronous using 5 local iterations (async-(5))
benefits even more from modifying the data layout (Figure 4.16b). We observe that the
overhead of the conversion approximates one iteration of the CRS based implementation.
This causes overhead of 100% for the first iteration using async-(5), but already when per-
forming three iterations, this overhead is compensated for. The performance improvement
per iteration for async-(5) approximates 80 %, which results in substantial speedups for
high iteration numbers (see Table 4.8).

4.10. Problem-Aware Block-Asynchronous Iteration

In the previous sections of this chapter we have shown that using block-asynchronous
iteration can be beneficial when working on heterogeneous highly parallel hardware. We
now want to investigate whether adapting the method to a specific problem is possible,
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method CRS [sec] block-CRS [sec] reduction overhead CRS overhead block-CRS
async-(1) 0.19453 0.07063 64 % 1.2114 3.8482
async-(5) 0.90580 0.21217 82 % 1.1260 3.7623

Table 4.8.: Timings per iteration for CRS and block-CRS based asynchronous iterations.
The results are average timings for one global iteration.

and whether this pays off in terms of convergence behavior and runtime performance.
Since many linear systems that have to be solved in scientific computing arise from the
discretization of partial differential equations, we consider two experiment setups, where
the block-asynchronous iteration is either adapted to a given system of linear equations by
using the matrix properties, or by interacting with the discretization, which is possible if
the discretization is flexible, and the underlying partial differential equation itself is given.

The respective underlying ideas are:

• Assuming a given system of linear equations with a specific matrix structure, it
may be beneficial to adapt the block-asynchronous iteration to this structure by
either using weights for the local iterations on the subdomains, or by controlling
the number of local iterations according to the diagonal dominance of the distinct
blocks. Similar to weighting in hybrid parallel smoothers [HY00], the fundamental
idea of using weights in block-asynchronous iteration is to control the influence of
the local iterations on the subdomains by modifying the iteration matrix. Adapting
the number of local iterations in contrast applies no modifications to the iteration
matrix, but accounts for the matrix structure by conducting different iteration counts
on the distinct subdomains.

• Targeting the solution of a partial differential equation where the discretization pro-
cess is known and allows for some adjustments, it may be beneficial to account for
the discretization parameters in the block-asynchronous method. Particularly, in
case of using a uniform finite element discretization, e.g. finite differences, the block-
size can efficiently be adapted to the element number per direction to reduce the
off-block parts in the iteration matrix. But also the discretization may be adapted
to the iteration method and the used hardware.

In the following sections, we will first motivate the use of weights by the successful ap-
plication in multigrid methods. We then introduce weighting techniques for the block-
asynchronous iteration, show that the convergence is preserved (Section 4.10.2.2 and
4.10.2.4) and then analyze the performance increase in numerical experiments. In Sec-
tion 4.10.4 we proceed with introducing an iteration scheme where the number of local
iterations on the distinct blocks is chosen with respect to the ratio between block and
off-block parts. In Section 4.10.5 we investigate in experiments how adapting the number
of local iterations pays off.

We then target the problem of adapting the block-asynchronous iteration to a given partial
differential equation. After introducing some fundamental concepts in Section 4.10.6 we
show in Section 4.10.8 for an academic problem that not only adapting the iteration to
the discretization pays off, but we may also benefit from discretizing with respect to the
hardware and implementation.

4.10.1. Weights in Multigrid Smoothers

Using weights in iterative relaxation schemes is a well known and often applied tech-
nique to improve the convergence. An example is the classical successive over-relaxation
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(SOR [Saa03], see Section 2.4.3), which may improve the convergence rate of the under-
lying Gauss-Seidel algorithm by using weights. Other prominent examples include block-
smoothers in multigrid methods for finite element discretizations [BFKMY11]. In this case,
the parallelized Block-Jacobi- or Block-Gauss-Seidel smoothers are weighted according to
the block decomposition of the system of linear equations.

While Chazan and Miranker have introduced a weighted asynchronous iteration similar to
SOR [CM69], it becomes of interest as whether the block-asynchronous iteration benefits
from weighting methods similar to those applied to block smoothers. The motivation is
that the off-block matrix entries are neglected in the local iterations performed on the
subdomains. To account for this issue it may be beneficial to weight the local iterations.
This can be achieved either by using `1-weights, by a technique similar to the ω-weighting
proposed by Chazan and Miranker in [CM69] but adapted to the block design, or by a
combination of both. For this purpose we will first derive different methods, analyze the
convergence properties, and then report experimental results.

4.10.2. Weighting in Block-Asynchronous Iteration

The underlying block-asynchronous iteration which we consider is the method we intro-
duced in Section 4.2. Due to the design of the algorithm based on a block decomposition
of the iteration matrix, it may be beneficial to apply weighting techniques similar to those
applied in block-smoothers for multigrid methods [BFKMY11]. We may also benefit from
employing an ω-weighting technique for the block-asynchronous iteration like the one used
in block-SOR. The common idea of all approaches is to control the influence of the local it-
erations. Especially when targeting strongly coupled systems, where there exist significant
matrix entries away from the diagonal, the local iterations may trigger poor convergence,
since they only account for the matrix entries in the respective block.

To examine the topic of weights in block-asynchronous iteration we first introduce some
notation, that may simplify the further analysis. Splitting the matrix A into blocks, we
use Al,l for the matrix block located in the l-th block row and the l-th block column.
Furthermore, we introduce the index sets Ωl where

Ω =

p⋃
l=1

Ωl = {1, 2 . . . n},

and Ωi ∩Ωj = ∅ ∀i 6= j consistent to the block decomposition of the matrix A. Using this
notation, Ωl contains all indices j with TS(l) ≤ j ≤ TE(l) where TS(l) (respectively TE(l))
denotes the first (last) row and column index of the diagonal block Al,l. We now define
the sets

Ω(i) = {j ∈ Ωl : i ∈ Ωl},

Ω
(i)
0 = {j /∈ Ωl : i ∈ Ωl}.

Hence, for block Al,l, Ω(i) contains the indices with corresponding columns being part of

the diagonal block of row i while Ω
(i)
0 contains the indices of the columns that have no

entries in the block. This way, we can decompose the sum of the elements of the i-th row:
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∑
j

ai,j =

kS−1∑
j=1

ai,j︸ ︷︷ ︸
off-block columns

+

kE∑
j=TS

ai,j︸ ︷︷ ︸
block columns

+
n∑

j=TE+1

ai,j︸ ︷︷ ︸
off-block columns

(4.2)

=
∑
j∈Ω(i)

ai,j︸ ︷︷ ︸
block columns

+
∑
j∈Ω

(i)
0

ai,j

︸ ︷︷ ︸
off-block columns

. (4.3)

We may now define an indicator θ such that for all rows i

|ai,i| ≥ θ
∑
j∈Ω

(i)
0

|ai,j | (4.4)

indicates a certain quality of the parallel partitioning of the matrix A. Large values
for θ imply that most of the relatively significant entries in every row are on the diago-
nal [BFKMY11]. For the block-asynchronous iteration using the matrix block decomposi-
tion this means that the off-block entries, which are neglected in the local iterations, are
relatively small.

4.10.2.1. ω-weighting for Block-Asynchronous Iteration

Similar to the ω-weighted asynchronous iteration (see Theorem 3.2.5 Section 3.2, [CM69]),
it is possible to use ω-weights for the block structure in the block-asynchronous approach.
In this case, the solution approximation of the local iterations is weighted when updating
the global iteration values. The parallel algorithm for the component updates in one
matrix block is outlined in Algorithm 19.

Algorithm 19 Basic principle of using ω weights in block-asynchronous iteration.

1: update component i:
2: s := di +

∑
j∈Ω

(i)
0

bi,jxj {off-diagonal part}
3: xlocal = x
4: for (k = 0; k < local iters; k + +) do
5: xlocali := s+

∑
j∈Ω(i) bi,jx

local
j {using the local updates in the block}

6: end for
7: xi = ωxlocali + (1− ω)xi

For this algorithm it is difficult to derive one explicit iteration matrix, as for the local
iterations B = I −D−1A is applied, and for the global updates Bω = I − ωD−1A is used.

4.10.2.2. Convergence of ω-weighted Block-Asynchronous Iteration

Theorem 4.10.1. Suppose the asynchronous iteration fulfilling (a) and (b) of Condition
3.2.1 is modified by using weights in the block-asynchronous iteration like in Algorithm 19
where local iters denotes the number of local iterations on every subdomain.
If the spectral radius of ρ(|B|) = α < 1, then the ω-weighted block-asynchronous iteration
converges for all ω with 0 < ω < 2

α+1 .

Proof. If the condition ρ(|B|) = α < 1 is fulfilled, we know from Theorem 3.2.3 that the
respective iteration scheme is convergent to the unique solution x∗. Furthermore, from
Theorem 3.2.5 we get for 0 < ω < 2

α+1 the existence of β < 1 with |Bω|v = βv, and
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consequently the ω-weighted iteration also converges to the unique solution x∗ [CM69].
Hence, we have two different iteration schemes with the iteration matrices B respectively
Bω that are convergent for any update pattern. The method proposed in Algorithm 19 is
an iteration scheme where these two iteration methods are combined such that for every
component update either B or Bω is applied. In fact, the ω-weighted block-asynchronous
iteration arises as a very specific case of component update pattern and specific sequence
of applying B and Bω.

To analyze the convergence of this method we show that in case of two converging asyn-
chronous iteration schemes based on the original and the weighted iteration matrix, also
any combination of these two schemes using an arbitrary pattern of component updates
and choice of iteration matrix converges.

Let ek = x∗ − xk be the error in the t-th iteration. Like in the proof of Theorem 3.2.2
we consider the first s̄ iterates in the process, where s̄ is the upper bound for the shift
function. We have ρ(|B|) = α < 1 and 0 < ω < 2

α+1 , and now define ξ := max{α, β} for
the β = |1−ω|+αω < 1 from Theorem 3.2.5. Obviously, ξ < 1. From Theorem 3.2.3 and
Theorem 3.2.5 we can deduce that there exists a positive vector v > 0 with |B| v ≤ ξv and
|Bω| v ≤ ξv. Since all components of v are positive, there exists a positive value γ such
that |ek| ≤ γv for 0 ≤ t ≤ s̄ (component-wise, |ekj | ≤ γvj ∀j). We now consider the update
of component i using B or Bω and any of these s̄ vectors forming the first s̄ iterates. Let

B̃ =

{
B if the iteration matrix B is applied

Bω if the iteration matrix Bω is applied

We may assume without loss of generality that b = 0 in (2.1) so that x∗ = 0 and
B̃xki = −B̃eki . Then, the update satisfies

|ek+1
i | = |x∗i − xk+1

i | = |0− xk+1
i |

= |
n∑
j=1

b̃i,jx
k−s(t,j)
j | ≤

n∑
j=1

|b̃i,jek−s(t,j)j |

≤
n∑
j=1

|b̃i,j ||ek−s(t,j)j | ≤ ξγvi.

If t1 is the first instance after s̄ for which all components have been updated using either
the iteration matrix B or Bω, then |ek1 | ≤ ξγv. Moreover, |ek| ≤ ξγv for all t ≥ t1.
Similarly, if t2 is the next instance after t1 for which all components have been updated
a second time using one of the iteration matrices, then |ek| ≤ ξ2γv for all t ≥ t2. This
way we obtain that the error |ek| = |x∗ − xk| converges to zero for t → ∞. Hence, for
any update pattern and any sequence of iteration matrices the solution approximation is
convergent to x∗, the unique solution of (2.1).

4.10.2.3. `1-weighting in Block-Asynchronous Iteration

Using the notation for the local and the global parts of the matrix (see (4.2)), we can
introduce a weighting technique, that is usually referred to as `1-weighting [BFKMY11]
(see Figure 4.17). Classically applied to Block-Jacobi and Gauss-Seidel relaxation methods,
`1-weighting modifies the iteration matrix to B`1 = (b`1i,j) = I − (D + D`1)−1A, where

D`1 = (di,i) is the diagonal matrix with entries

di,i := sign(ai,i)
∑
j∈Ω

(i)
0

|ai,j |.
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Block 

Block 

Figure 4.17.: Visualizing the `1-weighting technique.

Algorithm 20 Basic principle of using `1-weights in block-asynchronous iteration.

1: compute B`1 = (b`1i,j)
2: update component i:
3: s := di +

∑
j∈Ω

(i)
0

b`1i,jxj {off-diagonal part}
4: xlocal = x
5: for (k = 0; k < local iters; k + +) do
6: xlocali := s+

∑
j∈Ω(i) b

`1
i,jx

local
j {using the local updates in the block}

7: end for
8: xi = xlocali

The obtained `1-weighted Block-Asynchronous Iteration can be found in Algorithm 20.

A question in this context is, whether the obtained weighted block-asynchronous iteration
is still convergent.

4.10.2.4. Convergence of `1-weighted Block-Asynchronous Iteration

Theorem 4.10.2. Suppose

xk+1
i =

n∑
j=1

b`1i,jx
k
j + di, i = 1, 2 . . . n (4.5)

is an `1-weighted asynchronous iteration scheme where condition (a) and (b) are fulfilled.
If furthermore

ρ (|B|) < 1

where ρ (|B|) is the spectral radius of the component wise non-negative matrix B, then the
sequence of solution approximations xk is convergent to x∗, the unique solution of 2.1.

The proof to this is very similar to Theorem 3.2.2 with the difference, that the iteration
matrix B of (2.20) is replaced by

B`1 =



1− a1,1
a1,1+d1,1

− a1,2
a1,1+d1,1

− a1,3
a1,1+d1,1

. . . − a1,n
a1,1+d1,1

− a2,1
a2,2+d2,2

1− a2,2
a2,2+d2,2

. . .
...

−a3,1
a3,3

. . . 1− a3,3
a3,3+d3,3

. . .
...

...
. . .

. . .
. . .

− an,1
an,n+dn,n

. . . 1− an,n
an,n+dn,n


. (4.6)
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Introducing

R :=



a1,1
a1,1+d1,1

0 0 . . . 0

0
a2,2

a2,2+d2,2
0

...

0 0
a3,3

a3,3+d3,3

. . .
...

...
. . .

. . .
. . .

0 . . . . . .
an,n

an,n+dn,n


(4.7)

we can rewrite the iteration matrix into B`1 = R · B + (I − R). Furthermore, due to the
definition of d`1i,i we have 0 < ri,i ≤ 1 ∀i = 1 . . . n.

Proof. To prove Theorem 4.10.2 we analyze like in the proof of Theorem 3.2.2 the difference
between x∗ = 0, the unique solution to (2.1) with b = 0 and the iterates xk. Let ek = x∗−xk
again be the error in the t-th iteration. We consider the first s̄ iterates in the process. Due
to Theorem 3.2.3 we have that there exists a positive v and α < 1 such that |B| v ≤ αv.
Since all components of v are positive, there exists a positive value γ such that |ek| ≤ γv
component wise for 0 ≤ t ≤ s̄. We now consider any component i that is updated using
any of these s̄ vectors forming the first s̄ iterates. Without loss of generality we assumed
b = 0 in (2.1) and obtain d = 0 in (4.5) and B`1x

k
i = −B`1eki . As 0 < ri,i ≤ 1 ∀i = 1 . . . n

the update satisfies

|ek+1
i | =

∣∣∣∣∣∣
n∑
j=1

b`1i,je
k−s(t,j)
j

∣∣∣∣∣∣
=

n∑
j=1

∣∣∣ri,ibi,jek−s(t,j)j

∣∣∣+
∣∣∣(1− ri,i)ek−s(t,i)i

∣∣∣
= |ri,i|

n∑
j=1

∣∣∣bi,jek−s(t,j)j

∣∣∣+ |(1− ri,i)|
∣∣∣ek−s(t,i)i

∣∣∣
≤ α|ri,i|γvi + |(1− ri,i)|γvi
= γ (αri,i + (1− ri,i)) vi.

With βi = 1− ri,i(1− α) we have 0 ≤ βi < 1 ∀i = 1 . . . n. Let β = maxi{βi}, then

|ek+1
i | ≤ γ (αri,i + 1− ri,i) vi ≤ βγvi.

Now, we can continue like in the proof of Theorem 3.2.2. If t1 is the first instance after s̄
for which all components have been updated, then |ek1 | ≤ βγv. Moreover, |ek| ≤ βγv for
all t ≥ t1. Similarly, if t2 is the next instance after t1 for which all components have been
updated a second time, then |et| ≤ β2γv for all t ≥ t2. This way we obtain that the error
|ek| = |x∗ − xk| converges to zero. Hence, the solution approximation is convergent to x∗,
the unique solution.

4.10.3. Experiments on Weighted Block-Asynchronous Iteration

While the experimental results presented in this section were presented at the HeteroPar
2012 workshop [ATDH12b], the properties and sparsity plots of the matrices we target
can be found in Appendix B. Details about the hardware configuration of the used Disco-
system can be found in Appendix C.3.
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Figure 4.18.: Convergence rate of ω-weighted block-asynchronous iteration for different
choices of ω(=w) [ATDH12b].

On the CPU, the synchronous Gauss-Seidel and the SOR implementations run on 4 cores,
which may come into account for the residual computation. Intel compiler 11.1.069 [int] is
used with optimization flag “-O3”. The GPU implementation is based on CUDA [NVI09],
while the respective libraries used are from CUDA 4.0.17 [NVI11]. The component updates
were coded in CUDA, using size of the matrix block decomposition was chosen according
to the thread block size of 512.

In a first experiment, we analyze the influence of ω on the convergence rate with respect to
global iteration numbers. Therefore we plot the relative residual depending on the iteration
number. We want to stress again that all values are average due to the non-deterministic
properties of block-asynchronous iteration. To have a reference, we additionally provide
the convergence behavior of the sequential Gauss-Seidel algorithm.

The results reveal, that the convergence rate of the block-asynchronous iteration is very
dependent on the matrix characteristics. For matrices with most relevant matrix entries
gathered on or near the diagonal (small θ in (4.4)), the local Jacobi-like iterations provide
sufficient update improvement to overcompensate for the inferior convergence rate of the
block-asynchronous iteration conducted globally. Solving these systems, e.g. fv1 and fv3,
we achieve a higher convergence rate than the sequential Gauss-Seidel algorithm. Similar
to the SOR algorithm, choosing ω > 1 may improve the convergence further (Figure 4.18b
and 4.18c). Comparing the convergence rate of fv1 and fv3 we note that the condition
number of the system has almost no influence.

For systems with significant off-diagonal entries, the convergence of the block-asynchronous
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Figure 4.19.: Convergence improvement using `1-weights for different block sizes. Solid
lines, all lying on top of each other, are unweighted block-asynchronous
iteration, dashed lines are block-asynchronous iteration using `1-weights
[ATDH12b].

iteration decreases considerably (Figure 4.18a, 4.18d). The reason is that the off-diagonal
entries are not taken into account for the local iterations. For these cases, it may not
be beneficial to choose ω > 1, eventually ω < 1 would provide more improvement to the
convergence rate.

The purpose of the `1-weights, introduced in Section 4.10.2.3, is to account for different
off-diagonal parts in the distinct rows, i.e. to apply different weights in different rows.
We now want to evaluate whether this approach triggers convergence improvement. For
the tests it is reasonable to choose a system with a high number of off-diagonal elements.
Therefore, we will focus our analysis on the matrix Trefethen 2000 where, due to the
design, the ratio between the diagonal entry and the offdiagonal parts differs considerably
for the distinct rows. We now compare, using different block sizes, the convergence rate
of the block-asynchronous iteration with the `1-weighted variant. Note at this point that
using `1-weights triggers some overhead to the computation time due to the computation of
the weights. This may be daunting for some systems where the convergence improvement is
smaller than the overhead, but as computing the weights is relatively cheap, the improved
convergence rate may in most cases directly correlate to a performance increase.

