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Abstract. In this paper we evaluate the possibility of using mixed preci-
sion algorithms on different hardware platforms to obtain energy-efficient
solvers for linear systems of equations. Our test-cases arise in the context
of computational fluid dynamics.
Therefore, we analyze the energy efficiency of common cluster nodes and
a hybrid, GPU-accelerated cluster node, when applying a linear solver,
that can benefit from the use of different precision formats.
We show the high potential of hardware-aware computing in terms of
performance and energy efficiency.

1 Introduction

1.1 Motivation

Energy efficiency is relevant for large computing centers running high perfor-
mance platforms as well as for individual desktop solutions. In the meantime,
the energy cost often dominates the total expenses of scientific computing cen-
ters. Already after a few years, the energy cost for running a certain hardware
platform usually exceeds the acquisition cost [1]. Therefore it is a point of major
interest approaching the Exascale Computing Era [2].

While many different architectures with different properties concerning power
consumption are available on the market, the architecture alone is not the gov-
erning parameter determining, whether a problem can be solved efficiently. The
reason is, that algorithms have to be adapted to both, the specific problems and
the specific hardware configuration, to achieve high efficiency. As an example,
we show in this paper how a mixed precision error correction method [3] for



solving linear systems of equations behaves on three widespread used architec-
tures. These so-called mixed precision solvers use single precision floating point
operations instead of double precision floating point operations for large parts
of the algorithm without loosing accuracy of the final result. This leads to an
acceleration of the solver, since in case of bandwidth limited applications, the
speedup when switching from double to single precision approximates the factor
of two, while for computationally intensive tasks, even higher speedups can be
achieved.

1.2 Paper Organization

Since the solving process of linear equation systems often demands most of the
resources when performing numerical simulations, both in time and energy, we
analyze the possibility of saving energy by using more efficient linear solvers.
For many problems, the idea of applying a mixed precision iterative refinement
variant instead of a plain solver leads to savings concerning the computational
effort and the energy need (section 2).
In a second step, we combine the idea of a mixed precision algorithm with the
idea of evaluating different hardware platforms. Different systems are analyzed
with respect to their specific floating point performance in single and double
precision and their energy consumption (section 3). In the following (section
4), the computational effort and the energy need of different linear solver- and
hardware-configurations are measured for problems occurring in the field of nu-
merical simulations. In the end (section 5), we conclude and give a brief overview
about the potential of future hardware technology in terms of energy-efficient
computing.

2 Mixed Precision Iterative Refinement Methods

One basic principle in energy efficient computing is the acceleration of linear
solvers and the reduction of the energy consumption by cutting the correspond-
ing overall computation time. Research has shown, that for many linear prob-
lems, an acceleration of the applied linear solvers is possible through the use
of different floating point precision formats. The underlying idea is to use the
linear solver as inner solver of an iterative refinement method. The accelera-
tion is possible since the inner solver can be performed in a less complex floating
point format than working precision, without loosing accuracy of the final result.

The motivation for the error correction approach can be obtained from New-
ton’s method. Here, f is a given function and xi is the solution in the i − th

step:

xi+1 = xi − (∇f(xi))
−1f(xi). (1)

This method can be applied to the function f(x) = b−Ax with ∇f(x) = A,
where Ax = b is the linear system that should be solved.



By defining the residual ri := b − Axi, one obtains

xi+1 = xi − (∇f(xi))
−1f(xi)

= xi + A−1(b − Axi)

= xi + A−1ri.

Denoting the solution update with ci := A−1ri and using an initial guess x0 as
starting value, an iterative algorithm can be defined, where any linear solver can
be used as error correction solver.

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b − Ax0

3: while (‖ Axi − b ‖2> ε ‖ r0 ‖) do

4: ri = b − Axi

5: solve error correction equation: Aci = ri

6: update solution: xi+1 = xi + ci

7: end while

Algorithm 1: Error Correction Method

In each iteration, the inner correction solver searches for a ci such that
Aci = ri and the solution approximation is updated by xi+1 = xi + ci.