We can observe in Figure 4.19 that, independently of the block size, using `1-weights
improves the convergence rate. We also note that the influence of the block-size on the
convergence rate for the unweighted algorithm is negligible. Furthermore, using `1-weights
is especially beneficial when targeting large block sizes, where the `1-weights for the distinct
rows in one block differ considerably. For this case (e.g. block size 512), the convergence
of the block-asynchronous iteration is improved by a factor of almost 2 compared to the
unweighted algorithm.

While the convergence rate, with respect to iteration number, is interesting from the the-
oretical point of view, the more relevant factor is the time-to-solution performance. This
depends not only on the convergence rate, but also on the efficiency of the respective algo-
rithm on the available hardware resources (hardware-dependent iteration rate). Whereas
the Gauss-Seidel algorithm and the derived SOR algorithms require strict update order
and hence only allow sequential implementations, block-asynchronous iteration is very
tolerant to update order and synchronization latencies, and therefore adequate for GPU
implementations.

In the next experiment, we analyze the runtime performance for the ω-weighted block-

86



4.10. Problem-Aware Block-Asynchronous Iteration 87

0

0.1

0.2

0.3

0.4

0.5

0.6

SOR async-(5) L1-async-(5)

tim
e

to
so

lu
tio

n
[s

ec
]

w=1.0
w=1.1
w=1.2
w=1.3
w=1.4
w=1.5

(a) Chem97ZtZ

0

2

4

6

8

10

12

14

16

SOR async-(5)

w=1.0
w=1.1
w=1.2
w=1.3
w=1.4
w=1.5

(b) fv1

0

500

1000

1500

2000

2500

3000

SOR async-(5)

tim
e
 t
o
 s

o
lu

tio
n
 [
se

c
]

w=1.0
w=1.1
w=1.2
w=1.3
w=1.4
w=1.5

(c) fv3

0.05

0.1

0.15

0.2

0.25

0.3

SOR async-(5) L1-async-(5)

w=1.0
w=1.1
w=1.2
w=1.3
w=1.4
w=1.5

(d) Trefethen 2000

Figure 4.20.: Time-to-solution comparison between SOR and weighted block-asynchronous
iteration [ATDH12b].

asynchronous iteration, and compare it with the SOR algorithm. We want to remind that
despite the similar notation, ω-weighting has, due to the algorithm design, a very different
meaning in the SOR and the block-asynchronous iteration, respectively. For reasonable
test cases, i.e. for the matrices with considerable off-diagonal entries (large θ in (4.4)), we
provide additional data for different ω-weights applied to the block-asynchronous algorithm
enhanced by the `1-weighting technique.

The results show that for matrices where most entries are clustered on or near the main
diagonal, the ω-weighted block asynchronous iteration outperforms the SOR method by
more than an order of magnitude, see Figure 4.20b and 4.20c. We also observe, that ω-
weights for the block-asynchronous algorithm have to be applied more carefully: already
choosing ω ≥ 1.4 leads to divergence of all test cases. For matrices with considerable off-
diagonal parts, using the block-asynchronous iteration may not pay off when comparing
with SOR.

Considering the runtime analysis for the matrix Chem97ZtZ (Figure 4.20a) we have to
realize that although the unweighted block-asynchronous iteration generates the solution
faster than SOR, using ω-weights is not beneficial. While already choosing ω = 1.1 results
in the loss of convergence, choosing ω ∈ [1, 1.1) may have positive effects. The algorithm
also does not benefit from enhancing it by `1-weights, which may stem from the very
unique matrix properties. We notice however that, despite the poor performance, `1-
weights have positive impact on the algorithm’s stability: for ω = 1.1, the convergence of
the block-asynchronous iteration is maintained.
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For the test matrix Trefethen 2000, the performance of SOR and block-asynchronous
iteration is comparable for ω near 1. But enhancing the latter one with `1-weights triggers
considerable performance increase. We then outperform the SOR algorithm by a factor of
nearly 5 (see Figure 4.20d). This reveals not only that using `1-weights pays off, but also
the potential of applying a combination of both weighting techniques.

4.10.4. θl-dependent Block-Asynchronous Iteration

A different approach to account for the off-block entries can be realized by adapting the
number of local iterations on the subdomains to the respective diagonal dominance. The
idea is to decrease the local iteration count where the off-block parts are large compared
to the block parts, and residual improvement via iterating locally is expected to be small.
Conversely, the number of local iterations may be increased where the most significant
entries are clustered in the block diagonal.

The result is a block-asynchronous algorithm, where considerable differences can be ex-
pected in the number of updates for the distinct components. Nevertheless, the con-
vergence rate may be improved compared to the block-asynchronous method where all
components are handled similarly. To investigate this issue, we compare in Section 4.10.5
the convergence rate of the async-(5) method with the async-(θl) variant, where the num-
ber of local iterations is adapted to the ratio between the on- and off-block entries. The
notation async-(θl) is chosen due to the linear system decomposition introduced in Section
4.10.2. While θ was used in (4.4) to quantify the off-block part per row, we now denote
the number of local component updates in block i with θl. The following steps may be
used to determine the respective iteration count θl:

• For each row, the sum of the absolute values of the block elements and of the off-block
elements is computed.

• For each block, as well as for the complete matrix, the average ratio between the
block and off-block parts is calculated.

• For blocks with a ratio higher than the average of the complete matrix, the number
of local component updates is increased. Conversely, for blocks with a ratio lower,
the number of local component updates is decreased.

• The sum of all local component updates forming one global iteration is computed. In
case of a higher total iteration count compared to the original algorithm, the number
of local updates is decreased for all blocks. This ensures, that the total number of
component updates in one global iteration is not larger than before, since this would
falsify the comparison with the original code.

As a result, in the obtained θl-dependent block-asynchronous iteration, the total iteration
count in one global update is equal or smaller to the unweighted block-asynchronous iter-
ation with fixed number of local component updates, but some (block-) components may
be processed more often.

The performance of the obtained θl-dependent asynchronous iteration could be improved
further, if the components in the block with less local iterations are scheduled more often
such that more global updates are conducted for them. We refrain from this idea since it
requires complex modifications in the scheduling mechanisms of the used hardware.

4.10.5. Experiments on θl-dependent Block-Asynchronous Iteration

To analyze the convergence behavior of async-(θl), where the number of local iterations
is determined by the ratio between the elements located in the block diagonal and the
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block size # blocks # local iters
async-(θl) async-(5)

28 72 318 355
56 36 157 175

112 18 76 85
224 9 37 40
448 5 16 20

Table 4.9.: Local Iteration Numbers for θl-dependent Block-Asynchronous Iteration ap-
plied to Trefethen 20000. The last columns report the total number of
component updates in one global iteration.
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Figure 4.21.: Convergence rate of async-(θl) for different block sizes.

off-block elements, we focus on the system of linear equations associated with the matrix
Trefethen 2000 (Appendix B). The size and structure of this test case allows detailed
comparison for different block sizes.

We have noticed in Figure 4.19 in Section 4.10.3 that the block size has almost no impact on
the convergence rate for the unweighted async-(5) algorithm. Hence, it is not surprising to
observe similar properties for the async-(θl) method reported in Figure 4.21. Nevertheless,
one difference to the async-(5) convergence can be identified: the convergence is faster
for smaller block sizes. This stems from the fact that smaller blocksizes allow for a finer
adaptation of the local iterations. Comparing the convergence of async-(θl) and async-(5)
in Figure 4.22 we realize that using the θl-adapted algorithm improves the convergence by
about 30% - despite the fact that the total number of local iterations per global iteration
was reduced by more than 13% (Table 4.9). This result shows the superiority of async-(θl)
over async-(5) for this test case. In general, replacing the block-asynchronous iteration
method using a fixed number of local component updates by async-(θl) is only beneficial
if the overhead associated with the computation of the θl is compensated for by faster
convergence.

An interesting observation can be made when comparing with the `1-weighted async-
(5) method. As we have seen in Section 4.10.3, the convergence behavior of the weighted
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Figure 4.22.: Convergence rate comparison between different block-asynchronous imple-
mentations for different block sizes: solid lines are async-(5) (all lying on top
of each other), dashed lines are `1-async-(5) and dotted lines (all close to
each other ) are async-(θl).

method is influenced by the block size (see Figure 4.19). In the comparison with the async-
(θl) iteration we observe that the `1-weighted variant converges faster for large block sizes,
and slower for small block sizes. Hence, depending on the hardware system configuration
and the problem, async-(θl) may be an efficient alternative to the `1-weighted variant.

4.10.6. Block-Asynchronous Iteration for PDE-Discretizations

As we have seen in the previous sections, using weights in block-asynchronous iteration
may improve the convergence rate and the runtime performance. This was achieved by
introducing matrix weights or adapting parameters like the number of local iterations and
the block size to a specific problem. While optimizing the parameters was based on the
matrix properties, the performance on a specific hardware platform also depends on the
system architecture like the number of computing cores, the cache sizes etc.

A very convenient situation occurs if the system of linear equations is taken from a finite
element discretization of an elliptic partial differential equation. Then, it may be possi-
ble to increase the convergence rate of the block-asynchronous iteration considerably by
adapting to the discretization mesh. This stems from the fact, that choosing a block size
equivalent to the number of elements/nodes in a certain direction of the finite element or
finite difference discretization will reduce the off-diagonal parts in the block decomposition
of the component matrix significantly. This principle also serves as basis for the concept
of line relaxation techniques in synchronous two-stage iterations [Saa03]. In order to il-
lustrate the idea, we dedicate the following section to adapting the block size to a finite
difference discretization of the two-dimensional Helmholtz equation on the unit square.
Although this example may seem very simple, the underlying idea stays the same when
targeting more complex problems.
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Figure 4.23.: Five-point-Stencil.

4.10.7. Block-Asynchronous Iteration adapted to 2D Helmholtz

The Helmholtz Equation is an Elliptic partial differential equation of second order that
can for the two-dimensional case with Dirichlet1 boundary conditions [Bra07] be written
as

−∆u+ δu = b u ∈ Ω, (4.8)

u = 0 u ∈ ∂Ω, (4.9)

where u : Ω→ R and Ω ⊂ R2 [Bra07, GT01]. Recall that ∆ = ∂2

∂x2
+ ∂2

∂y2
.

Assuming a unit square, a possible finite difference discretization can be obtained by the
five-point stencil [Bra07]. In this case, for approximating the solution at any grid point,
we need the values of the four adjacent points. For a boundary point, we only need the
values of the neighbors that are included in the domain. Usually, the values for the nodes
on the boundary are anyway defined by the boundary conditions (in our case Dirichlet
boundary conditions (4.9)). The resulting five point stencil for the inner points (visualized
in Figure 4.23), becomes

1

h2

 −1
−1 4 + δ −1

−1


where h is the uniform distance between two neighboring nodes.

For the two-dimensional unit square, we choose an equidistant and uniform (N+2)×(N+2)
discretization (xi, yj), i, j ∈ {0, 1 . . . N,N + 1}. Then,

xi = i · h,
yi = i · h,

h =
1

N + 1
,

n = N2.

For example, using and a lexicographic numbering of the nodes [Bra07], the system of

1Peter Gustav Lejeune Dirichlet (?1805, †1859)
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linear equations (4.8), (4.9) can be discretized for N = 3 in the form:

1

h2



4 + δ −1 0 −1 0 0 0 0 0
−1 4 + δ −1 0 −1 0 0 0 0
0 −1 4 + δ 0 0 −1 0 0 0

−1 0 0 4 + δ −1 0 −1 0 0
0 −1 0 −1 4 + δ −1 0 −1 0
0 0 −1 0 −1 4 + δ 0 0 −1

0 0 0 −1 0 0 4 + δ −1 0
0 0 0 0 −1 0 −1 4 + δ −1
0 0 0 0 0 −1 0 −1 4 + δ


· x = b. (4.10)

We observe, that this system can be rewritten into the block system

1

h2

 H −I 0
−I H −I
0 −I H

 · x = b, (4.11)

where

H =

 4 + δ −1 0
−1 4 + δ −1
0 −1 4 + δ

 , I =

 1 0 0
0 1 0
0 0 1

 , 0 =

 0 0 0
0 0 0
0 0 0

 .

Choosing the block size equivalent to the number of inner (free) nodes in one direction
of the discretization, i.e. choosing the block size equal to three for N = 3 with fixed
boundary, we obtain a block asynchronous algorithm where every diagonal block has at
most two off-block entries in every row. Obviously, choosing any other block size (except
for naive block size of the system’s dimension n) we would get a higher number of elements
not being part of any diagonal block. Since these elements are not taken into account in
the local iterations on the matrix diagonal blocks, the convergence is potentially improved
by reducing the number of off-diagonal elements.

In the following section we run experiments on a large system of linear equations to show
how adapting the block size to the Finite Difference Discretization improves the conver-
gence rate. At this point, we also want to mention, that similar methods can be applied
when targeting domain decomposition methods in the discretization of partial differential
equations. The block size may then be adapted to the number of elements inside one
subdomain, and solving the local problem corresponds to the local iterations while the
coupling via the boundary corresponds to the global iterations [Bra07].

4.10.8. Experiments for Block-Asynchronous Iteration adapted to PDE
Discretizations

For the Five-Point Stencil introduced in the last section, we investigate the trade off
between the block size and the number of nodes per direction. In Table 4.10 the charac-
teristics of the respectively arising systems of linear equations can be found for different
discretizations. In a first test, we use a discretization with N = 32, where the partial
differential equation and the boundary values are given by (4.8, 4.9) with δ = 10−2. To
the resulting system of linear equations with n = 1024 unknowns we apply the block
asynchronous iteration using different block sizes, and report in Figure 4.24 the respective
average residual after 1000 iterations.

According to our expectations, a larger block size triggers faster convergence. This stems
from the fact, that a larger block size captures more row elements in the local iterations.
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mesh (N + 2×N + 2) N n # nnz est. condition number

102× 102 100 10000 49600 670.98

103× 103 101 10201 50601 673.11

104× 104 102 10404 51612 675.20

105× 105 103 10609 52633 677.23

106× 106 104 10816 53664 679.22

107× 107 105 11025 54705 681.17

108× 108 106 11236 55756 683.07

109× 109 107 11449 56817 684.93

110× 110 108 11664 57888 686.75

111× 111 109 11881 58969 688.52

112× 112 110 12100 60060 690.26

113× 113 111 12321 61161 691.96

114× 114 112 12544 62272 693.63

115× 115 113 12769 63393 695.25

116× 116 114 12996 64524 696.85

117× 117 115 13225 65665 698.41

118× 118 116 13456 66816 699.93

119× 119 117 13689 67977 701.43

120× 120 118 13924 69148 702.89

121× 121 119 14161 70329 704.32

122× 122 120 14400 71520 705.72

Table 4.10.: System Characteristics for the finite difference discretization of the Helmholtz
Equation (4.8) with Dirichlet boundary conditions (4.9) and δ in (4.8) is set
to 10−2. Due to the fixed boundary values, the number of unknowns per
direction (N) is two smaller than the number of elements per direction.
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Figure 4.24.: Average relative residual after 1000 iterations of async-(5) for different block
sizes applied to the Finite Difference Discretization of 2D Laplace on a
equidistant grid with given boundary values and N = 32.
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But the convergence improvement does not linearly correlate to the block size: We observe
a local minimum for the block size 128, which happens to be a multiple of the number
of (free) elements per direction (N = 32). Not only is the convergence considerably
faster than for smaller block sizes, but also faster than for the block sizes 129, 130, 131,
132. This confirms our assumption that convergence can be improved when choosing the
blocksize adapted to the number of unknowns per direction, since it lowers the number
of components that are not taken into account in any of the local iterations. Hence, it
may be beneficial to adapt the block size of the implementation to the discretization of
the partial differential equation.

On the other hand, the computational power of the used devices varies considerably when
implementing different block sizes due to the hardware design. Especially for block sizes
adapted to the physical core number, significant performance improvement can be ex-
pected. For this reason, one might argue whether working the other way round, i.e.
adapting the discretization method to the used hardware, may be beneficial too. This
question is not straight-forward, since choosing a different discretization mesh usually im-
pacts the accuracy and performance of the solution process. For example, choosing a lower
number of nodes per direction usually triggers higher discretization error [Bra07]. Due to
accuracy requirements it may be reasonable to exclude this case from further investigation.

A higher numbers of nodes per direction on the other hand leads to a higher number of
unknowns. Additionally, for partial differential equations including derivatives, choosing
a finer discretization usually also increases the condition number. (We can observe this
effect in Table 4.10.) Both effects, the larger number of unknowns and the higher condition
number, may result in slower convergence of the iterative solver. Hence, choosing a higher
number of nodes per direction one would in general expect to have a slower convergence
and an extended time-to-solution. Only if the interaction between linear system, solver
implementation and hardware performance compensate for the higher condition number
and the higher number of unknowns, we can hope for improved convergence and time-to-
solution performance.

To investigate this issue, we report in Figure 4.25a the average residual after 900 and
after 1000 iterations of async-(5) for the Finite Difference Discretization of the Helmholtz
Equation (4.8) with Dirichlet boundary condition (4.9) for different meshes. While we
stick to the unit square domain, a fixed block-size of the matrix decomposition of 112 and
set δ = 10−2 for all tests, we increase the number of nodes per direction, which impacts the
associated system of linear equations (see Table 4.10). Analysing the data, we observe an
almost linear dependency between the relative residual after 900/1000 iterations and the
element number per discretization direction - except for the mesh with N = 112 unknowns
per direction. For this case, the relative residual is smaller than expected according to
the overall trend. At the same time, we observe significant variations in the algorithm’s
performance for different sizes of the discretized system. In Figure 4.25b we can identify
a pattern and realize that choosing the mesh adapted to the block size is beneficial to the
performance.

To target the question of how these effects combine, we report in Figure 4.26 the con-
vergence with respect to runtime. The results show that choosing the number of nodes
adapted to the block size, the algorithm’s runtime-dependent convergence is faster than
for coarser grids. A solution approximation of a certain accuracy for N = 112 is achieved
in shorter runtime than for discretizations using N = 111, 110, 109, 107, 106 or N = 105,
only for N = 108, the runtime-based convergence is superior. This is quite astonishing,
since refining a discretization with N = 105 by adding seven more nodes per direction
not only results in a system with 1519 more unknowns (about 10%), but also in a higher
condition number (see Table 4.10). The more efficient hardware usage compensates for
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Figure 4.25.: Average relative residual and solver runtime for different iteration numbers
of async-(5) using a fixed block size of 112 applied to different discretizations
of the 2D Laplace.

the additional computational cost, and refining the coarser grid is beneficial in this case.
We want to stress again, that this refinement even comes with the advantage of a smaller
discretization error.

A conclusion of this section is, that not only adapting the implementation with respect to
the problem, but also choosing the discretization with respect to hardware and implemen-
tation is a necessary step to achieve high performance.

4.11. Asynchronous Iteration Smoothers in Multigrid Meth-
ods

4.11.1. Multigrid Smoothers

As we have seen in Section 2.6, one critical component of multigrid methods is the
smoother, since it is crucial for the convergence rate as well as the runtime performance of
the multigrid solver. Usually, a simple relaxation method such as Gauss-Seidel or Jacobi is
used for pre- and post-smoothing the solution approximations on the distinct grid levels.
From the analytical point of view, if the error is expressed in terms of the eigenvectors
of the system, the smoother must reduce the error components associated with the eigen-
vectors having large eigenvalues, while the coarse-grid correction eliminates the remaining
error contribution [Tro00].

The typically applied smoothers, such as Gauss-Seidel, usually do not parallelize well
(see 2.4.2). Therefore, much effort is put into developing parallel smoothers that scale
on multicore architectures. A possible approach is to use a set of local smoothers that
exchange boundary values in a Jacobi-like manner [HY00, AMB06]. The performance of
these hybrid smoothers may then be enhanced furthermore by using weights [MY11].