If the inner error correction solver is performed in less complex floating point
format than working precision, one obtains a mixed precision error correction
method, updating the solution approximation in high precision, but computing
the error correction term in a lower precision format. This approach was also
suggested by [4],[5], [6], and [7].

Compute residual
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Typecast residual into low precision Typecast solution update into high precision

Solve error correction equation in low precision

Fig. 1: Visualizing the mixed precision approach to an error correction solver



For many problems the linear solver can be accelerated by applying this
mixed precision iterative refinement approach, see [8]. This acceleration leads to
a reduced overall computation time. In Section 4.2, we will investigate whether
the acceleration of the solver also leads to lower energy consumption when solving
a linear problem.

3 Hardware Platforms

For our performance evaluation and the consideration of energy efficiency, we
have chosen nodes of two HPC-cluster based on different generations of Xeon
processors and one system accelerated by an Nvidia Tesla S1070. Both clusters
used for our comparison are located at the Steinbuch Centre for Computing
(SCC) 1 at the Karlsruhe Institute for Technology (KIT) 2.

The first machine is the InstitutsCluster IC1. It consists of five racks con-
taining a total of 200 computing nodes, each equipped with two Intel quad-core
Xeon 5355 processors with Clovertown architecture running at 2.667 GHz. There
are 16 GB of main memory available on each node.

The second machine is a HP XC3000 cluster system, called HC3. In total,
the cluster has 332 computation nodes, each equipped with two Intel quad-core
Xeon 5540 with Nehalem architecture. 288 nodes own 24 GB of main memory,
32 own 48 GB and the last 12 are equipped with 144 GB.

Our Tesla-based system consists of two nodes hosting two Intel Xeon 5450
processors operating at 3.0 GHz. A Tesla S1070 is connected via PCIe 2.0 16x
and each node controls two Tesla T10 computing processors, both equipped with
4 GB of memory.

Due to the fact that in our experiments we are only using the computing
capabilities of one node and one T10 computing processor, our Tesla-system is
in terms of performance equivalent to a system equipped with one Tesla C1060.
For this reason, the energy consumption is calculated for the host alone and for
one Tesla C1060.

1 www.scc.kit.edu
2 www.kit.edu



Table 1: Key system characteristics of the three machines used for the tests. The first
five rows give an overview for one node followed by additional information concerning
the full cluster systems HC3 and IC1.

HC3 Teslaa IC1

Processors per node 2 2 CPUs / 1 GPU 2
Cores per processor 4 8 / 240 4
Theoretical comp. rate / core 10.1 GFlop/s 12 / 3.9 GFlop/s 10.7 GFlop/s
Theoretical comp. rate / node 81 GFlop/s 96 / 933 GFlop/s 85.3 GFlop/s
L2-cache per processor 8 MB 8 / - MB 8 MB

Nodes 278 / 32 / 12 1 200
Memory per node 24 / 48 / 144 GB 32 GB 16 GB
Memory full machine 10.3 TB 32 GB 32 TB
Theoretical comp. rate full machine 27 TFlop/s 1.0 TFlop/s 17.6 TFlop/s
Power consumption load full machine 80.8 kW 539 + 187,8 W 103 kW
Power consumption load per node 244 W 539 + 187,8 W 514 W

a http://www.nvidia.com/object/product tesla c1060 us.html

4 Numerical Experiments

4.1 Test Configuration

To be able to compare the performance of a plain solver and the mixed precision
error correction variant on different hardware platforms, we use an implementa-
tion of the GMRES-(10) solver. In this work -(10) denotes the restart parameter
for the GMRES algorithm.

Both, the plain double GMRES-(10) and the mixed precision variant use
the relative residual stopping criterion of ε = 10−10 ‖ r0 ‖2, while we choose
εinner = 10−1 ‖ r0 ‖2 as inner stopping criterion for the error correction variant.
Due to the iterative residual computation in the case of the plain GMRES-
(10) solvers, the mixed GMRES-(10) solvers based on the mixed precision error
correction method usually iterate to a better approximation, since they compute
the residual error explicitly. But as the difference is generally small, the solvers
can be compared.