Still, the synchronization necessary to exchange boundary values may be detrimental to
the performance on highly parallel architectures. Therefore, it may be worthwhile to con-
sider a block-asynchronous iteration for the smoother in multigrid methods as it lacks
any synchronization and therefore scales optimally on any architecture. In the following
sections we introduce the mathematical problem we target and report the experimental re-
sults obtained by comparing block-asynchronous smoothers with Gauss-Seidel smoothers.
Most of following material is taken from [ATG+12].
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Figure 4.26.: Convergence of async-(5) using a block size of 128 for different discretizations.
The displayed number of unknowns per direction (N) is two smaller than the
number of nodes per direction in the discretization.

4.11.2. Numerical Experiments on Block-Asynchronous Smoothers

4.11.2.1. Experimental Setup

The numerical problem we target is the finite difference discretization of the differential
equation

−∆u+ εu = f,

where u : Ω → R and Ω ⊂ R. For Dirichlet boundary conditions equal to zero, the 1D
discretization for this problem on a grid of size h can be written as a system of linear
equations of the form Ax = b with

A =



2 + h2ε −1 0 . . . 0

−1 2 + h2ε
. . .

. . .
...

0
. . . 2 + h2ε

. . . 0
...

. . .
. . .

. . . −1
0 . . . 0 −1 2 + h2ε


. (4.12)

Although this may seem to be a very basic problem, it contains many essential aspects
necessary to analyze the convergence behavior of the multigrid method. It can be shown
that the condition number of the matrix A can be estimated by κ = 4 · 1

h2ε
[Var04]. In the

considered experiments, we set h = 1 and vary ε ∈ [10−6, 10−1] in order to investigate the
influence of the condition number on the solver performance.

The geometric multigrid method we apply to this system is implemented according to
Algorithm 10 (Section 2.6), where we use the Conjugate Gradient method for the solution
of the coarse grid system (see Section 2.5.3). To analyze the performance of a GPU-based
block-asynchronous iteration as smoother, we compare it with a CPU implementation of
Gauss-Seidel performing smoothing iteration.

For all smoothers, we use a stencil implementation of the corresponding iteration method,
updating the distinct components by using the adjacent components [Saa03, RHMDR07,

96



4.11. Asynchronous Iteration Smoothers in Multigrid Methods 97

AHW09]. This reduces the computational cost, since we do not have to perform a sparse
matrix vector multiplication, as well as the memory requirements, which are usually daunt-
ing when performing GPU-based kernels. We want to mention at this point, that the use
of stencils instead of a matrix system is only possible due to the problem’s characteristics,
it is impossible when targeting irregular grids or local refinement. Still, we utilize the
explicit matrix to compute the error term on each grid level. Utilizing stencils for this
may be beneficial for the overall performance as well, but we refrain from doing so since
this is not the main target of the analysis in this thesis.

In general, it is challenging to analyze the performance of a smoother within a multigrid
framework. The reason is that the smoothers’ properties depend on tunable parameters,
e.g., related to the linear system’s characteristics, the applied multigrid scheme, the solver
used on the coarsest grid, etc. We therefore split the numerical tests into two parts, where
we first analyze the two-grid iteration and then extend it to a complete multilevel V-cycle.

We can identify three parameters that can be used to adjust the smoother. These are the
number of global iterations that correspond to the number of iterations of a synchronous
iterative method like Jacobi or Gauss-Seidel, the number of local iterations on the sub-
domains, and the size of the subdomains. The number of global iterations is usually
dominating the execution time of a block-asynchronous iteration on GPUs (see Algorithm
14), which is still small compared to synchronous Gauss-Seidel on the CPU (see Section
4.4). We have seen in Section 4.4.2 that adding local iterations on the GPU, due to the
data locality and the GPU architecture, almost comes for free [ATDH12a]. But at the
same time, adding local iterations may not trigger the same improvement to the solution
approximation. Since in general the factor between the convergence rate of Gauss-Seidel
and Jacobi equals to two, we always merge two global block-asynchronous iterations into
one smoothing step. The local iterations may then be used to compensate for the conver-
gence loss due to the chaotic behavior of the asynchronous method. Without investigating
the trade-off between global and local iterations, we set the latter one like before to the
fixed number of five. In the second part of the numerical experiment section we then ex-
tend the Two-Grid iteration to a full V-cycle. We analyze the impact of adding grid levels,
and report the smoother run times for different problem sizes. Finally, we provide a de-
tailed time-to-solution comparison between block-asynchronous iteration and Gauss-Seidel
smoothed multigrid for a 10-level implementation using different numbers of smoothing
steps.

4.11.2.2. Numerical Experiments

The experiments were conducted on the Supermicro system (see Appendix C.1). For
the CPU parts of the multigrid method, 4 cores on the same CPU are used. Due to
the inherently sequential Gauss-Seidel implementation, only the grid operations, such as
restriction and prolongation, can leverage this parallelism provided by the CPU cores. The
Intel compiler version 11.1.069 [int] is applied with optimization flag “–O3”. The GPU
implementations of block-asynchronous iteration and Jacobi are based on CUDA [NVI09],
while the respective libraries used are from CUDA 4.0.17 [NVI11]. The component updates
were coded in CUDA, using thread blocks of size 512.

In the first experiment, we analyze the impact of the condition number of the system of lin-
ear equations on the performance of multigrid methods smoothed by block-asynchronous
iteration, Jacobi and Gauss-Seidel. We choose a dimension of n = 10, 000, 000 and compare
the convergence with respect to the iterations for different condition numbers κ. Figure
4.27a shows numerical results using one smoothing step of Gauss-Seidel, Jacobi or block-
asynchronous iteration, while the results in Figure 4.27b are for two smoothing steps. First,
we observe that the number of necessary multigrid steps to convergence can be consider-
ably decreased by performing two instead of one smoothing iteration. Second, the Jacobi
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smoother is not able to provide similar smoothing improvement: the convergence of the
Jacobi-smoothed method is considerably slower than for the other methods. Furthermore,
the block-asynchronous smoother has smoothing properties similar to the Gauss-Seidel,
so the convergence behavior of the multigrid is almost not affected when replacing Gauss
Seidel by async-(5). For very small condition numbers, the block-asynchronous iteration
performs in many cases even better than the Gauss-Seidel smoother. The only difference
is the accuracy of the final solution: The Gauss-Seidel method allows a higher approxi-
mation quality than the block-asynchronous iteration. But the variations are small and
the more crucial factor determining the accuracy of the final solution approximation are
the limitations of the floating point format. Still, if very accurate solution approximations
are requested, it may also be reasonable to switch to a Gauss-Seidel method for the last
V-cycles.

Motivated by the results of these experiments we refrain from including the Jacobi smoother
in the further comparison. The considerably higher number of V-cycles necessary to con-
verge cannot be compensated for by the parallelism of the Jacobi method.

In the next experiment we investigate the impact of the problem size on the finest grid
level. For this purpose we choose problem sizes between 104 and 108 and analyze the
convergence behavior. The results shown in Figure 4.28 reveal that the problem size has
almost no influence on the convergence rate.

Like in previous experiments the convergence rate with respect to iteration number is
interesting from the theoretical point of view, the more relevant factor is the convergence
with respect to time. In Table 4.11 and Figure 4.29, we report run times of the respective
smoothers for different problem sizes. We also extend the analysis from a two-grid method
to multiple levels.

The run times are the aggregated smoother times for the multigrid to converge, which is
the point where the approximation accuracy does no longer benefit from adding V-cycles.
Since we usually obtain higher accuracy approximations for the Gauss-Seidel smoother,
we choose a stopping criterion for the multigrid iteration that can be achieved for both
methods. Additionally we provide the data transfer time for the GPU implementation of
the block-asynchronous iteration smoother. This also contains the overhead of the GPU
initialization. Note, that we report only the run times for the smoother, which increase
for multiple levels due to additional smoother calls. The total runtime for the multigrid
iteration may still decrease with more levels due to the smaller system of linear equations
solved on the lowest grid level.

We observe in Table 4.11 that for Gauss-Seidel on the CPU, increasing the problem size on
the finest grid corresponds to a linear run time increase for the smoother. This is also true
for the block-asynchronous iteration on the GPU, except for small problem sizes, where
calling the GPU kernels triggers some overhead. Calling the GPU-based smoother for the
first time also includes the GPU initialization. For all problem sizes and grid sequences,
the async-(5) smoother outperforms the Gauss-Seidel smoother. While for small problems
the improvement is at least a factor of three, it rises to 7 for larger dimensions. Since the
multigrid framework is in the majority of cases implemented on the host of the system, we
should also take the data transfer time into account. Then, for small problem sizes, the
async-(5) smoother suffers from this overhead due to the GPU initialization and expensive
data transfer. This effect can be observed in Figure 4.29 where we visualized the runtime
results of Table 4.11 for the case of a two- and five-level multigrid method. For larger
problem sizes, the async-(5) smoother outperforms the Gauss-Seidel smoother at least by
a factor of two, independent of the number of grid levels.

The question is how this corresponds to an acceleration of the multigrid method, since
the smoother only accounts for one part in the overall execution time beside the grid
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Figure 4.27.: Two-level convergence for n = 10, 000, 000 and different condition num-
bers using one or two smoothing steps, respectively. Dashed lines are
block-asynchronous, dotted lines are Jacobi, and solid lines are Gauss-
Seidel, [ATG+12].
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Figure 4.28.: Two-level convergence using two smoothing step for different problem sizes.
Dashed lines are block-asynchronous and solid lines, all lying on top of each
other, are Gauss-Seidel, [ATG+12].

operations and the coarse grid solver [Tro00]. (Still, the smoother may dominate the
overall multigrid performance in a variety of cases, see e.g. [GPT07].) To investigate this
issue, we apply a 10-level multigrid method to problems of size 10,000,000 and different
condition numbers, and provide detailed analysis on the execution time of the smoother,
the grid operations like restriction, prolongation and residual computation, and the direct
solver on the coarsest grid level.

Analyzing the results in Figure 4.30, we realize that applying more smoothing steps re-
duces the number of V-cycles in the multigrid method, which again reduces the number
of solver calls on the coarsest grid level and the number of grid operations. This effect
can easily be seen in the runtime of the grid operations which directly corresponds to the
number of multigrid iterations. Considering the trade-off between V-cycles and smoothing
steps, there is a point for maximal performance. In Figure 4.30a we identify the maxi-
mal performance when conducting one smoothing step for Gauss-Seidel, respectively six
smoothing steps for async-(5). For higher condition numbers it seems beneficial to con-
duct more smoothing steps: We then achieve optimal performance for two, respectively five
smoothing steps (see Figure 4.30b). The number of smoothing steps minimizing the overall
execution time can in general be determined only heuristically. As already seen, in our
case, it differs not only for different condition numbers, where more smoothing steps are
beneficial for higher condition numbers, but also between the block-asynchronous smoother
and the Gauss-Seidel smoother (Table 4.11). The reason is that the block-asynchronous
iteration is not only considerably faster than Gauss-Seidel, but is also dominated by the
data transfers between host and CPU. The component updates using a stencil for the
block-asynchronous iteration come almost for free. Therefore, increasing the number of it-
erations does not cause a linear increase of the computation time. Hence, for large numbers
of smoothing steps, the speedup factor between Gauss-Seidel and the block-asynchronous
iteration smoothed multigrid rises. Comparing the results for smaller and larger condition
numbers (see Figure 4.30a and Figure 4.30b, respectively) one might conclude that higher
condition numbers (at least for our test cases) may have minor impact on the multigrid
performance. This may be true for the time-to solution, but neglects the fact, that the
accuracy of the solution approximation depends on the condition number and is lower for
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dimension: 10e+3 10e+5 10e+6 10e+7k

2 levels
Gauss-Seidel 0.00398 0.03613 0.36815 3.62690

async-(5) 0.00085 0.00602 0.05397 0.53082
transfer 0.01193 0.02571 0.10779 0.85057

3 levels
Gauss-Seidel 0.00621 0.05539 0.54973 5.60806

async-(5) 0.00181 0.00913 0.08433 0.80394
transfer 0.02243 0.04267 0.16522 1.29404

4 levels
Gauss-Seidel 0.00805 0.06621 0.64393 6.48827

async-(5) 0.00242 0.01044 0.09654 0.92531
transfer 0.03289 0.05673 0.20734 1.53345

5 levels
Gauss-Seidel 0.00957 0.07181 0.69662 6.95943

async-(5) 0.00338 0.01156 0.10531 1.00858
transfer 0.04102 0.06866 0.23634 1.64843

Table 4.11.: Average smoother runtime [s] for different numbers of levels performing always
2 Pre- and 2 Post-smoothing steps on the respective grid levels. We report the
timings for Gauss-Seidel on CPU, block-asynchronous iteration (async-(5)) on
GPU and the data transfer time between host and GPU, [ATG+12].

Figure 4.29.: Average smoother runtime for the two- and five-level multigrid method using
Gauss-Seidel (GS) or async-(5) smoother with two Pre- and 2 Post-smoothing
steps on the respective grid levels, [ATG+12].

ill-conditioned systems.

Since the smoother accounts in our experiments for a high percentage of the overall multi-
grid time, replacing the Gauss-Seidel smoother leads to considerable acceleration. While
for more complex problems, the ratio between smoother and overall multigrid time is often
smaller since the coarse grid solver becomes more expensive, the necessity of more smooth-
ing steps rises at the same time, making the block-asynchronous smoother even more at-
tractive. Note that this analysis also takes the data transfer time into account. Implement-
ing the multigrid framework on the GPU like proposed in [FL08, GSMy+08, GT08, Tho08]
could result in even higher speedups.

4.12. Block-Asynchronous Error Correction in Mixed Preci-
sion Iterative Refinement

In the last sections, we have seen that asynchronous methods may have the potential to
outperform their synchronous counterparts in terms of performance. This is achieved by
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Figure 4.30.: 10-level multigrid V-cycle runtime analysis for different numbers of Pre-
and Post-smoothing steps using Gauss-Seidel and async-(5), respectively.
The async-(5) smoother includes data transfer times to and from the GPU,
[ATG+12].

the efficient leverage of the computation power provided by the hardware. The absence
of synchronization points enables to transfer the floating point performance of the used
hardware to the algorithm. In Section 2.3 we already introduced mixed precision iterative
refinement, another well-known technique used to leverage the potential of accelerators.
The basic idea there was to use a lower precision format for the error correction solver
inside an iterative refinement method at full precision. An open question is how a com-
bination of mixed precision iterative refinement and block-asynchronous iteration impacts
the convergence and properties and the performance. On the one hand the methods share
the same principle for gaining their performance: they both compensate their low conver-
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gence properties by leveraging the high computational power of GPUs [ALDH12]. But on
the other hand, combining them is a challenge since the iterative refinement introduces
synchronization points that we try to avoid in asynchronous iteration.

4.12.1. Numerical Experiments on Block-Asynchronous Error Correction
in Mixed Precision Iterative Refinement

The experimental setup and the results in this section are mostly according to the con-
ference contribution [ALDH12] where the combination of the two methods is analyzed for
different hardware architectures. While we base the GPU implementations of the block-
asynchronous iteration on CUDA [NVI09], the respective libraries used are from CUDA
2.3 for the C1060 and the GTX280, and CUDA 4.0.17 [NVI11] for the C2070 and GTX580
implementation. The kernels updating the respective components, launched through dif-
ferent streams, use thread blocks of size 512, see Section 4.1. The thread block size,
the number of streams, along with other parameters, were determined through empirically
based tuning. Details about the used hardware can be found in Table C.4 in the Appendix.
For the iterative refinement implementation we use a first outer iteration to analyze the
residual improvement and then adapt the number of inner iterations such that the residual
improvement equals the accuracy of floating point precision in every outer update. Hence,
while the first error correction loop may provide different improvements for the distinct
test cases, the further loops all decrease the residual by 6 to 8 digits. In case of the mixed
precision implementations, the error correction solver is implemented using single preci-
sion. Due to the low precision representation of the system of linear equations, additional
rounding errors may be expected, slowing down the convergence of the iterative refine-
ment. To analyze this issue, we compare in a first experiment the convergence behavior
of the iterative refinement method using a double- and a single- precision error correction
solver, respectively. Using different precision formats, the vectors and the linear system
have to be converted from double to single precision. This typecast, handled by the GPU,
triggers some overhead and may be crucial for problems where only very few iterations of
the error correction solver are executed. To analyze the impact of the overhead of itera-
tive refinement and the use of different precision formats, we will also provide the solver
runtimes for the different systems of linear equations for the plain block-asynchronous
iteration in double precision, the iterative refinement in double precision and the mixed
precision iterative refinement, where the latter ones use the block-asynchronous iteration
as an error correction solver.

In the first experiment, we analyze how using lower precision for the block-asynchronous
iteration error correction solver impacts the iterative refinement convergence rate. There-
fore, we report the relative residual depending on the iteration number for chosen systems
of linear equations given in Appendix B. Note again, that due to the implementation, the
first outer loop is used to determine the residual improvement, while the further iterations
improve the approximation iterate by 6 to 8 digits, depending on the rounding error.

The results in Figure 4.31 show that for the test matrices Trefethen 2000, Chem97ZtZ
and fv1, using single precision for the error correction solver has a nearly negligible impact
on the convergence of the iterative refinement. Only for the fv3 test case, the convergence
rate is affected. This was expected since the high condition number of this matrix (see
Appendix B) may cause representation errors in the low precision format that make the
approximation updates less beneficial.

Like before, the convergence behavior is only interesting from the theoretical point of view,
and the next experiment is dedicated to the analyzing how handling the error correction
equation in single precision impacts the performance. The motivation is that using single
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Figure 4.31.: Iterative refinement convergence, solid lines are double-precision error cor-
rection, dashed lines are single-precision error correction.

instead of double as working precision, should trigger some speedup. From the computa-
tional point of view, switching from double to single precision should generate a speedup
of two, but on some hardware devices, even larger differences between single and double
precision performance can be observed, see e.g. the specifications of the C1060 GPU in
C.4. Also a sophisticated memory hierarchy allowing for the efficient caching and prefetch-
ing sometimes allows for speedups that extend this expected value. See Appendix A.2 for
a short summary on this issue. Depending on the hardware setup and the specific prob-
lem, these speedups may potentially overcompensate for the overhead associated with the
typecast between the formats.

While the convergence, with respect to iteration number, is independent of the hardware
used, the performance depends on the architecture. We use the C2070 for this exper-
iment, as this ’Fermi’ generation is in 2012 the state of the art from the Nvidia GPU
manufacturer. In addition to the convergence performance of the iterative refinement, us-
ing a double or single precision error correction solver, we report the results for the plain
block-asynchronous iteration in double precision.

In 4.32 we observe, that for all test cases, the overhead is negligible when embedding the
block-asynchronous iteration (async-(5)) in double precision into the iterative refinement
framework. For the small test cases Chem97ZtZ and Trefethen 2000 (Figure 4.32a,
4.32d), switching to the mixed precision iterative refinement approach gives no improve-
ment. For the larger matrices, e.g. fv1, the improvement by using low precision for the
error correction solver is relevant (Figure 4.32b): The mixed precision implementation
converges in almost half the computation time than the double precision implementation.
Even for the test case fv3, where we observed a slower convergence rate for the mixed
precision approach in Figure 4.31, we benefit in terms of performance (Figure 4.32c).

We may now target different hardware platforms, and report in Figure 4.33 the respec-
tive time-to-solution. For the test cases fv1 and fv3, despite the performance difference
between single and double precision of around 10 on the C1070 and GTX280 (see Ta-
ble C.4), the mixed precision iterative refinement performs inferior to the plain double
implementation of async-(5). The reason is, that for these systems, the GPU-internal
memory bandwidth is the limiting factor and the overhead, due to the iterative refinement
framework, can not be compensated for by the single precision performance. For the small
matrices, things are different. Since the size of Chem97ZtZ and Trefethen 2000 allows
for the caching of the iteration vector as well as the right-hand side, the C1060 and the
GTX280 are able to leverage the single precision performance more efficiently. Still, the
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Figure 4.32.: Iterative refinement performance, time-dependent relative residual.

bandwidth remains the limiting factor, since the complete matrix cannot be loaded into
cache, and the higher memory bandwidth of the consumer version (GTX280) explains the
better performance for the mixed precision approach. Using double precision, the server
version (C1060) is superior, probably due to the more sophisticated memory structure.
Unfortunately, the very limited main memory on the GTX280 does not allow for the
handling of large systems.

Note that the total solver runtime of the mixed precision approach for Trefethen 2000
is on the GTX280 even smaller than on the server version of the Fermi line (C2070). An
explanation may be that the overall runtime also includes the initialization process, which
has to be taken into account for this system, and may be longer for GPUs using CUDA
in version 4.0 and equipped with more memory.

Targeting the Fermi generation, we observe that, especially for large systems, we benefit
from the mixed precision framework. Although we may only expect a factor of two con-
cerning the floating point performance, the sophisticated memory hierarchy may enable
even higher speedups. This speedup stems from the fact that, not only are we able to
keep the iteration vector and the right-hand side local due to the larger L1 cache, but also
because the L2 cache allows for the efficient data access of the iteration matrix.

We want to mention that for the test case fv3, the iterative refinement in double precision
fulfills the outer residual stopping criterion after 4 iterations, while we could observe in
Figure 4.31 that it is already very close after 3 iterations. Hence, the double precision iter-
ative refinement runtime would benefit from choosing a smaller number of inner iterations
for the last global iteration. Nevertheless, we expect this runtime reduction to be small
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Figure 4.33.: Total solver runtime.

and impacting the performance order in the direct comparison to the block-asynchronous
implementation.

4.13. Asynchronous Iterative Refinement

In Section 2.2 we introduced iterative refinement methods, that use the residual of a com-
puted solution as right-hand side to solve an error correction equation. Using different
precision formats within the distinct parts of the iterative algorithm, we obtained the
mixed precision iterative refinement method (see Section 2.3). The flexibility in terms of
choosing the error correction solver allows for employing asynchronous relaxation methods.
In Section 4.12 we discussed the challenge of combining block-asynchronous iteration with
(mixed precision) iterative refinement. The key point is the trade-off between synchroniza-
tions induced by the iterative refinement and the asynchronism of the block-asynchronous
iteration. While we aim for reducing the synchronizations to leverage the computing ca-
pabilities of the hardware, the iterative refinement framework needs synchronization to
compute the residuals between the solution updates. Nevertheless, the results in Section
4.12.1 reveal the potential of combining block-asynchronous iteration with mixed precision
iterative refinement.

Now we want to step further, by allowing for asynchronism not only in the defect correction
solver, but also in the iterative refinement framework itself.

Before targeting this challenge we recall that the iterative refinement operator F (x) is
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given by

xk+1 = F (xk) = xk + ck, (4.13)

where ck denotes the solution update computed by the error correction solver applied
to Ack = rk with the residual rk = b − Axk. We may write this update in the form
ck = sol(A−1rk) = sol(A−1(b−Axk)), where sol(·) denotes the (approximate) solution of
the error correction equation obtained by applying any (direct or iterative) error correction
solver.

In case of using a direct error correction solver and exact arithmetic, we would have

sol(A−1(b−Axk)) = A−1b−A−1Axk

and

xk+1 = F (xk) = xk + sol(A−1(b−Axk)) = xk +A−1b− xk = A−1b,

which implies that applying one step of iterative refinement would provide the exact so-
lution. Furthermore Nicholas J. Higham [Hig96] provides a rule of thumb stating that
iterative refinement for Gaussian elimination produces a solution correct to working pre-
cision if double the working precision is used in the computation of the residual r, e.g. by
using quad or double extended precision IEEE 754 floating point (see Appendix A.1), and
if A is not too ill-conditioned [Hig96].

Implementations however usually contain rounding effects due to limited precision, and
therefore

sol(A−1(b−Axk)) ≈ A−1b−A−1Axk.

This is especially true when using iterative error correction solvers iterating to a certain
residual accuracy, like we do in Section 4.12. To account for the approximation error
when using an iterative error correction solver and/or limited floating point precision, we
introduce the approximation error ε(A, b, xk)

sol(A−1(b−Axk)) = A−1b−A−1Axk + ε(A, b, xk). (4.14)

This approximation error depends on the characteristics of the error correction equation
Ack+1 = b − Axk, the stopping criterion of the iterative solver and rounding effects in
case of limited precision. Note that in case of employing an error correction solver using
lower precision than working precision, like we do in Section 2.3), the approximation error
additionally depends on the representation errors in the low precision format as the error
correction solver is applied to a perturbed system.

Deriving an asynchronous iterative refinement, we have to consider the convergence prop-
erties for the obtained algorithm. Since it is difficult to write the iteration operator F in
the form F (x) = Bx+ d in case of using iterative error correction, the convergence theory
for asynchronous methods given in Section 3.2.1 can hardly be applied. In [Bau78] Gérard
M. Baudet provides more general convergence results for asynchronous methods based on
contracting operators. In the following, we recall the most important aspects.

Definition 4.13.1. [Bau78] An operator F : Rn → Rn is a Lipchitzian operator on a
subset D ⊂ Rn if there exists a nonnegative matrix L such that

|F (x)− F (y)| ≤ L|x− y|, ∀x, y ∈ D,

componentwise. The matrix A is called Lipchitzian matrix for the operator F .
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Definition 4.13.2. [Bau78] An operator F : Rn → Rn is a contracting operator on a
subset D ⊂ Rn if it is a Lichitzian operator on D with the spectral radius of its Lipchitzian
matrix L fulfilling ρ(L) < 1.

Theorem 4.13.3. [Bau78] If F is a contracting operator on a closed subset D ⊂ R and
if F (D) ⊂ D, then the asynchronous iteration obtained from F and starting with x0 ∈ D
converges for any update pattern to the unique fixed point of F in D.

Proof. The proof follows the same concept like the proof of Theorem 3.2.3 with the differ-
ence that we may now consider the Lipchitzian instead of the iteration matrix. See [Bau78]
for more details.

To ensure convergence for asynchronous iterative refinement, we need F of (4.13) to be a
contracting operator. For this purpose we analyze |F (x)− F (y)|.

4.13.1. Convergence of Asynchronous Iterative Refinement using Exact
Floating Point Arithmetic and an Exact Error Correction Solver

First, we consider the academic case of exact arithmetic and an exact error correction
solver. For this case, ε(A, b, xk) = 0 in (4.14) and

|F (x)− F (y)| =
∣∣x+ sol(A−1(b−Ax))− y − sol(A−1(b−Ay))

∣∣
=
∣∣(x− y) +A−1(b−Ax)−A−1(b−Ay)

∣∣ = 0. (4.15)

Hence, the Lipchitzian matrix L = 0, and F is a contraction. We deduce from Theorem
4.13.3 that the asynchronous iterative refinement converges for any initial guess and any
update pattern. However, this result is mainly of theoretical value, since computing an
error correction term component wise may be difficult using an exact solver. Also, im-
plementations based on floating point arithmetic with limited precision usually introduce
rounding errors.

4.13.2. Convergence of Asynchronous Iterative Refinement using an It-
erative Error Correction Solver and/or Limited Floating Point
Precision

As already mentioned, the conditions of Section 4.13.1 are rarely fulfilled. Floating point
arithmetic implies rounding effects, and asynchronous iterative refinement suggests to use
component wise iterative error correction solvers. Hence, we may have ε(A, b, xk) 6= 0 in
for the solution updates in the different steps of (4.14) and derive

|F (x)− F (y)| =
∣∣x+ sol(A−1(b−Ax))− y − sol(A−1(b−Ay))

∣∣
=
∣∣(x− y) +A−1(b−Ax) + ε(A, b, x)−A−1(b−Ay)− ε(A, b, y)

∣∣
= |ε(A, b, x)− ε(A, b, y)| (4.16)

We realize that the contraction property of the iterative refinement operator F depends
on the approximation quality of the error correction solver. In case of a sufficient approx-
imation accuracy, we may have |ε(A, b, x)− ε(A, b, y)| ≤ L|x− y| with L < 1. However, it
is very difficult to provide general statements about the approximation error and whether
F is a contraction. This stems from the fact that the accuracy of the iterative error correc-
tion solver, the representation errors and the rounding effects for every single component
may have significant impact on this property. Especially when using a low precision it-
erative error correction solver where the error correction solver is applied to perturbed
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problem, the dependencies are very complex. In [Hig96] Nicholas Higham goes the bur-
densome path to derive a theory on the contraction property of mixed precision iterative
refinement. Therefore he assumes the perturbations associated with solving the low pre-
cision error correction to be bounded by some operator depending on the linear system
characteristics. Without restating the theory in detail we use his theory providing the
contraction property for the mixed precision iterative refinement operator F . If now the
asynchronous iterative refinement method based on F furthermore starts with x0 ∈ D
(F (D) ⊂ D, closed subset), we obtain by applying Theorem 4.13.3 that the sequence of
iterates converges to the unique fixed point of F in D for any update pattern.

4.13.3. Block-Asynchronous Iterative Refinement

Algorithm 21 Asynchronous Iterative Refinement.

for all (i ∈ {1 . . . n}) do {asynchronous outer loop}
read x from global memory
set y = x
compute residual in component ri = bi − (Ay)i
compute solution update ci from Ac = r
update yi = xi + ci
overwrite xi in global memory with yi

end for

Analyzing the asynchronous iterative refinement in Algorithm 21, we can identify the
computation of the solution update ci for component i as a critical component. This has
several reasons. First, we note that the right-hand side of the error correction equation
changes permanently due to the asynchronously computed residuals. Second, computing
an error correction term for one component only is very difficult in general. Using the
complete error correction system to compute the demanded component update is ineffi-
cient, since the updates for all other components would be lost. Using all of them on
the other hand brings us full circle back to the synchronized iterative refinement. For
these reasons, when running iterative refinement component wise asynchronously, the only
reasonable error correction solvers are the asynchronous relaxation methods we intro-
duced in Chapter 3.1. Another possibility is to split the linear system into blocks, and
to apply a Block-Asynchronous Iterative Refinement. The approximation updates for the
components located in the same block can then be computed using a (synchronous or asyn-
chronous) relaxation method on the sub-matrix, while the different blocks are processed
asynchronously. This approach is very similar to using block-asynchronous iteration as
error correction solver inside (synchronous) iterative refinement (Section 4.12) with the
difference, that the iterative refinement process is no longer synchronized. For this reason
the algorithm can also be derived by applying the computing blocks of block-asynchronous
iteration not to the original linear system of equations (2.1), but to a residual system which
is constantly changing. Particularly, the residuals for the components in a block are gen-
erated on-the-fly as error correction equation just before starting the iteration process. In
Algorithm 22 we propose a possible implementation using a relaxation method K(x, b)
for computing the error correction. Note, that this error correction solver only generates
relevant updates for the components located in the respective block.

We recall that in the implementation using block-asynchronous iteration as error correc-
tion solver, the asynchronism was limited to a stage where no component of the solution
approximation could be updated a second time before all other components were updated
and the new residual for the error correction solver was computed (see Algorithm 2). While
the error correction solver itself was asynchronous, the synchronization between the itera-
tive refinement steps did not allow for implementations leveraging the full (asynchronous)
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Algorithm 22 Block-Asynchronous Iterative Refinement.

for all (Jk ∈ {J1 . . . Jq}) do {asynchronous outer loop}
read x from global memory
compute residual ri = bi − (Ax)i
set y = 0
for (k = 0; k < iter; k + +) do {equal local stopping criterion}

for (i = Jk(begin); i < Jk(end); i+ +) do {synchronous local updates}
ynewi = K(y, r)
yi = ynewi

end for
end for
update solution xi = xi + yi

end for

computing power of hybrid hardware systems. Algorithm 22 avoids any synchronization
steps, and therefore allows also for asynchronism in the iterative refinement process.

Compared to the block-asynchronous iteration directly applied to the linear problem the
advantage is twofold: On the one hand, it enables the usage of different precision formats
within the algorithm (see Algorithm 23), which may accelerate the overall process in case
of a higher floating point performance in a precision format lower than working preci-
sion. A second advantage occurs due to the residual computation within the asynchronous
process. Comparing the residuals we may obtain information about areas of faster and
slower convergence. This would enable to adapt the number of iterations on the respective
subdomains during runtime. In the end, the method should increase the local iteration
count where necessary, and decrease it for components with small residuals. Note at this
point, that this process is only for very diagonal dominant systems straight-forward. If the
matrix is strongly coupled, the scheduling of the blockwise iterative refinement has strong
impact on the method.

Algorithm 23 Block-Asynchronous Mixed Precision Iterative Refinement.

for all (Jk ∈ {J1 . . . Jq}) do {asynchronous outer loop}
read xhigh from global memory
compute error in high precision rhigh = bhigh −Ahighxhigh
convert system to low precision for inner solver Alow = Ahigh, rlow = rhigh

for all l = 1→ correction loops do {multiple error correction loops}
set clow = 0
for (k = 0; k < iter; k + +) do {equal local stopping criterion}

for (i = Jk(begin); i < Jk(end); i+ +) do {synchronous local updates}
dlowi = K(clow, rlow)
clowi = dlowi

end for
end for
convert error correction term to high precision chigh = clow

update solution xhigh = xhigh + chigh

end for
end for

4.13.4. Experiments on Block-Asynchronous Iterative Refinement

In this section we analyze the convergence and performance characteristics of block-
asynchronous iterative refinement in double and mixed precision mode. While the al-
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gorithm layout is according to Algorithm 22, respectively Algorithm 23 for the mixed pre-
cision implementation, the block-asynchronous iterative refinement provides an even larger
number of parameters that may be used for tuning the algorithm’s performance. Among
the block size and other values that could already be chosen in the block-asynchronous
iteration we now can also set the number of relaxation steps of the error correction solver
and the number of iterative refinement steps merged into one kernel. We desist from a
deep analysis on how to optimize these values since the optimal choice may be very prob-
lem dependent. Particularly, very diagonal dominant problems may require less global
communication than strongly coupled problems, and therefore allow a high iteration count
for all loops on the distinct block-components. According to empirically based tuning we
set for all experiments the number of relaxation steps to iter = 15 and the number of
iterative refinement steps inside one kernel to correction loops = 1. Note however, that
for diagonal dominant systems we may benefit from higher iteration counts.

The GPU implementations of the block-asynchronous iterative refinement methods were
coded in CUDA [NVI09], whereas the respective libraries are taken from CUDA 4.0.17
[NVI11]. The kernels updating the respective components, launched through different
streams, use thread blocks of size 512, equal to physical core number of the GTX580 GPU
we target for these experiments. For hardware details see Table C.4 in the Appendix.

At this point we want to mention again, that also the results for the block-asynchronous
iterative refinement have to be considered as average. While we desist from a detailed
analysis like we do in Section 4.3 for the block-asynchronous iteration, we have to keep in
mind that the convergence rate is influenced by the update order of the different blocks.

In a first experiment we analyze the convergence rate of the block-asynchronous itera-
tive methods. Especially, we are interested in whether using single precision for the error
correction solver has influence on the convergence rate. Figure 4.34 shows that the block-
asynchronous iterative refinement converges for all test cases. Furthermore, using a lower
precision format for the error correction computation has influence on the convergence of
the overall method. While the variations between the block-asynchronous iterative refine-
ment using double respectively single precision in the error correction solver are small for
the diagonally dominant systems fv1 and fv3 (see Figure 4.34b and 4.34c), the conver-
gence rate differs significantly for the matrices that contain larger off-diagonal parts (see
Figure 4.34a, 4.34d). In the Trefethen 2000 case, the convergence rate is decreased by
a factor of three when using single instead of double precision for the error correction part.
For the system Chem97ZtZ we not only have a lower convergence rate when using single
precision error correction, but also observe non-consistent residual behavior. This may be
an indication that the contraction property for the mixed precision iterative refinement is
just barely fulfilled.

Again, the convergence rate alone is not sufficient to determine the algorithms’ efficiency, as
using low precision error correction may overcompensate the slower convergence by higher
iteration performance. In Figure 4.35 we report the convergence with respect to time
and observe that for the systems Chem97ZtZ and Trefethen 2000 the higher single
precision performance compensates for slower convergence (see Figure 4.35a, 4.35d). For
the matrices where the convergence rate was almost not affected when replacing double
precision error correction by the single precision variant, the overall runtime performance
benefits significantly, see Figure 4.35b and 4.35c.

Probably the most interesting question is the trade-off between synchronous and asyn-
chronous residual computation. For this reason we compare in Figure 4.36 the convergence
of block-asynchronous mixed precision iterative refinement with the convergence of mixed
precision iterative refinement using block-asynchronous iteration as error correction solver.

111



112 4. Block-Asynchronous Iteration

1e-15

1e-10

1e-05

1

0 5 10 15 20 25 30 35 40

re
la

tiv
e

re
si

du
al

# global iters

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(a) Chem97ZtZ

1e-15

1e-10

1e-05

1

0 5 10 15 20 25 30

re
la

tiv
e

re
si

du
al

# global iters

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(b) fv1

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 500 1000 1500 2000 2500 3000 3500

re
la

tiv
e

re
si

du
al

# global iters

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(c) fv3

1e-15

1e-10

1e-05

1

0 2 4 6 8 10 12 14

re
la

tiv
e

re
si

du
al

# global iters

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(d) Trefethen 2000

Figure 4.34.: Block-asynchronous iterative refinement convergence in double (dp) respec-
tively mixed precision (mp) mode. The iteration-dependent relative residual
is in L2-norm.

These methods differ only in the residual computation, which is handled asynchronously
or synchronously, respectively.

The results reveal a significantly slower convergence with respect to iteration numbers when
handling the residual computation asynchronously. While the mixed precision iterative re-
finement using async-(5) as error correction solver never needs more than 5 iterations to
converge, the block-asynchronous mixed precision iterative refinement needs at least three
times as many outer iteration steps. But again, the omission of synchronization allows for
a more efficient hardware usage, and the performance results from the trade-off between
convergence rate and iteration rate. For this reason, we compare in Figure 4.37 the time
needed by different block-asynchronous methods to provide a solution approximation of a
certain relative residual accuracy. Note, that all solvers are based on block-asynchronous
iteration, as the iterative refinement solvers in double (dp) and mixed precision mode
(mp) use async-(5) to solve the error correction equations. Furthermore, despite the use
of single precision in the mixed precision iterative refinement and the block-asynchronous
mixed precision iterative refinement, all implementations provide a double precision solu-
tion approximation.

Analyzing the performance results we observe that general statements about the perfor-
mance of the different methods are almost impossible, although using the same hardware
configuration for all implementations. For the very diagonal dominant systems fv1 and
fv3, replacing the synchronized iterative refinement methods with the block-asynchronous
ones is not beneficial. Especially for the diagonal dominant system with low condition num-

112



4.13. Asynchronous Iterative Refinement 113

1e-15

1e-10

1e-05

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

re
la

tiv
e

re
si

du
al

time [sec]

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(a) Chem97ZtZ

1e-15

1e-10

1e-05

1

0 0.5 1 1.5 2 2.5 3 3.5

re
la

tiv
e

re
si

du
al

time [sec]

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(b) fv1

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 20 40 60 80 100 120 140 160

re
la

tiv
e

re
si

du
al

time [sec]

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(c) fv3

1e-15

1e-10

1e-05

1

0 0.02 0.04 0.06 0.08 0.1

re
la

tiv
e

re
si

du
al

time [sec]

block-asnc. dp iter.-ref.
block-asnc. mp iter.-ref.

(d) Trefethen 2000

Figure 4.35.: Block-asynchronous iterative refinement performance in double (dp) respec-
tively mixed precision (mp) mode. The relative residual is in L2-norm.

ber (fv1), the runtime of the block-asynchronous iterative refinement exceeds the runtime
of the synchronized one significantly. Using single precision for the error correction reduces
the difference to the synchronized method, but the superiority of the synchronous variant
remains. For the system fv3 with significantly higher condition number, the runtime dif-
ferences between the synchronous and the asynchronous iterative refinement methods are
smaller, both in double and mixed precision mode, see Figure 4.37c. Also, the performance
in comparison to the plain async-(5) is improved: the block-asynchronous mixed precision
iterative refinement outperforms the block-asynchronous iteration. When targeting the lin-
ear systems Chem97ZtZ and Trefethen 2000, both containing significant off-diagonal
entries, the performance differences between the synchronized and block-asynchronous it-
erative refinement methods are small.