In case of the mixed precision GMRES-(10) implementation on the Tesla-
system, the error correction solver is performed on the GPU, while the solution
update is led to the CPU of the same system. This is done to be able to handle
larger problems since the available memory on the GPU is limited to 4 GB.

As test problems, we use three systems of linear equations CFD1, CFD2 and
CFD3 affiliated with the 2D modeling of a Venturi Nozzle in different discretiza-
tion fineness. The distinct number of supporting points leads to different matrix
characteristics concerning the dimension, the number of non-zeros, and the con-
dition number. In Table 2, the nonzero structures of the obtained sparse linear
systems are visualized, and the matrix properties are summarized.



Table 2: Sparsity plots showing the nonzero-structure of the CFD test-matrices.

CFD1 CFD2 CFD3

problem: 2D fluid flow
problem size: n = 395009
sparsity: nnz = 3544321
storage format: CRS

problem: 2D fluid flow
problem size: n = 634453
sparsity: nnz = 5700633
storage format: CRS

problem: 2D fluid flow
problem size: n = 1019967
sparsity: nnz = 9182401
storage format: CRS

4.2 Performance Results

To ensure the high quality of the performance results, the algorithms are exe-
cuted exclusively on the machines such that no effects of other jobs executed on
the same device may occur.
Table 3: Computation time for problem CFD 1 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Computation time in s

HC3 double 2267.47 1245.12 776.09
HC3 mixed 886.46 567.51 309.61
IC1 double 3146.61 1656.53 1627.77
IC1 mixed 1378.56 712.83 659.80
Tesla mixed 438.13

Table 4: Computation time for problem CFD 2 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Computation time in s

HC3 double 10765.30 4528.09 3363.44
HC3 mixed 4827.98 2177.19 1648.27
IC1 double 13204.70 6843.66 6673.07
IC1 mixed 5924.32 3495.09 3681.28
Tesla mixed 2092.84



Table 5: Computation time for problem CFD 3 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Computation time in s

HC3 double 62210.70 19954.50 16541.90
HC3 mixed 42919.80 9860.26 8828.28
IC1 double 60214.50 32875.10 32576.50
IC1 mixed 41927.40 19317.00 19836.80
Tesla mixed 10316.70

For the large problem CFD 3. we observe a speedup factor of around 1.5 when
switching from the plain double implementation to the mixed precision error
correction implementation on one machine (Table 5). For the smaller problems,
even higher speedups can be achieved (Table 3 and Table 4).
Different effects are able to reason this decrease in speedup. On the one hand,
the condition number of the systems is not determined, and a smaller condition
number of the larger systems may cause a less efficient use of the mixed precision
approach [3]. From the technical point of view, the memory bandwidth between
the different cache and memory levels becomes the bottleneck when performing
the algorithm on large data, limiting the speedup factor between mixed and plain
double implementation down to a factor of smaller than two. For small problems,
even higher speedups can be achieved, since, that as long as the bandwidth is
not the limiting factor, and the processing units are able to perform four single
precision operations instead of one double precision operation per cycle. Further
investigation is necessary in this point.

4.3 Energy Efficiency

By using the values given in Table 1 for the power consumption P under load of
the different architectures, we obtain 244 W per node for the HC3, 514 W per
node for the IC1 and 718 W for the Tesla-system (node plus energy for one Tesla
C1060). With these values, it is possible to estimate the total amount of energy
E that has been spent for a computation that has taken t seconds through the
relation E = P · t. The function indicates a linear characteristic due to the fact
that we use one node, assuming a constant energy consumption, not taking into
account whether one or more cores were used.

The energy the system needs in idle mode may be a point of interest as
well. Therefore, both, a deeper analysis of dynamical power usage of modern
processors and the influence of job-scheduling mechanisms is necessary. Still, we
limit our analysis on the energy consumption of the evaluated mixed precision
solvers on different hardware platforms.