As a conclusion, we realize that the block-asynchronous iterative refinement did not outper-
form the synchronous iterative refinement methods for any test case. But at the same time
we want to stress that the performance results are for one specific hardware configuration,
different results may be possible when targeting other platforms. Especially the explo-
sion in heterogeneity expected for future hardware systems may promote asynchronous
methods. If the single precision performance remains higher than the double precision
performance, the block-asynchronous mixed precision iterative refinement method may
become interesting again.
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Figure 4.36.: Convergence comparison between mixed precision iterative refinement using
async-(5) as error correction solver and block-asynchronous mixed precision
iterative refinement. The relative residual is in L2-norm.
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Figure 4.37.: Performance comparison between different block-asynchronous solvers. The
relative residual stopping criteria are in L2-norm.
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4.14. Block-Asynchronous Iteration for Nonlinear PDEs

In the last sections we analyzed block-asynchronous iteration applied to linear systems of
equations. Partial differential equations typically used for modeling physical, chemical or
economical processes on the other side often also contain nonlinear parts. Since solving
these nonlinear PDEs is an essential part of many computer simulations, much effort is
put into deriving suitable algorithms. Solving nonlinear PDE’s is computationally often
costlier compared to linear problems, and the parallelization and optimization of nonlinear
solvers is even more challenging. Against this background we want to address the question
whether employing block-asynchronous iteration is beneficial when targeting the solution
process of nonlinear PDEs.

One possibility to solve nonlinear equations is Newton’s2 algorithm, generating a sequence
of linearized problems, that can then be handled by linear system solvers (e.g. block-
asynchronous iteration). While every Newton step solves a linear problem, the sequence
of solution approximations generated by the distinct Newton steps approaches (in the con-
vergent case) a solution of the nonlinear problem. For a differentiable nonlinear operator
G : Rn → Rn the Newton operator is given by [Ral79]

F (x) = x−
(
G′(x)

)−1
G(x), (4.17)

where G′(x) =
(
∂Gi
∂xj

)
∈ Rn×n denotes the Jacobi matrix containing the partial derivatives

of G(x). This expression already implies that due to the required derivative of G the class
of operators to which Newton’s method can be applied is restricted by the assumption
that G is differentiable. A comprehensive convergence theory on the Newton method is
established by the Kantorovich Theorem3 [HH07].

The idea for Newton’s method can be derived from the Taylor4 approximation of first
order [SK06, QSS00]: To a given operator G : Rn → Rn, the Taylor approximation of first
order is given by

T1(x, x0) = G(x0) +G′(x0) · (x− x0).

Searching for a root x1 to the linear problem T1(x, x0) = 0, we obtain

0 = G(x0) +G′(x0) · (x1 − x0),

which brings us to the recursive Newton iteration operator

xk+1 = xk −
(
G′(xk)

)−1
·G(xk).

To show the principles of the Newton linearization when solving a nonlinear PDE we
consider the nonlinear system

−∆u = f(u) u ∈ Ω, (4.18)

u = 0 u ∈ ∂Ω, (4.19)

where u : Ω → R and Ω ⊂ R2. This nonlinear partial differential equation is often used
in computational chemistry to model difappliedfusion-driven chemical reactions [Gre65].
Also when analyzing diffusion-driven activator-inhibitor systems in Biology, e.g. pattern
formation [Kot01], (4.18) is often the model of choice for the underlying processes.

2Sir Isaac Newton (?1642, †1727)
3Leonid Vitaliyevich Kantorovich (?1912, †1986)
4Brook Taylor (?1685, †1731)
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Newton’s method applied to this problem in continuous form we replace the nonlinear
function f(u) in (4.18) by its Taylor approximation of first order:

−∆uk+1 − f(uk+1)︸ ︷︷ ︸
≈f(uk)+f ′(uk)(uk+1−uk)

= 0

 −uk+1
xx − uk+1

yy − f ′(uk)uk+1 = f(uk)− f ′(uk)uk. (4.20)

We want to stress again that this linearization process requires the differentiability of the
nonlinear function f [Ral79].

Once the problem is linearized, we can apply discretization techniques to obtain linear
systems of equations for the distinct Newton steps. Assuming a unit square, a possible
finite difference discretization can be obtained by the five-point stencil [Bra07].

Similar like in Section 4.10.7, for an equidistant mesh on the unitsquare with N + 2
gridpoints in both directions, lexicographic numbering of the nodes [Bra07] and a node
distance h = 1

N+1 , the sequence of discretized problems of size n = N2 can then be written
in the block system form

H −I 0 . . . 0

−I H −I
...

0 −I H
. . .

...
. . .

. . . −I
0 . . . −I H


· uk+1 = b, (4.21)

where

H =


4− h2f ′(uk) −1 0 . . .

−1 4− h2f ′(uk) −1
0 −1 4− h2f ′(uk)
...

. . .

 ∈ RN×N , (4.22)

I =


1 0 0 . . .
0 1 0
0 0 1
...

. . .

 ∈ RN×N , b =


h2
(
f(uk)− f ′(uk)uk

)
h2
(
f(uk)− f ′(uk)uk

)
h2
(
f(uk)− f ′(uk)uk

)
...

 ∈ Rn.

A possible implementation solving the nonlinear PDE by using Newton’s linearization
method and a discretization according to (4.21) is given in Algorithm 24.

4.14.1. Experiments on Block-Asynchronous Iteration applied to a Non-
linear Problem

As we have seen, Newton’s method breaks down the solution process of the nonlinear
problem into a sequence of linear problems, that can then be handled by linear equation
solvers. When applying an iterative method in the distinct Newton steps, the question
of optimal approximation accuracy arises. While a high accuracy approximation provides
a good approximation for the linear problem solution, the high computational effort may
not always be reasonable as the linear problem solution is only one contribution to the
nonlinear solver. Using low accuracy approximations reduces the computation time in
each Newton step, but usually increases the number of necessary Newton steps at the
same time. In the end, the trade-off between iterations of the linear solvers in the Newton
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Algorithm 24 Newton-linearization based block-asynchronous solver for nonlinear partial
differential equations discretized by a five-point-stencil.

set u0 = 0
for (k = 1; ; k + +) do {iteration steps of Newton’s method}

assemble A and b according to (4.22)
solve Auk+1 = b using block-asynchronous iteration
if (‖ uk+1 − uk ‖≤ ε ‖ uk ‖) then {check error stopping criterion}

break
end if
uk = uk+1

end for
solution approximation to problem: uk

steps and the number of Newton steps applied to the nonlinear problem determines the
overall solver performance. Note that this trade-off usually has to be considered for every
problem individually.

For the nonlinear PDE problem (4.18), (4.19) with f(u) = −(α + βu2) (α, β ∈ R), (4.20)
becomes

−uk+1
xx − uk+1

yy + 2βunuk+1 = β
(
uk
)2
− α.

Using an equidistant 102× 102 grid on Ω = [0, 1]× [0, 1] we obtain for the fixed boundary
conditions 100 unknowns per direction and a system dimension of 10000. Furthermore,
we set α = 1, β = 2 and analyse in the first experiment the trade-off between linear solver
iterations and Newton steps when using Algorithm 24 with async-(5) (see Section 4.2).
Additionally, we provide the convergence and performance of the Newton solver using the
mixed-precision iterative refinement variant of async-(5) which we denote with mpir async-

(5) (see Section 4.12), iterating until to a relative residual accuracy of ‖r
i‖2

‖r0‖2 ≤ 10−10. As

initial guess we set x0 to zero.

The convergence results reported in Figure 4.38a are according to the expectations: A high
accuracy approximation of the linear problem decreases the number of necessary Newton
steps. But at the same time, the high iteration counts cause long runtimes for linear
solver. In Figure 4.38b we observe, that the reduced number of Newton steps, coming
at the cost of a more expensive linear solver, not necessarily accelerates the nonlinear
solver. While leveraging the excellent low-precision performance in the mixed-precision
iterative refinement variant maintains the superiority of the mpir async-(5) solver, the
performance of the implementation using 1000 iterations of async-(5) is, despite the faster
convergence in terms of Newton steps, inferior to the implementations applying less linear
solver iterations. In the end, the reduced number of Newton steps does not pay off in
terms of time-dependent convergence. For the remaining methods using 200, 250, 300, 350
or 500 iterations, the performance results are very similar. Concerning the approximation
accuracy of the solution to the nonlinear problem we realize that high accuracy linear
solvers are superior. But as only the last Newton step influences this approximation
accuracy, an intelligent implementation would increase the iteration count of the linear
solver with the number of Newton steps.

So far we have evaluated convergence and performance of block-asynchronous iteration in
the context of Newton’s method applied to a nonlinear problem. The essential question
however is, whether it is a suitable replacement for the traditionally applied methods. In
Figure 4.39 we compare the time-to-solution performance using different linear solvers in
the Newton steps. While we use 500 iterations for the relaxation-based solvers (async-(5),
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Figure 4.38.: Newton convergence using block-asynchronous iterative solvers for different
iteration counts.
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Jacobi, Gauss-Seidel) the Krylov-subspace methods iterate until convergence, which causes
fast convergence of the Newton method in 3-5 steps. Note that only the Gauss-Seidel algo-
rithm is CPU-based, all other solvers are implemented on the GPU. The superiority of the
Krylov subspace solvers is expected, as they belong to the most efficient iterative methods
when solving linear systems of equations. Compared to the other relaxation techniques,
the block-asynchronous solvers are significantly faster. Comparing to the sequential Gauss-
Seidel, the performance differs by almost two orders of magnitude, and in comparison with
Jacobi, we still converge almost three times faster.

As we can expect an explosion in the heterogeneity of future hardware systems [BBC+08],
the parameter computations requiring synchronizations in the Krylov subspace methods
will become a crucial factor. Then, synchronization-avoiding algorithms will become the
method of choice when solving nonlinear problems, which reveals the high potential of
using block-asynchronous iteration also in the framework of nonlinear solvers.
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4.14.2. Pattern Formation in Mathematical Biology

One of the still insufficiently answered questions in biology is which mechanisms are re-
sponsible for the typical coat pattern of the different species [Mur03]. The beautifully
illustrated book series [Kin88] provides not only a comprehensive and accurate survey
about the rich and varied spectrum of coat patterns, but also vividly shows that, despite
the coat pattern of an individual mammal changes over lifetime, its species can always be
identified. In mathematical biology, several models based on different mechanisms have
been established that may provide an explanation for the pattern formation of animal
coats. One popular model in this context is based on the idea, that one single process
could be responsible for generating practically all of the common patterns observed. The
model is based on a chemical reaction diffusion system, which is diffusionly driven, and
the Turing5 mechanism [Mur03]. The fundamental assumption that subsequent differen-
tiation of the cells to produce melanin simply reflects the spatial pattern of morphogen
concentration is compactly described by James D. Murray6 [Mur03]: To create the color
patterns certain genetically determined cells, called melanoblasts, migrate over the surface
of the embryo and become specialized pigment cells, called melanocytes, which lie in the
basal layer of the epidermis. Hair color comes from the melanocytes generating melanin,
within the hair follicle, which then passes into the hair. The process of melanogenesis
is comprehensively described by Giuseppe Prota in [Pro92]. As a result of graft experi-
ments, it is generally agreed that whether or not a melanocyte produces melanin depends
on the presence of a chemical, although we still do not yet know what it is. In this way
the observed coat color pattern reflects an underlying chemical pre-pattern, to which the
melanocytes are reacting to produce melanin [Mur03]. Without providing more details
about the scale of the actual size of the pattern, the number of cells, the Turing insta-
bility range of the parameters and the motivation for the different mechanisms, we limit
the background necessary to derive the mathematical model to the fact that two chemical
substances with different diffusion characteristics (activator u and inhibitor v) are driving
the chemical reaction diffusion process. The nonstationary partial differential equations
describing this process are given by

∂u

∂t
= γf(u, v) + ∆u,

∂v

∂t
= γg(u, v) + κ∆v (4.23)

where f(u, v), g(u, v) describe the interaction between the substances. Due to biological
reasons it seems a natural decision to use Neumann7 boundary conditions given by [Bra07]

∂u

∂n
= 0,

∂v

∂n
= 0. (4.24)

While there exist different reasonable choices for the functions f(u, v) and g(u, v), we stick
to the Schnakenberg model [Sch79], which can be nondimensionalised and scaled into the
general form [Mur03]

f(u, v) = α− u+ u2v, (4.25)

g(u, v) = β − u2v. (4.26)

5Alan Turing (?1912, †1954)
6James Dickson Murray (?1931)
7Carl Gottfried Neumann (?1832, †1925)
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4.14.2.1. Discretization and Linearization

To solve this problem numerically by using an implicit Euler8 scheme [But08] we choose
a time discretization with timesteps dt. For the spatial discretization we assume a unit
square and apply a finite difference discretization based on the five-point stencil with
node distance h. We use the indices (i, j, k) where i, j refers to the spatial and k to
the time discretization such that we get xi = i · h, yj = j · h for i, j = −1, 0 . . . n and
h = 1

n−1 . Note that the additional ghost points i, j = −1 and i, j = n are necessary for
the discretization of the boundary with the symmetric difference quotient, and we have
x0 = y0 = 0, xn−1 = yn−1 = 1, respectively. From (4.23) we derive

ui,j,k+1 − ui,j,k
dt

=
ui+1,j,k+1 + ui−1,j,k+1 + ui,j+1,k+1 + ui,j−1,k+1 − 4ui,j,k+1

h2
(4.27)

+ γf(ui,j,k+1, vi,j,k+1),

vi,j,k+1 − vi,j,k
dt

= κ
vi+1,j,k+1 + vi−1,j,k+1 + vi,j+1,k+1 + vi,j−1,k+1 − 4vi,j,k+1

h2
(4.28)

+ γg(ui,j,k+1, vi,j,k+1).

For a lexicographic ordering of the spatial discretization, we simplify the notation as fol-
lows: Uk = ui,j,k, Vk = vi,j,k ∈ Rn2

, and C̄ ∈ Rn2×n2
for the matrix referring to the Laplace

operator with respective boundary conditions that were discretized by using a symmetric
finite difference discretization. We then can write (4.27), (4.28) in a more compact fashion:

1

dt
(Uk+1 − Uk) =

1

h2
C̄ · Uk+1 + γf̄(Uk+1, Vk+1), (4.29)

1

dt
(Vk+1 − Vk) = κ

1

h2
C̄ · Vk+1 + γḡ(Uk+1, Vk+1). (4.30)

where

C̄ =



C 2I 0 . . . 0

I C I
...

0 I C
. . .

...
. . .

. . . I
0 . . . 2I C


∈ Rn

2×n2
with C =



−4 2 0 . . . 0

1 −4 1
...

0 1 −4
. . .

...
. . .

. . . 1
0 . . . 2 −4


∈ Rn×n,

f̄ : Rn
2 × Rn

2 7→ Rn
2

f̄i,j = f : R× R 7→ R,

ḡ : Rn
2 × Rn

2 7→ Rn
2

ḡi,j = g : R× R 7→ R.

Due to the nonlinear characteristic of the functions f(u, v), g(u, v), the implicit Euler
method generates a sequence of nonlinear problems that we have to solve for the distinct
timesteps. For this purpose, we apply the Newton linearization we already utilized in the
last section, and employ block-asynchronous iteration to solve the linear systems.

Indexing the Newton iterations with l (the index for the time steps k remain constant in
one time step) we obtain

F (U lk+1, V
l
k+1) + F ′(U lk+1, V

l
k+1)

(
U l+1
k+1 − U

l
k+1

V l+1
k+1 − V

l
k+1

)
= 0, (4.31)

where F : R2n2 7→ R2n2
with

F (Uk+1, Vk+1) =

(
Uk+1 − dt

h2
C̄ · Uk+1 − dtγf̄(Uk+1, Vk+1)− Uk

Vk+1 − κ dth2 C̄ · Vk+1 − dtγḡ(Uk+1, Vk+1)− Vk

)
8Leonhard Euler (?1707, †1783)
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and F ′ ∈ R2n2 × R2n2
is the Jacobian with the partial derivatives with respect to Uk+1

and Vk+1:

F ′(Uk+1, Vk+1)

=

(
I − dt

h2 C̄ − dtγf̄Uk+1
(Uk+1, Vk+1) −dtγf̄Vk+1

(Uk+1, Vk+1)
−dtγḡUk+1

(Uk+1, Vk+1) I − κ dt
h2 C̄ − dtγḡVk+1

(Uk+1, Vk+1)

)
=

(
I − dt

h2 C̄ − dtγ · (−I + diag(2Uk+1. ∗ Vk+1)) −dtγ · diag(Uk+1. ∗ Uk+1)
−dtγ · diag(−2Uk+1. ∗ Vk+1) I − κ dt

h2 C̄ − dtγ · diag(−Uk+1. ∗ Uk+1)

)
.

Note that we use the Matlab9-notation X. ∗ Y for the component wise multiplication of
two vectors X,Y . Using

F ′(U lk+1, V
l
k+1)

(
U l+1
k+1 − U

l
k+1

V l+1
k+1 − V

l
k+1

)
= F ′(U lk+1, V

l
k+1)

(
U l+1
k+1

V l+1
k+1

)
− F ′(U lk+1, V

l
k+1)

(
U lk+1

V l
k+1

)
we can derive the sequence of linear systems of equations that have to be solved in the
distinct Newton steps l:

F ′(U lk+1, V
l
k+1)

(
U l+1
k+1

V l+1
k+1

)
= F ′(U lk+1, V

l
k+1)

(
U lk+1

V l
k+1

)
− F (U lk+1, V

l
k+1), (4.32)

where

F ′(U l
k+1, V

l
k+1)

(
U l
k+1

V l
k+1

)
=

(
U l
k+1 − dt

h2 C̄U
l
k+1 − dtγ(−U l

k+1 + diag(2U l
k+1. ∗ V l

k+1)U l
k+1)− dtγ · diag(U l

k+1. ∗ U l
k+1)V l

k+1

−dtγ · diag((−2U l
k+1. ∗ V l

k+1))U l
k+1 + V l

k+1 − κ dt
h2 C̄V

l
k+1 − dtγ · diag(−U l

k+1. ∗ U l
k+1)V l

k+1

)
.

In order to better map the system to the number range of computers, we multiply the
obtained equation by h2 and obtain a linear system Ax = b with

b =

(
h2dtγ

(
α · I − 2 · diag(Uk+1. ∗ Uk+1)V l

k+1

)
+ h2Uk

h2dtγ
(
β · I + 2 · diag(Uk+1. ∗ Uk+1)V l

k+1

)
+ h2Vk

)
(4.33)

and

A =

(
Au R
Q Av

)
, (4.34)

where for t ∈ {u, v}

At =



Ht −2Idt 0 . . . 0

−Idt Ht −Idt
...

0 −Idt Ht
. . .

...
. . .

. . . −Idt
0 . . . −2Idt Ht


+ h2qt

9MathWorks; www.mathworks.com/
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and

Hu = h2I − dtC
qu = dtγ(I − 2 · diag(U lk+1. ∗ V l

k+1)),

Hv = h2I − κdtC
qv = dtγ · diag(U lk+1. ∗ U lk+1),

R = −h2dtγ · diag(U lk+1. ∗ U lk+1),

Q = h2dtγ2 · diag(U lk+1. ∗ V l
k+1).

Notice again, that the matrix C referring to the Laplace operator comprises the boundary
condition (4.24) using centralized symmetric finite differences that allow an accuracy of
O(h2).

Since we want to solve the linearized system by applying the block-asynchronous iteration,
we recall that the method not necessarily converges for ρ(|B|) > 1 where B is the iteration
matrix B = I − D−1A, while a sufficient condition for convergence is ρ(|B|) < 1 (see
Theorem 3.2.6). Analyzing the structure of the system matrix A, we notice that by
choosing the time discretization dt small enough, we are able to ensure ρ(|B|) < 1. Then,
the sufficient convergence condition for block-asynchronous iteration is fulfilled, which
shows that the method can efficiently be applied also when solving nonlinear nonstationary
problems.