Modern processors usually offer the possibility of automatically raising the
clockspeed if sequential code is executed, and deactivating parts of the processor,
if they are not needed. The power consumption is effected by such mechanisms,



and energy measurements have to be performed for every run. This becomes
difficult when a machine is in production mode. On the HC3, measurements
have shown an energy consumption of 243,5 W per node in case of performing
complex computations using most components of the processor, and a power
consumption of 225 W for less complex computations using only little resources.
The system setting for the CPU-frequency is “ondemand”. A deeper analyses of
the machines may give more detailed information, but we can assume, that the
energy consumption will generally stay within these limits.

Table 6: Energy consumption for problem CFD 1 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Energy consumption in Wh

HC3 double 153.37 84.22 52.49
HC3 mixed 59.96 38.39 20.94
IC1 double 449.27 236.52 232.41
IC1 mixed 196.83 101.78 94.2
Tesla mixed 87.36

Table 7: Energy consumption for problem CFD 2 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Energy consumption in Wh

HC3 double 728.15 306.27 227.50
HC3 mixed 326.56 147.26 111.49
IC1 double 1885.34 977.12 952.77
IC1 mixed 845.86 499.02 525.60
Tesla mixed 417.29

Table 8: Energy consumption for problem CFD 3 based on a GMRES-(10) as inner
solver for the error correction method.

CPU-Cores GPU
1 4 8

Energy consumption in Wh

HC3 double 4207.86 1349.70 1118.88
HC3 mixed 2903.05 666.94 597.14
IC1 double 8597.29 4693.83 4651.20
IC1 mixed 5986.30 2758.04 2832.25
Tesla mixed 2057.04
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Fig. 2: Energy consumption as a function of time for solving the CFD1 test-case on
HC3, IC1 and Tesla. The inner solver is a GMRES-(10). In case of the IC1 and HC3,
the results for the double and mixed precision implementations using 1/4/8 cpu-cores
are plotted, in case of the Tesla, the mixed precision approach is executed.
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Fig. 3: Energy consumption as a function of time for solving the CFD2 test-case on
HC3, IC1 and Tesla. The inner solver is a GMRES-(10). In case of the IC1 and HC3,
the results for the double and mixed precision implementations using 1/4/8 cpu-cores
are plotted, in case of the Tesla, the mixed precision approach is executed.
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Fig. 4: Energy consumption as a function of time for solving the CFD3 test-case on
HC3, IC1 and Tesla. The inner solver is a GMRES-(10). In case of the IC1 and HC3,
the results for the double and mixed precision implementations using 1/4/8 cpu-cores
are plotted, in case of the Tesla, the mixed precision approach is executed.

The Tesla-system is based on an old CPU-architecture, comparable to the
IC1-cluster. Our experiments have shown that even older architectures can greatly
benefit by adding accelerators like GPUs, both in terms of performance and en-
ergy efficiency. The GPU used in the Tesla-system is based on the old T10
computing chip, and with the availability of the new Fermi-based GPUs, even
the newest CPU-architectures will be outperformed.

5 Conclusion and Future Work

The iterative refinement method implemented with mixed precision techniques,
and combined with GPU coprocessor technology, shows very good results for our
test-cases, arising in the field of computational fluid dynamics. For this reason,
for problems similar to those, a mixed precision error correction implementa-
tion is advisable to achieve better performance, both in energy efficiency and
computation time.

This also reveals the high potential of hardware-aware computing. When nu-
merical procedures are developed and implemented with respect to the available
hardware resources, we can expect advantages in terms of performance and en-
ergy efficiency. Since, depending on the problem, the time and energy savings can
become quite large, hardware-aware computing should be taken into account for
individual solutions as well as for large-scale simulations in computing centers.



Future work would include a larger set of experiments concerning the linear
systems, the used solvers, and the evaluated hardware platforms. One focus could
also be to monitor the energy saving techniques of modern processors.
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