4.14.2.2. Simulations using Block-Asynchronous Iteration

When using time-discretization methods with variable time steps, the comparison between
different solver algorithms is in general difficult, as we have to choose the time discretiza-
tion dt small enough such that the corresponding iteration matrix fulfills ρ(|B|) < 1 and
the block-asynchronous iteration converges. Hence, we have less freedom in the choice
of the time step length than when applying other methods to solve the linear systems.
This implies that for other methods, like e.g. Gauss-Seidel or GMRES (see Section 2.4.2,
respectively 2.5.4), it may be possible to choose a coarser time discretization, but at the
same time, these methods allow only limited parallelization and require synchronization
between the iterations, which may become crucial when targeting highly parallel hetero-
geneous hardware.

The choice of parameters and initial solution approximation is according to the experiment
setup chosen in [Ruu95] (also see [FF12, Mad06]):

Ω = [0, 1]× [0, 1],

κ = 10.0,

γ = 1000.0,

a = 0.126779,

b = 0.792366,

κ = 10.0,

U0 = 0.919145 + 0.0016 · cos(2π(x+ y)) + 0.001
8∑
j=1

cos(2πjx),

V0 = 0.937903 + 0.0016 · cos(2π(x+ y)) + 0.001
8∑
j=1

cos(2πjx).

Only, since we are able to exploit the parallelism of hybrid hardware systems, we choose a
discretization of 100 elements per direction, resulting in a total number of 20.000 unknowns,
and a time discretization dt = 0.1 · h2.
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124 4. Block-Asynchronous Iteration

In Figure 4.40 the distribution of the activator u is visualized for various values of t. We
observe, that the system converges towards a steady pattern distribution, which may for
this showcase result in a dotted coat. A comparison with simulation results obtained
by using a direct solver for the linearized problems reveals negligible differences to the
obtained solution approximations (also see simulation results in [FF12]).
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(a) t=0.025 (b) t=0.125

(c) t=0.15 (d) t=0.2

(e) t=0.225 (f) t=5.0

Figure 4.40.: Visualization of the distribution of activator u for different values of t.
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5. Power-Aware Implementations and
Energy-Efficient Numerics

5.1. Power- and Energy-Efficiency

High Performance Computing (HPC) centers are substantial consumers of energy, neces-
sary to feed the computational resources that have enabled the breakthrough scientific ad-
vances achieved during the past few decades. The recent developments in computer archi-
tecture, especially in multi-/many-core and accelerator technology, have triggered consid-
erable performance gains in computing, allowing the continuation of historical trends [top],
and this hardware is being rapidly adopted in HPC facilities. Nevertheless, further per-
formance improvements attained from a substantial increase in the number of cores, is
constrained by the aggregated energy budget necessary for large-scale HPC systems. In
particular, power consumption has a direct impact on the operational costs of these cen-
ters, compromising their existence and impairing the installation of new ones. Already
today, the electricity costs for many HPC centers exceed the hardware acquisition costs in
just few years [Lam10]. Also the economic issue is not the only problem of this immense
hunger for energy. Appropriate infrastructure able to supply this enormous amount of
energy is not always available, and also cooling the facilities may become a serious prob-
lem, especially since the heat dissipation reduces the reliability and lifetime of hardware
components [NX06, SSH+03].

The needed amount of energy has to be generated somehow, and considering the current
energy mix, also the ecological impact has to be considered, as the associated carbon diox-
ide emission is a hazard for the environment and public health. Therefore, the concerns
about the rise of an energy crisis, climate change and fault-tolerance in large-scale systems
lead to a very well justified call for energy efficiency in HPC [BBC+08, Det al11]. One
consequence is the establishment of the Green500 list [gre], ranking the supercomputers
according to their performance per watt ratio, as counterpart to the performance-oriented
TOP500 list [top]. The fact that at the time of writing in June 2012 for the first time
the No. 1 supercomputer in the Green500 list was based on the same architecture like the
system ranked number one in the TOP500 list revels the increasing relevance of the power
constraint and the strong efforts of the hardware developers to develop low-consuming
systems [top, gre]. In many cases, the gain in power efficiency is achieved by integrating
low-consuming accelerators in the platform that provide a high performance per watt ra-
tio [BTL10]. A strong correlation between the integration of power-efficient coprocessors
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Figure 5.1.: Energy-dependent performance of the top-ranked systems in the TOP500 and
GREEN500 lists [top, gre]. The dashed lines are for the No. 1 ranked system,
the solid lines the average of the first 100 systems in the list. The wide line
gives the percentage of the TOP500 systems featuring accelerators.

and a higher energy efficiency can also be assumed by comparing the percentage of ac-
celerated supercomputers and the energy efficiency of the top-ranked systems in Figure
5.1.

Despite the recent improvements, all technical reports identify the power consumption
of the computers as the largest hardware research challenge when aiming for exascale
computing [BBC+08, Age10, GL09]. The fact that using today’s hardware would result
in power draft of over one gigawatt for exascale systems shows the need for further efforts
of the hardware developers [ABC+10].

At the other end of the spectrum, mobile computing devices need to be equipped with
low-power hardware components to maximize their battery life. This constraint particu-
larly from the embedded and mobile market segments, is forcing hardware manufacturers
to improve their designs for better energy efficiency. Processor, memory and hard disks
nowadays feature low-power modes to trade-off performance for power by applying energy-
friendly techniques such as Dynamic Voltage and Frequency Scaling (DVFS, see Section
5.3.2) and idle states (e.g., spin down idle disk platters). These tools have to be used
carefully, though, as the application runtime increase may outweigh the power decrease
such that the total energy is increased. In recent years, these energy-saving mechanisms
from the mobile market have found their way into server architectures and, thus, the sys-
tems installed at large HPC centers are now often equipped with power-efficient hardware.
However, the system software, communication libraries, and application codes in these
systems are most often insensitive to power consumption.

Summarizing the different aspects we may predict, that, although the exaflop challenge will
undoubtedly lead to new ground-breaking scientific discoveries, it is also certain that it calls
for greener and more efficient resource utilization. This includes not only low-consuming
hardware forming the HPC facilities, but also software, middleware and application algo-
rithms that are able to leverage the energy saving techniques.

It is clear that exascale machines will not be materialized unless the ”power wall” problem
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is adequately addressed [BBC+08]. A non-exhaustive list of critical factors with respect
to energy reduction encompasses: facility, hardware, software, scheduling, and energy
management. It is well known that a large potential for energy reduction can be obtained
by means of re-engineering facility and hardware. This topic is already fully included in the
focus of computer manufacturers (see e.g. [YHE02], [BB95], [GC01], [Hof05], [KGMS97]).

On the other side, little attention is payed to the fact that a great potential can be
leveraged by transforming, redesigning and completely rethinking the algorithms that are
implemented in the applications that run on the supercomputing platforms. The difficulty,
and possibly one of the reasons why only few research institutions investigate this topic
in a systematic way, is related to the fact that this kind of redesign strategy relies on
an highly interdisciplinary expertise coupling the disciplines of mathematical modeling,
numerical methods, software design and hardware aware computing.

While the different experts can improve the factors related to the respective fields they
are working in, only the combination of their competences can lead to considerable im-
provements: the hardware has to be optimized with respect to power consumption, the
applications have to be adapted to leverage this hardware, the implementations have to op-
timize the usage of all available hardware resources and distribute the workload to improve
the efficiency.

In the following sections we want to investigate experimentally how the iterative methods
we derived and analyzed in the last chapters can be adapted and optimized with respect
to the power and energy dissipation, see Section 5.4. This includes the issue of the efficient
utilization of power saving mechanisms provided by the hardware. To understand these,
we provide in Section 5.3 a broad overview about the different concepts. As accurate power
quantifications are substantial for the analysis, we start in Section 5.2 with a description
of the measurement setups for the targeted systems.

5.2. Measurement Setup for Energy Analysis

Before reporting on the experiments and the respective results, we want to provide some
information about how to monitor the energy footprint of a scientific simulation algorithm
conducted on a specific hardware without affecting the system itself. The idea is to use
an independent measurement setup, reporting the voltage and amperage of the different
devices. Two factors limit the accuracy of these measurements: The limited frequency of
the analyzing instruments and the damping devices integrated in modern hardware. These
damping devices, usually integrated capacitors, aim for buffering current and amperage
peaks, and hence lead to a smoother power draft. But while this potentially improves the
power consumption of the applications, at the same time it aggravates the analysis of the
power profile of the respective application. Hence, it is reasonable to profile computation-
ally expensive problems, as we may then expect long routine calls and the amperage to
settle down at the correct value.

5.2.1. Power Measurement Setup at the University of Jaume I

The High Performance Computing & Architectures (HPCA)1 group at the University of
Jaume I, Castellon, has employed a power analysis setup able to monitor the power demand
of the mainboard and the GPU of a hybrid hardware system separately. The hardware
system of Watts-2 (see Appendix C.2) processing the scientific applications consists of two
Intel Xeon E5410 Quad-Core processors at 2.33 GHz, with 4 GB of RAM, connected via
PCIe (16x) to a GPU. Power is measured at two different points, Figure 5.2 illustrates the

1High Performance Computing & Architectures (HPCA); http://www.hpca.uji.es/
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Figure 5.2.: Hardware platform and sampling points at the University of Jaume.

connection between the target platform and the energy measurement hardware [AHR+11a].
A commercial external power meter samples power for the global system once per second
(1 Hz). Given the low resolution of the measurements, and the “noise” introduced by
hardware components as the disk or the network interface card as well as the inefficiencies
of the power supply, there is an alternative sampling point added, with a higher resolution,
using an internal power meter. This is an ASIC operating at a frequency of 25 Hz (25
samples per second) which is composed of a number of resistors connected in series with the
power source: thus, the drop of power voltage across the series yields a direct estimation
of the power being consumed. The internal powermeter is attached to the lines connecting
directly the power supply unit with the GPU and the motherboard (chipset plus processors)
so as to obtain the energy consumption of the computing hardware. Since the samples from
both the external and the internal power meter are collected in a separate measurements
system, the measurements do not affect the performance of the application.

5.2.2. Power Measurement Setup at Engineering Mathematics and Com-
puting Lab (EMCL)

Inspired by the installation at the University of Jaume we decided to set up a similar
system at the Engineering Mathematics and Computing Lab at the Karlsruhe Institute of
Technology2. The objective was to integrate the Supermicro GPU Cluster (see Appendix
C.1) into a measurement setup able to monitor power and amperage of the distinct hard-
ware devices. Funded by the Karlsruhe Institute of Technology we started a cooperation
project with the Institute for Data Processing and Electronics (IPE)3 located at the north
campus of the Karlsruhe Institute of Technology. With the help of Dr. Andreas Kop-
mann, Armen Beglarian and Peter Schöck we configured a system that is not only able
to monitor voltage and amperage of the chipset including the memory, the processors and
the interface, but also the hard disks, the GPUs, and even the power draft of the GPUs
via the PCI 16x connection. While Figure 5.3 provides a general overview, which may be
considered as a worldwide unique system setup, more details about the configuration of
the measurement system can be found in Appendix C.1.

5.3. Energy Saving Techniques

Over the last years, hardware developers have devoted strong efforts to the design of power-
efficient devices. As one result, parallel coprocessors like GPUs, FPGAs and Manycore-
systems like Intel’s MIC were promoted, that provide excellent floating point performance
with low power dissipation. Additionally, modern hardware often features mechanisms
to reduce the power demand, but the crucial question has become how to leverage these

2Engineering Mathematics and Computing Lab (EMCL); http://www.emcl.kit.edu/
3Institute for Data Processing and Electronics (IPE); http://www.ipe.kit.edu/
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Figure 5.3.: Hardware platform and sampling points at the EMCL.

from the software implementations. Dynamic Voltage and Frequency Scaling (DVFS) and
idle-wait, reviewed next, are two simple techniques that can efficiently be embedded into
an algorithm, to exploit hardware-provided power saving mechanisms, and to reduce the
power dissipation and energy consumption of an application.

5.3.1. Energy Improvements by Accelerator Technology

Using Accelerator technology for applications first of all implies an additional power con-
sumer. Every additional device not only needs additional power, but also the associated
memory, cooling and the interface to the coprocessor raise the overall dissipation. Never-
theless, using accelerator technology may still be beneficial to the total energy consumption
of the application since the high computational power often improves the performance. In
this case, the higher average power demand may be compensated for by a more decreased
overall runtime [ARH10]. As it depends on the system architecture and the application
whether adding coprocessors improves the energy footprint, we will analyze in Section
5.4.1 the situation for iterative linear system solvers on specific hardware configurations
applied to some test problems.
At this point we want to stress that the total energy consumption alone may not always
be the relevant metric, since in many cases additional constraints are posed by the infras-
tructure and other factors. As an example, for many systems the peak power, including
the demand for power supply and cooling system, poses restrictions to the configuration,
as the overall power throughput may be limited by the infrastructure. Related to this
issue is the need for suitable energy metrics that reflect the power and energy profile of
an application: Focusing on the total energy consumption ignores boundary conditions
like limited CPU (or coprocessor) hours, the power dissipation of the infrastructure or the
simulation’s relevance at a certain point in time [BC10].

5.3.2. Dynamic Voltage and Frequency Scaling (DVFS)

The power demand of a computing processor depends linearly on its capacitance and its
clock speed, and quadratically on its voltage. The dependencies can be formulated in a
general model for static CMOS gates as

P = C · U2 · f, (5.1)

where C is the capacitance being switched per clock cycle, U is the voltage and f is the
switching frequency [RCN04]. Although (5.1) is a simplification (most modern processors
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are not plain CMOS architectures, and the formula neglects static leakage), the expression
captures a key point, stating that the power draft depends linearly on the clock speed
and quadratically on the voltage. Hence, the processor frequency and the voltage are two
parameters that can be adjusted to reduce the overall power draft. The problem is that
they are related and, therefore, changing one of them usually requires the adaption of the
second, so that in general frequency and voltage have to be scaled simultaneously. This
can be derived from the fact, that reducing the voltage requires a slower clock rate to fill
the capacitors in the processor.

Dynamic Voltage and Frequency Scaling (DVFS, see [CSP04, SMB+02]) is an efficient
technique that aims at reducing the power dissipation by applying the idea of the simul-
taneous rescaling of voltage and frequency. Specifically, note that a linear reduction of the
voltage and the clock speed in the same proportion potentially triggers a cubic reduction of
power, see (5.1). The drawback is that reducing frequency by a given factor usually comes
at the cost of a negative performance impact, so that the application runtime is usually
increased. As the overall energy need is the product of the computation time and power
draft, the result may be a growing total energy consumption [FLP+07, pow09]. Particu-
larly, for CPU-intensive codes, applying DVFS is a trade-off between extending the overall
computation time and lowering the power draft. While reducing voltage and frequency
necessarily has a positive impact on the processor’s energy demand, this is not always true
when considering the complete hardware system. The reason is that also the memory,
the hard disk, the network and other hardware components contribute to the total energy
consumption and, thus, the extended runtime may blur energy savings achieved for the
CPU. Nevertheless, especially for small devices like smart-phones, tablets and embedded
systems, where the processor is the dominating power consumer, DVFS has been largely
adopted as an efficient energy-saving mechanism.

5.3.3. Idle-Wait

When conducting operations on a coprocessor, e.g. running a kernel routine on a GPU, the
CPU of the host system is either used for other tasks or runs idle. Since many algorithms
do not allow sharing CPU resources with some other application, and also demand for the
completion of the coprocessor task before continuing the program execution, it is reason-
able to reduce the processor power for the time of the kernel execution. One possibility
to achieve this goal is to simply apply DVFS to the CPU for the duration of the kernel
execution. Nevertheless, in experiments it was observed, that that lowering the operation
frequency of idle CPU cores rarely yields a significant reduction of power consumption of
the host system [AHA+11]. The reason for this is the ”busy-wait” status the CPU enters
for the time of the kernel execution, which is highly energy inefficient. To resolve this
problem, in [AHA+11] an alternative ”idle-wait” technique was proposed, which is able
to reduce the CPU energy consumption for the time of the kernel call considerably (also
see [ACF+]). The underlying idea is to explicitly set the host system to sleep for approxi-
mately the time of the kernel execution. In the past only possible by estimating the kernel
time a priori and utilizing the C/C++ nanosleep() function (see sys/time.h) [AHA+11],
meanwhile the new CUDA toolkit provides tools that allow a very flexible handling of
idle-wait [ADI+12]. In particular, cudaSetDeviceFlags allows to specify the behavior of
the active host thread when it executes device kernel code. This routine is called by the
CPU thread before the CUDA runtime is initialized. After that, all synchronizations using
cudaThreadSynchronize will suspend the execution of the calling thread until the device
finalizes its work, thus ”sleeping” the core and avoiding the potential energy-consuming
state. Note that applying idle-wait to any coprocessor-accelerated application necessarily
improves its energy consumption without impacting its performance. This stems from the
fact that it only adapts the CPU power when running idle, and the algorithm’s runtime
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performance is not affected by the mechanism.

5.4. Experiments on Energy Saving Techniques

5.4.1. Experiments on GPU-Accelerated Numerics

In the first experiment we aim for analyzing the tradeoff between the reduced runtime of
GPU-accelerated code and the additional power demand of the coprocessor. The results
reported in this and the two following sections were also presented in [AHA+11]. On
the watts-2 system (see Appendix C.2) located at the University of Jaume I we perform a
detailed power and energy analysis on a CG solver and the respective Jacobi-preconditioned
variant applied to the system of linear equations based on the matrix G3 circuit (see
Appendix B). We differentiate between CPU implementations using 1,2,4 and 8 cores, and
a GPU implementation outsourcing the matrix vector operations to a Tesla C1060 board
(see Appendix C.4).

Note that since the computation of the preconditioner matrix is sequential, it is always
performed by the CPU of the system. Within the iteration process, the difference be-
tween the CG and the Jacobi-preconditioned CG (PCG) is one additional matrix-vector
multiplication involving the preconditioner matrix.

The different implementations of the solver use either the CPU or the GPU for the sparse
matrix-vector product and BLAS-1 operations.

In Tables 5.1 and 5.2 we report the results obtained with the CPU solvers using OpenMP
with 1, 2, 4 and 8 threads/cores (results labelled as“CPU nT”with“n”equal the number of
threads), and compare the execution time (in seconds, [sec]) and the energy consumption
(in Watts-hour, [Wh]) to those of the GPU implementations, performing the BLAS-1
operations and the sparse matrix-vector product on the GPU, and using a total of 4 CPU
threads/cores for the remaining operations on the CPU (results labelled as “GPU 4T”).

hardware # iter time [sec] energy consumption [Wh]
chipset GPU total

CPU 1T 21424 1674.45 53.96 - 53.96

CPU 2T 21424 1307.21 45.70 - 45.70

CPU 4T 21424 1076.97 42.18 - 42.18

CPU 8T 21424 1113.34 50.54 - 50.54

GPU 4T 21467 198.43 8.04 3.44 11.48

Table 5.1.: Energy consumption of different implementations of CG solver for G3 circuit
[AHA+11].

hardware # iter time [sec] energy consumption [Wh]
chipset GPU total

CPU 1T 4613 601.97 18.94 - 18.94

CPU 2T 4613 417.33 14.22 - 14.22

CPU 4T 4613 348.79 13.31 - 13.31

CPU 8T 4613 362.44 16.25 - 16.25

GPU 4T 4613 46.28 1.89 0.83 2.72

Table 5.2.: Energy consumption of different implementations of PCG solver for
G3 circuit [AHA+11].
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We observe that, for the CG as well as for the preconditioned variant, the GPU implemen-
tation outperforms all CPU solvers by a large factor. This is true for the execution time as
well as for the energy need. For the latter parameter, the improvement is smaller, since the
power consumption of both the CPU and GPU have to be taken into account. For the CG
solver, the optimal CPU-based configuration (use of 4 threads) results in more than 5×
higher execution time and about 4× higher energy consumption. For the preconditioned
variant, where the additional matrix-vector multiplication in every iteration loop is payed
off with a lower number of iterations, the speedup and energy saving derived from the use
of the GPU as coprocessor are even higher. The optimal CPU implementation can at most
reach 1/7 of the GPU performance and consumes more than 480% more energy.

Although most scientific codes target clusters with general-purpose processors, this test
validates the assumption that the use of GPUs for elementary kernel operations may
improve the overall performance of parallel scientific applications. Despite the additional
initialization process and data transfer to the GPU, the high number of computing cores
on a graphics processor compensates these overheads, and enables the GPU to perform
parallel instructions faster and with higher energy efficiency [AHA+11].

5.4.2. Experiments on Dynamic Voltage and Frequency Scaling (DVFS)

In the next experiment we analyze the total energy consumption of a CG solver applied
to a linear equation problem associated with the test matrix A318 (see Appendix B). We
are especially interested in the effect of applying Dynamic Voltage and Frequency Control.
Therefore, we apply implementations using different clock frequencies and furthermore
differ between CPU implementations using 1,2,4 and 8 cores, and a GPU implementa-
tion outsourcing the matrix vector operations to a Tesla C1060 board (see C.4). The
experiments were again conducted on the hybrid watt2-system located at the University
of Jaume I (see C.2), and the results have also been published in [AHA+11].

hardware CPU freq. time power/energy consumption
chipset GPU total

[MHz] [sec] Pavg [W ] Pavg [W ] [Wh]

CPU 1T 2,000 2059.69 116.78 - 66.81

CPU 1T 800 3400.64 103.50 - 97.75

CPU 2T 2,000 1708.31 120.30 - 57.08

CPU 2T 800 2196.63 105.60 - 64.44

CPU 4T 2,000 1441.78 123.99 - 49.66

CPU 4T 800 1674.62 108.11 - 50.29

CPU 8T 2,000 1395.37 129.33 - 50.13

CPU 8T 800 1481.48 110.46 - 45.45

GPU 2,000 253.22 149.04 61.89 14.84

GPU 800 254.25 138.50 61.45 14.12

Table 5.3.: Energy Consumption of different implementations of CG solver for A318
[AHA+11]. Results are labelled as ”CPU nT” where ”n” equals the number
of threads / cores.

In Table 5.3 we report the execution time, average power demanded by the chipset and
GPU (Pavg in average Watts [W ]) and total energy consumption of the codes when DVFS
is employed to set the operating frequency of the AMD cores to 2.00 GHz and 800 MHz
for the time of the CG solver. Since rescaling the CPU frequency is on one side only
beneficial when applied to all cores, and introduces some overhead on the other side, addi-
tional rescaling inside the algorithm may not improve the overall performance [AHA+11].
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The results show that, for the CPU-based codes, there is no direct correlation between
computation time and the total energy cost. Reducing the CPU-frequency using DVFS
lowers the power consumption of the CPU, but since less operations can be conducted
per unit of time, it increases the computation period. In the end, lowering the frequency
does not necessarily yield an improvement to the energy cost. This may stem from the
fact, that the cores are only one energy consumer among a long list of devices, that may
not necessarily benefit from lowering the clock rate [AHA+11]. Using more cores reduces
the execution time, but increases the energy consumption. Since not only the cores are
consuming but also the memory and the chipset demand for some power, whether increas-
ing the number of cores pays off depends on the application and the memory bandwidth.
Only if the application is CPU-bound increasing the number of cores reduces the energy
consumption; for memory-bound operations this may not be true in general [AHA+11].
On NUMA architectures, like the one employed in the experiments, using a large number
of cores increases also the memory bandwidth, which may lead to a different ratio between
the memory- and CPU workload. This effect can be observed when 8 threads are used.

Furthermore, we observe the glaring superiority of the GPU-accelerated implementations.
The high computational power provided by the graphics processing units can be leveraged
for the expensive matrix-vector operations, causing speedups of up to five. When utilizing
the GPU as coprocessor, using DVFS is beneficial, since the operations conducted by the
CPU are few and do not demand a high operation frequency [AHA+11].

Finally we observe that the graphics card consumes some power over the PCIe. Although
it is in the used measurement setup not possible to provide explicit numbers for this energy
transfer, the specifications do not allow a higher throughput than 75 Watts via PCIe4.

Using the GPU-implementation for this test case, the improvement gained by using DVFS
counts up to at most 5.6% of the total energy consumption (see last column of the GPU
implementations in Table 5.3). The reason for this moderate result is that calling a GPU
kernel operation sets the CPU into a busy-wait, a mode where the host system is waiting
for feedback from the kernel, sending steadily requests to the device [AHA+11].

5.4.3. Experiments on Idle-Wait

In [AHA+11] also the effects of the idle-wait technique we introduced in Section 5.3.3 were
analyzed. In this Section we will report the experimental results provided in [AHA+11].
While we still stick to the matrix system A318, we report the average power consumption
of the GPU-accelerated CG solver in different implementations.

Figure 5.4 illustrates the power demand of different energy-saving techniques applied to
the CG solving process of the linear system A318 during a period of 12.5 seconds, chipset-
measurement only. Here, using DVFS to lower the operating frequency of the CPU cores
from 2.0 GHz to 800 MHz (line labeled as “CG+DVFS”) does not affect the iteration
time, as most of the computations are performed on the GPU. The results show that with
DVFS alone the improvement is small; the nanosleep() function yields a certain drop of
the power consumption (line “CG+idle-wait”); and the combination of both techniques
improves the performance further (line “CG+DVFS+idle-wait”).

Based on these results on the average power consumption, we now want to analyze the
improvement with respect to the total energy consumption gained by the idle-wait tech-
nique. Therefore, we employ three GPU-implementations of the CG solver and its Jacobi-
preconditioned derivative [AHA+11]:

4PCI-SIG; http://www.pcisig.com/specifications/pciexpress/

135

http://www.pcisig.com/specifications/pciexpress/


136 5. Power-Aware Implementations and Energy-Efficient Numerics

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

P
o
w

e
r

(W
a
tt
s)

Time [s]

Power usage by CPU

CG
CG+DVFS

CG+idle-wait
CG+DVFS+idle-wait

Figure 5.4.: Power consumption of different energy-saving techniques applied to the CG-
solver, chipset measurement. [AHA+11]

(i) The first implementation is straight-forward, without DVFS or any other power-
saving technique. The CPU of the host system runs at full speed (2.0 GHz) during
the complete solving process.

(ii) Using DVFS, we scale down the frequency of the host system to 800 MHz during
the operation of the GPU-accelerated solver. This has the drawback of slow CPU
computations for this part, but since these computations are minor, this choice seems
reasonable.

(iii) Additionally to DVFS we set the host system to sleep for the time the GPU performs
the sparse matrix-vector multiplication.

Tables 5.4 and 5.5 collect the results obtained with the (i)–(iii) solver implementations,
applied to selected linear systems described in Appendix B, using, respectively, a plain
CG solver and a Jacobi-preconditioned one. We measure the total energy consumption by
adding the energy use of chipset and GPU. The last two columns in both tables reflect
the improvement in power consumption that can be obtained by using DVFS and the
combination of DVFS and idle-wait.

matrix energy consumption [Wh] improvement [%]

(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8

apache2 1.98 1.99 1.82 -0.5 8.8

audikw 1 no convergence - -

boneS10 no convergence - -

ecology2 2.30 2.27 2.09 -1.3 10.0

G3 circuit 11.48 11.11 10.10 3.3 13.7

ldoor no convergence - -

n24k 26.43 25.42 21.17 3.97 24.8

Table 5.4.: Energy consumption of different implementations of the CG solver, chipset +
GPU [AHA+11].

While for some problems only the preconditioned variant of the CG solver converges,
applying a preconditioner is not always reasonable. There exist problems where the plain
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matrix energy consumption [Wh] improvement [%]

(i) (ii) (iii) (i)→(ii) (i)→(iii)

A318 14.84 14.12 12.18 5.1 21.8

apache2 1.75 1.76 1.64 -0.6 6.7

audikw 1 47.98 45.61 38.15 5.2 25.8

boneS10 157.32 150.16 125.78 4.8 25.1

ecology2 2.51 2.45 2.29 2.4 9.6

G3 circuit 2.71 2.63 2.38 3.0 13.9

ldoor 43.22 41.18 34.79 5.0 24.2

n24k 34.62 32.97 27.64 5.0 25.3

Table 5.5.: Energy consumption of different implementations of the PCG solver, chipset +
GPU [AHA+11].

implementation is superior, but for most systems, adding a preconditioner improves the
performance. At this point, it is worth mentioning that we only evaluated example A318
without the preconditioner. The reason for this is twofold. First, applying a Jacobi-
preconditioner to this system does not improve the convergence behavior. Second, the
additional memory required for the preconditioner poses a problem for our system equipped
with only 4 GB of GPU-memory on the Tesla C1060 board (see Appendix C.4). The
obtained results demonstrate that DVFS alone renders only small improvement to the
power consumption, and in some cases it even triggers a higher energy cost. This happens
when the time and the related energy overhead triggered by rescaling the CPU frequency
exceeds the power savings.

Applying the combination of DVFS and the idle-wait, we observe an improvement in the
power consumption for all test-cases. Still we appreciate large differences in the scale of
saving. While for some systems the energy saving is in the range of 1/4, it only sums up
to a few percent for some others. There exist two main factors determining the energy
savings [AHA+11]:

1. The time of the matrix-vector operations conducted by the GPU dictates whether it is
reasonable to sleep the host system for a considerable time-frame. If the overhead due
to calling idle-wait exceeds the execution time of the GPU kernel, no improvement
can be obtained. Additionally, the sleep function takes some time to scale down
the energy consumption of the processor. For the used system, the average time for
the power to settle for the respective values when activating (deactivating) idle-wait
approximates 50 (74) microseconds.

2. The sparsity pattern of a matrix determines the ratio between the cost of a sparse
matrix-vector product (BLAS-2 [FoE10]) and a vector operation (BLAS-1 [FoE10]).
Since for the dimensions of the systems that were evaluated the execution of the
BLAS-1 kernels on the GPU usually took less time than the overhead for calling
idle-wait, we set the host system to sleep only for the sparse matrix-vector product.
Hence, the improvement comes from the GPU kernels conducting the matrix-vector
operations. If these account for a large part of the overall computation time, we can
expect notable energy savings.

The first point leads to the conclusion that the usage of DVFS and idle-wait in the context
of GPU-accelerated algorithms is only reasonable for systems with expensive matrix-vector
products. For other problems, either the computational cost of solving the linear system
is low or the condition number is very high, leading to a large number of iterations. In
both cases, using the CPU with less computing cores but working at a higher frequency
than the GPU leads to the acceleration of the solver. Hence, for the general case where
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the GPU-implementation of a solver is superior, the dimension of the system allows an
efficient use of DVFS and idle-wait.

The second point suggests that larger benefits could be expected from the application of
these techniques to the solution of dense linear systems via iterative methods.

5.4.4. Asynchronous Iteration for Energy-Efficient Numerics

As we have seen in the last sections, applying DVFS to reduce the power demand and the
overall energy consumption especially pays off for algorithms including long computing
routines, where the processor frequency can be optimized to the demands. Adapting the
processor voltage and frequency regularly during an application execution triggers some
runtime overhead which may again cause a rising energy consumption. Very similar, using
idle-wait only is beneficial for cases where the overhead associated with calling idle-wait
is compensated for by the lower power usage during the GPU kernel routine. When us-
ing highly parallel or even heterogeneous hardware, the length of the distinct routines is
usually limited by the synchronization points between the different processors. In case
of classical iterative solvers, these usually occur at latest in between the iterations (e. g.
Jacobi, see Section 2.4.1) or even earlier to compute a parameter (e.g. Conjugate Gra-
dient, see Algorithm 7). Asynchronous iteration algorithms we investigated in Chapter
3 and 4 minimize the synchronization points: Since even the residual computation for
checking the stopping criterion can be handled independently and without synchronizing
the iteration process, the algorithm may run asynchronously until the preset stopping cri-
terion is fulfilled. For this reason, asynchronous iteration algorithms are suitable targets
for energy saving mechanisms like DVFS and idle-wait. While the power advantage using
asynchronous iteration is apparent as idle-wait can be applied for the complete algorithm
execution, the energy efficiency is determined by the trade-off between convergence, over-
all runtime and power demand. For setups where switching to asynchronous iteration
decreases the overall runtime, also the needed energy consumption is reduced. But also
for cases where the slower convergence of asynchronous iteration increases the runtime, the
lower average power dissipation due to the absence of synchronization may trigger a lower
total energy expenditure of the iteration process. In order to analyze this issue, we conduct
experiments on the energy and power profile of asynchronous iteration, and compare the
respective results with those obtained from the synchronized Jacobi counterparts.

Since component wise relaxation methods rarely feature any parameter computations,
they can leverage idle-wait in general more aggressively than their Krylov-subspace coun-
terparts. For the asynchronous iteration, even the synchronization between the iteration
steps is ignored, which allows merging multiple iterations into one kernel. Thus, while for
the Jacobi method the ratio between the length of the kernels updating the components
and the length of the synchronization using the CPU is quite high, the asynchronous algo-
rithm allows the application of idle-wait for a large set of iterations. In fact, the number
of iterations merged into one kernel is only limited by the instruction buffer of the GPU.
For this set of iterations, idle-wait can be applied to decrease the CPU power demand.

The first experiment, again conducted on the watts2-system (see Appendix C.2), is dedi-
cated to monitor the power consumption of Jacobi and asynchronous iteration when ap-
plying different energy saving mechanisms. In Figures 5.5a and 5.5b we report the CPU
power demand of the synchronous Jacobi and asynchronous iterations, respectively, in
plain mode, using DVFS or idle-wait. The linear system we target in this analysis is the
matrix fv3, see Appendix B.

One first result to note in the figures is the small improvement attained from the application
of DVFS to both the Jacobi and asynchronous iterations (line labelled as dvfs) when
compared with the respective solver running at the highest frequency (line labelled as
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Figure 5.5.: Power dissipated by the CPU for the Jacobi iteration and the async-(5)
method, respectively featuring different energy saving techniques. The time-
sets denote the respective samples using a frequency of 25 Hz.

plain). While scaling down the processors’ frequency from 2.0 GHz to 800 MHz reduces
the CPU power demand by approximate 7% for the asynchronous iteration (see Figure
5.5b), and a mere 5% for the Jacobi method (see Figure 5.5a), when taking the GPU
power draft into account, the improvements become mostly negligible.

On the other side, applying idle-wait indeed improves the power profile considerably (line
labelled as idle-wait). For the Jacobi method, we can observe in Figure 5.5a a decrease in
the CPU demand by 43%, taking the GPU into account (we refrain from adding this data
to Figure 5.5 for clearness), the improvement still approximates 29%. The achievements
stem from the excellent ratio between the GPU kernel runtime and the synchronization
overhead including the CPU.

For the asynchronous iteration, the benefits of applying idle-wait are slightly higher (see
Figure 5.5b). The reason is that, in case of very high iteration numbers, the only task
handled by the CPU is to stack the next set of operations into the instruction buffer
of the GPU (due to the limited size of the device buffer). Exploiting idle-wait in the
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asynchronous iteration decreases the CPU power consumption by 44% and, taking the
complete CPU-GPU system into account, the power demand can be cut by 33%. In
contrast with Krylov subspace methods, where the ratio between the kernel times and
the CPU-handled operations determines the average power savings [AHA+11, ACF+],
in component-wise relaxation methods the savings are almost independent of the linear
equation system. This is due to the fact, that component wise relaxation algorithms lack
scalar-products or parameter computations interrupting the kernel routines.

We now focus on the energy saving attained by these techniques. Table 5.6 reports the
computation time to converge (in seconds, [sec]), the average power demand (Pavg, in
Watts [W]), and the energy consumption (Etot in Watts-hours [Wh]) of the Jacobi and
asynchronous iterations. In this experiment, we also include a third solver variant, that
combines mixed precision iterative refinement (MPIR, see Section 2.3) with asynchronous
algorithm as error correction solver in single precision. (We analyzed the combination
of block-asynchronous iteration and mixed precision iterative refinement with respect to
runtime in Section 4.12.1.)

The results reveal, that the block-asynchronous iteration outperforms the runtime of the
Jacobi method in terms both of runtime and overall energy consumption of the iteration
process. While the reduced computation time translates linearly into energy savings, the
slightly lower average power consumption due to the more effective utilization of idle-wait
leads to further benefits. Embedding the asynchronous iteration into the mixed precision
iterative refinement framework triggers, at least for this test case, an additional reduction
of the runtime as well as the energy consumption, in spite of the higher average power
demand due to the extra computations that come with the parts of the MPIR framework
making synchronizations necessary (see Section 2.3).

method Time [sec] Pavg [W] Etot [Wh]
plain idle-wait plain idle-wait

Jacobi 406.10 217.60 124.85 24.35 14.08
async-(5) 133.09 216.72 118.98 7.98 4.38

Gain w.r.t. Jacobi 67% 67% 69 %
MPIR async-(5) 67.69 232.41 129.24 4.37 2.43

Gain w.r.t. Jacobi 83% 82% 83%

Table 5.6.: Runtime and energy characteristics of the different solver implementations.
The power and the energy results are the aggregated CPU and GPU demands
covering the time to convergence.

Finally, we aim for comparing the energy improvements for a larger set of test systems.
For this purpose we report the total energy consumption of the Jacobi method, and the
block-asynchronous iteration in plain and MPIR mode featuring idle-wait.

For the test system Chem9ZtZ, we observe in Figure 5.6a the superiority of the Jacobi
method over the async-(5) method for low accuracy approximations. For higher accuracy,
the reduced overall runtime triggers also an energy superiority of the async-(5) implemen-
tation. Embedding the method into the MPIR framework is for this experiments setup
superior for all accuracy demands. This is different when targeting the system fv1 (see
Figure 5.6b): Similar to analyzing the runtime performance in Figure 4.33 (see results for
the system C1060 in this plot), the overhead associated with the initialization process of
MPIR can not be compensated for.

For the test cases fv1 and fv3 the results in Figure 5.6b and 5.6c are very similar to
the runtime analysis in Figure 4.33. The async-(5) energy dissipation is only a fraction
of the Jacobi energy demand, but embedding async-(5) into the MPIR framework is not
beneficial. While the energy dissipation is smaller than for the Jacobi implementation
due to the considerably decreased runtime, the additional synchronizations cause a higher
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Figure 5.6.: Total CPU energy consumption for the different test cases using different
relative residual stopping criteria. The implementations are Jacobi, async-(5)
and mixed precision iterative refinement based on an async-(5) error correction
solver.

average power draft that can not be compensated for. For the Trefethen 2000 test case
(see Figure 5.6d), the MPIR variant is superior to the plain async-(5) implementation, but
the improvements become smaller for high accuracy approximations. In the comparison
with the synchronized Jacobi, the block asynchronous methods are especially beneficial
when aiming for high accuracy solution approximations.

When comparing the energy consumption results in this section with the runtime im-
provement when switching from async-(5) to the MPIR framework (see the C1060 results
in Figure 4.33), we note that for the small test cases Chem97ZtZ and Trefethen 2000
the energy reduction is smaller than the acceleration. This stems from the fact that the
MPIR framework includes synchronization points for the residual computation and the
iteration update that limit the length of the idle-wait periods. For the larger systems,
especially for high condition numbers implying high iteration numbers, these effects are
small.

Summarizing the experimental results, we may conclude that while already the improved
runtime performance makes asynchronous methods attractive when aiming for a reduced
energy consumption, the algorithms’ design allows a very efficient usage of power-saving
techniques provided by the hardware.
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6. Summary

The main contribution of this thesis is the derivation, theoretical and experimental analy-
sis of block-asynchronous iterative methods suitable for hardware systems accelerated by
graphics processing units.

The work is motivated by the recent hardware shifts and the challenges that have to be
addressed to the further progress in scientific High Performance Computing.

We first gave a short survey on existing iterative methods with an emphasis on their
suitability for High Performance Computing. This included the topics of mixed precision
iterative refinement methods and blocking strategies enabling higher parallelization. We
then reviewed the theory of asynchronous relaxation methods, providing a classification
of the different schemes and existing convergence results that we later extended for our
purposes.

After introducing the block-asynchronous iteration method that includes local iterations
on subdomains chosen adequate for efficient GPU implementations, we analyzed its conver-
gence and fault-tolerance properties. We experimentally investigated the non-deterministic
behavior for GPU-based implementations of block-asynchronous iteration and compared
the performance to synchronized methods. The results revealed that the higher paral-
lelization potential allowing for a more efficient hardware usage may overcompensate the
inferior convergence properties of asynchronous algorithms, so that they can outperform
the traditionally applied schemes. Investigating multi-GPU implementations using peer-
to-peer communication between the distinct devices, we observed that the communication
bottleneck imposed by the PCI-connection and often limiting the application performance
can efficiently be overcome by asynchronous data transfers, which is possible due to the
algorithm design.

We then aimed for adapting the block-asynchronous iteration to a specific problem. While
the optimization for sparse linear systems of equations is straight-forward, accounting for
the characteristics of the underlying problem offers a wide range of possibilities. For this
purpose we introduced weighting techniques that take into account the matrix parts that
are not considered in the local iterations. The convergence theory we derived was also
reflected in the experimental results on the different techniques: The use of weights can
improve convergence as well as performance significantly. Furthermore, we demonstrated
that the possibility of choosing the subdomain size consistent to the discretization allows
the adaptation of block-asynchronous iteration to the discretization of a partial differential
equation.
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144 6. Summary

Since relaxation methods often provide important contributions as smoother in multigrid
methods, we investigated the potential of replacing the traditionally employed synchronous
smoother by block-asynchronous iteration. Experimental results revealed that, especially
for highly parallel and heterogeneous systems, significant performance improvement can
be obtained.

In the context of mixed precision iterative refinement methods, we first analyzed the
suitability of block-asynchronous iteration as a low precision error correction solver. Ex-
periments for different problems and using different GPU architectures revealed that per-
formance improvements strongly depend on the properties of the problem and the hard-
ware characteristics like cache size and FLOP rate in the different precision formats. We
then designed a block-asynchronous iterative method where also the residual computation
is handled asynchronously. After a theoretical convergence analysis we investigated the
trade-off between synchronous and blockwise asynchronous residual computation experi-
mentally. A strong dependency of the performance on the problem characteristics was also
observed for this implementation.

Finally, we demonstrated that block-asynchronous iteration can also efficiently be applied
when solving nonlinear differential equations. This was achieved by illustrating experimen-
tal results obtained with the iterative method in a pattern formation simulation arising in
mathematical biology.

We then addressed the topic of energy-efficiency in scientific High Performance Computing
and experimentally revealed the high energy efficiency of block-asynchronous iteration
which stems from a very efficient utilization of the power saving mechanisms provided by
the hardware.

Since we already had identified the scalability and a high tolerance to communication
latencies and hardware failure, the proposed algorithm efficiently combines the most im-
portant properties necessary to address the challenges associated with exascale computing.
Although the problem of exascale numerics was in this thesis reduced to node-level, the
properties of asynchronous methods imply the suitability also on parallel systems. For
this reason, the use of block-asynchronous iteration may be considered as an adequate
algorithm for emerging technologies with much higher levels of hardware concurrency.

Future research on this topic should not only address the efficient implementation of
block-asynchronous iteration on emerging technologies like Intel’s MIC, new generations
of GPUs, FPGAs etc, but also focus on the theoretical properties of the method. Par-
ticularly, fundamental knowledge about the dependency between the partial differential
equation, the discretization, the solver parameters and the problem data may yield re-
markable improvements in performance.
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Appendix

A. Implementation of Numerical Algorithms

A.1. Floating Point Formats

To enable any machine to perform computations, the used numbers have to be represented
intrasystem [Kul08]. In numerical computing, floating point describes a system for a nu-
merical representation in which a string of digits represents a rational number. The term
floating point refers to the fact that in this representation, the radix point is placed relative
to the significant digit, meaning the first counting digit.

Despite the existence of different floating point formats, they all use the same principle to
represent a real number r. All floating point numbers consist of a sign bit s, a mantissa
m, a base b and an exponent e.

• sign bit:
The sign bit s ∈ {−1, 1} gives the sign of the number r.

• mantissa:
The mantissa m represents the digits of the number r. The more digits are stored
in the mantissa, the higher the accuracy of the representation of the number r. To
get an overall standard, one usually norms the mantissa such that it has the decimal
point after the first digit

• basis:
For scientific use, one normally chooses the basis b = 10, but as computers use the
binary format, the computer floating point formats have the basis 2.

• exponent:
The exponent e contains the information of the floating point.

A rational number r is represented in the form r ≈ s ·m · be, where we want to stress that
not all rational numbers can be represented correctly, but as an approximation [Kul08].

An important fact about these floating point systems is that the representable numbers do
not all have the same distance. This means, that the higher the exponent of a number is,

(a) Floating point number in the decimal sys-
tem.

(b) Representable numbers in a floating point
format [Kul08].

Figure A.1.: Visualization of a floating point format and the within representable numbers.
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the higher the distance is between two numbers that can be represented, see Figure A.1b.
Therefore, one uses the minimal relative distance to characterize every format, while half
the minimal relative distance is usually denoted with the machine accuracy . Each floating
point format is then characterized by the machine accuracy and the smallest number ε 6= 0
that can be represented.

A.2. IEEE754

One of the standards for binary floating point arithmetic is the IEEE754 [Kul08]. It be-
came the most widely-used standard for floating-point computation, and is implemented in
nearly all available systems. It includes correct rounding and rules for subnormal numbers
and ±∞ (Section A.3). In the IEEE 754 standard, the two main floating point numbers
are denoted as single precision and the double precision. Both consist of a sign bit, an
exponent and a mantissa represented in the binary system, and both formats use the basis
2. In case of single precision, the whole floating point number consists of 32 bits, in the
case of double precision 64 bits. We are not interested in the detailed configuration of
these bits, however it is useful to have knowledge of the smallest absolute value ε and the
machine accuracy δ, that characterize the formats.

type size exponent mantissa ε δ digits

single 32 bit 8 bit 23 + 1 bit 1.2 · 10−38 5.69 · 10−8 6− 9

double 64 bit 11 bit 52 + 1 bit 2.2 · 10−308 1.11 · 10−16 15− 17

Figure A.2.: Comparing Single and Double Precision Standard IEEE 754 [Kul08, Kah96,
MBdD+09].

For normalized floating point numbers in IEEE 754, the first bit is predefined, and therefore
needs not to be stored. For this reason, accounting for this hidden bit, the total length of
the mantissa is for normalized numbers increased by one [Kul08].

Aside from these standard single and double formats, there exist different extended versions
of these number formats, however we focus on these two possibilities, since most systems
support standard single precision and standard double precision IEEE 754.

If not otherwise denoted, these formats are used for all implementation within this thesis.

Performing computations in single precision or double precision will result in different
computational cost. In most cases, the size difference between the double precision format
and the single precision format leads to a speedup factor of 2 when switching from double
to single precision.

For some systems, especially when only single precision arithmetic is supported by the
hardware, larger speedups can be observed. Then, double precision computations are only
possible by using tricks, such as splitting one double precision number into two single
precision numbers. This often results in poor double precision performance.
In ”Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multi-
grid” [GS11] Dominik Göddeke and Robert Strzodka evaluate the speedup for different
architectures, and observe that for NVIDIA’s GT200 chip the factor is around eight (see
Table C.4). For other architectures including the AMD’s R800 (Evergreen) chip and the
first generation Cell processor they observe speedups of five, respectively 7 when executing
single precision floating point instead of double precision operations [GS11]. However, in
many applications, the theoretical peak performance is not the relevant factor however,
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B. Linear Systems of Equations 147

because the computations are memory-bound (memory wall problem). The use of single
precision consequently halves the bandwidth requirements of a given computation, and one
can expect up to a twofold speedup [GS11]. Nevertheless, the savings from using single
precision are often even higher in practice, because the argument applies to all levels of
storage: Single precision puts less pressure on the registers and twice the amount of data
can be held in small, fast on-chip memories and caches, resulting in a better data reuse
and, in particular in CUDA, a higher occupancy of multiprocessors [GS11].

A.3. Floating Point Arithmetic

We want to provide some background on the impact of the floating point format’s charac-
teristics when performing computations.
The fact that only a small amount of real numbers can be displayed correctly in a cer-
tain floating point format, implies that most representations in a certain format contain
rounding errors. In this case, the relative representation error [Dem97] is

|r − rfloat|
|r|

≤ δ.

When performing a computation a � b, where � is one of the binary operations (+,
−, ·, /), the solution can usually not be represented exactly in the used floating point
format. In this case, it must be approximated by a nearby floating point number before
it can be stored in memory or register [Dem97]. If we denote this approximation with
fl(a�b), the difference |(a�b)−fl(a�b)| is called round-off error . We say the arithmetic
rounds correctly [Dem97], if fl(a � b) is the nearest floating point number. In the case
of two floating point numbers having the same distance to fl(a� b), there exist different
possibilities to define a convention. In the IEEE 754 format it is defined that in this case,
the last digit is rounded to even [Kah96, KMP11]. When rounding correctly, we can write

|fl(a� b)|
|a� b|

≤ (1 + δ),

where δ denotes the machine accuracy.
Furthermore, most floating point formats contain symbols and rules for subnormal num-
bers, i.e. unnormalized floating point numbers with the minimum possible exponent,
division by zero, and computations concerning ±∞.

Performing a computation in different floating point formats will residue in different com-
putational cost. This is due to the fact that the number of arithmetic operations necessary
for a computation depends on the length of the mantissa. Hence, performing a computa-
tion in a lower precision format is usually faster than performing it in a higher precision
format.

B. Linear Systems of Equations

The experiments in this thesis utilize different matrices. For most experiments, the ma-
trices are taken from the University of Florida Matrix Collection1.

The matrix properties and sparsity plots can be found in Table B.1 and Figure B.3.

The first matrix, A318 is derived from a finite difference discretization of the 3D Laplace
problem.

1University of Florida Matrix Collection (UFMC); http://www.cise.ufl.edu/research/sparse/

matrices/
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148 Appendix

apache2, audikw 1, ldoor, nd24k and s1rmt3m1 derive from finite element discretiza-
tions of structural problems. boneS10, part of the Oberwolfach matrix group, is the
coefficient matrix related to the finite element discretization of a bone 2. The matrix,
Chem97ZtZ, comes from statistics 3. ecology2 is a landscape ecology problem, using
electrical network theory to model animal movement and gene flow. Using a 2D, 1000-by-
1000 mesh (5 pt stencil) the obtained coefficient matrix is symmetric and positive definite.
(Source: Brad McRae, National Center for Ecological Analysis and Synthesis Santa Bar-
bara, CA.) Matrices fv1 and fv3 are finite element discretizations of the Laplace equation
on a 2D mesh. Therefore, they share a common sparsity structure, but differ in dimension
and condition number due to the different finite element choice. While G3 circuit has
its origins in a circuit simulation, nd24k derives from a 2D/3D problem. The matrix
Trefethen 2000 [Tre02] is a 2000×2000 matrix where all entries are zero except for the
ones at the positions (i, j) where |i − j| = 2, 4, 8, 16 . . . . Furthermore, the main diagonal
is filled with the primes 2, 3, 5, 7, 11 . . . 17389. Hence, this matrix has many off-diagonal
entries distributed over the diagonals that are by a power of 2 distant to the main diagonal.
The matrix Trefethen 20000 is generated in the same pattern, only the size is increased
by the factor of 10.

Matrix name Description #n #nnz

A318 3D Laplace 32,157,432 224,495,280

apache2 structural problem 715,176 4,817,870

audikw 1 structural problem 943,695 77,651,847

boneS10 3D trabecular bone 914,898 40,878,708

Chem97ZtZ statistical problem 2,541 7,361

ecology2 2D problem 999,999 4,995,991

fv1 2D/3D problem 9,604 85,264

fv2 2D/3D problem 9,801 87,025

fv3 2D/3D problem 9,801 87,025

G3 circuit circuit simulation problem 1,585,478 7,660,826

ldoor structural problem 952,203 42,493,817

nd24k 2D/3D problem 72,000 28,715,634

s1rmt3m1 structural problem 5,489 262,411

Trefethen 2000 combinatorial problem 2,000 41,906

Trefethen 20000 combinatorial problem 20,000 554,466

Table B.1.: Dimension and characteristics of the SPD test matrices.

For some matrices, we additionally provide in Table B.2 some of the convergence related
characteristics as well as of their corresponding iteration matrices. The motivation is, that
especially these are used for the asynchronous iteration experiments, since they fulfill the
sufficient convergence condition.

Unless otherwise stated, we take the number of right-hand sides to be one for all linear
systems.

C. Hardware Platforms

Since the experiments in this paper were conducted on different hardware platforms, we
want to provide an overview about the systems’ configurations.

2For more details see http://www.cise.ufl.edu/research/sparse/mat/Oberwolfach/README.txt
3For more details see http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt

148

http://www.cise.ufl.edu/research/sparse/mat/Oberwolfach/README.txt
http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt
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(a) A318 (b) apache2 (c) audikw 1

(d) boneS10 (e) Chem97ZtZ (f) ecology2

(g) fv, fv2, fv3 (h) G3 circuit (i) ldoor

(j) nd24k (k) s1rmt3m1 (l) Trefethen 2000

Figure B.3.: Sparsity plots of SPD test matrices.
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Matrix name cond(A) cond(D−1A) ρ(I −D−1A)

Chem97ZtZ 1.3e+03 7.2e+03 0.7889

fv1 9.3e+04 12.76 0.8541

fv2 9.5e+04 12.76 0.8541

fv3 3.6e+07 4.4e+03 0.9993

s1rmt3m1 2.2e+06 7.2e+06 2.65

Trefethen 2000 5.1e+04 6.1579 0.8601

Trefethen 20000

Table B.2.: Convergence characteristics of selected test matrices and of their corresponding
iteration matrices.

from \to host GPU0 GPU1 GPU2 GPU3

host 16.0 5.94 5.93 5.91 5.91

GPU0 6.42 - 4.91 3.18 3.18

GPU1 6.41 4.91 - 3.18 3.19

GPU2 6.39 3.18 3.20 - 4.91

GPU3 6.39 3.19 3.20 4.91 -

Table C.3.: Inter-device memory bandwidth [GB/s].

C.1. Supermicro-System

The supermicro-system is a heterogeneous GPU-accelerated multicore system located at
the Engineering Mathematics and Computing Lab (EMCL) part of the Karlsruhe Institute
of Technology, Germany. Based on a X8DTG-QF mainboard, the system is equipped with
two Intel XEON E5540 @ 2.53GHz and 192 GB main memory (dual-IOH architecture). In
Figure C.4 we provide an overview about the mainboard configuration. The purpose is to
give the reader a general idea about the architecture of modern hardware platforms. The
system is accelerated by 4 Fermi C2070 (14 Multiprocessors x 32 CUDA cores @1.15GHz,
6 GB memory, see Appendix C.4). While the CPU interconnection is handled by QPI (up
to 16 GB/s), always two GPUs are connected to one CPU through a PCI-ex16 (up to 8
GB/s). This leads to very specific performance characteristics. The very fast QPI allows
for efficient inter-CPU communication, but when targeting multi-GPU implementations,
GPU-direct can only be used for two GPUs connected to the same CPU as NVIDIA’s
GPU-direct does not support communication via the QPI [NVI09]. On the other hand,
the full support of PCI-ex16 for all GPUs allows for very fast data transfers between the
host and the different GPUs. This is especially interesting when using the asynchronous
multicopy function allowing for the simultaneous communication with different graphic
processors [NVI09]. Then, the limiting factor becomes the data locality in the main
memory, since data located in the memory of the respectively other CPU leads to additional
communication overhead.

In benchmarks testing the communication bandwidth we obtained a detailed data about
the respective transfer rates (see Table C.3). Note that the host\host bandwidth describes
the inter-CPU bandwidth of the Dual-IOH machine using QPI. The GPU \GPU bandwidth
is either the GPU-direct bandwidth (if both GPUs are connected to the same CPU),
or using the main memory as transfer storage. Analyzing the data, we observe, that
the GPU-direct is not able to achieve the same memory bandwidth like the GPU-host
communication. At this point we want to mention, that the results agree to investigations
conducted by Saeed Iqbal and Shawn Gao [IG12, IGM12]

The GPU implementations are based on CUDA [NVI09], while the respective libraries
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Figure C.4.: The Supermicro mainboard architecture [Sup10].

used are from CUDA 4.0.17 [NVI11].

The Supermicro System is embedded in a complex energy measurement setup based on
the National Instruments Compact Rio4. Details allowing deep insight where and how
power is measured are provided in the circuit plans in Figure C.55.

C.2. Watts-2

The Watts-2 platform consists of an AMD Opteron 6128 processor (8 cores) running at
2.0 GHz, with 12 MB of shared L3 cache and 24 GB of RAM. The double-precision peak
performance of the multicore processor is 64 GFLOPS. The system is connected via PCIe
(16x) to an Nvidia Tesla C1060 card with 4 GB of GDDR3 global memory. As main feature,
the complete platform is embedded into a sophisticated power measurements setup (see
Section 5.2.1).

C.3. Disco-System

The disco-system is a heterogeneous GPU-accelerated multicore system located at the
University of Tennessee, Knoxville. The system’s CPU is one socket Intel Core Quad
Q9300 @ 2.50GHz and the GPU is a Fermi C2050 (14 Multiprocessors x 32 CUDA cores
@1.15GHz, 3 GB memory). The GPU is connected to the CPU host through a PCI-
e×16. The GPU implementations on this system are based on CUDA [NVI09], while the
respective libraries used are from CUDA 4.0.17 [NVI11].

4National Instruments; http://www.ni.com/
5I would like to thank Peter Schöck and Frederic Hupbauer for their efforts in the setup of the configura-

tion.
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Name GTX280a GTX580 Tesla C1060 Tesla C2070

Chip GT200 GF110 T10 T20
Transistors 1.4 · 109 3 · 109 1.4 · 109 3 · 109

Core frequency 1.3 GHz 1.5 GHz 1.15 GHz 1.3 GHz
Thread Processors 240 512 240 448
GFLOPS (single) 933 1580 933 1030
GFLOPS (double) 78 790 78 515
Shared Memory/L1 16 KB 64 KB 16 KB 64 KB
L2 Cache - 768 KB - 768 KB
Memory 1 GB GDDR3 1.5 GB GDDR5 4 GB GDDR3 6 GB GDDR5
Memory Frequency 1.1GHz 2.0 GHz 0.8 GHz 1.5 GHz
Memory Bandwidth 141.0 GB/s 192.4 GB/s 102.0 GB/s 144.0 GB/s
ECC Memory no yes no yes
Power Consumption 236 W 244 W 200 W 190
IEEE double/single yes/partial yes/yes yes/partial yes/yes

Table C.4.: Key system characteristics of the four GPUs used. Computation rate and
memory bandwidth are theoretical peak values [NVI].

C.4. Recent GPU Architectures

For the experiments in this thesis, GPU systems taken from the Fermi and the Tesla
line of Nvidia were used. The C2070 and the C1060 are the server versions of the line,
the GTX580 and the GTX280 are the consumer version, respectively. While the chip
and on-board memory specifications are given in table C.4, the host system may have
minor influence on the performance, since all computations are exclusively handled by the
graphics. Note that the price for the larger (ECC protected) memory in the server versions
is a lower memory bandwidth.
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(a) ATX Power Supply.
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(b) Mainboard.
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(c) HDDs.
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