22,051 research outputs found

    Spin Domains Generate Hierarchical Ground State Structure in J=+/-1 Spin Glasses

    Full text link
    Unbiased samples of ground states were generated for the short-range Ising spin glass with Jij=+/-1, in three dimensions. Clustering the ground states revealed their hierarchical structure, which is explained by correlated spin domains, serving as cores for macroscopic zero energy "excitations".Comment: 4 pages, 5 figures, accepted to Phys. Rev. Let

    X-ray monitoring of classical novae in the central region of M31. III. Autumn and winter 2009/10, 2010/11 and 2011/12

    Get PDF
    [Abridged] Classical novae (CNe) represent the major class of supersoft X-ray sources (SSSs) in the central region of our neighbouring galaxy M31. We performed a dedicated monitoring of the M31 central region, aimed to detect SSS counterparts of CNe, with XMM-Newton and Chandra between Nov and Mar of the years 2009/10, 2010/11 and 2011/12. In total we detected 24 novae in X-rays. Seven of these sources were known from previous observations, including the M31 nova with the longest SSS phase, M31N~1996-08b, which was found to fade below our X-ray detection limit 13.8 yr after outburst. Of the new discoveries several novae exhibit significant variability in their short-term X-ray light curves with one object showing a suspected period of about 1.3 h. We studied the SSS state of the most recent outburst of a recurrent nova which had previously shown the shortest time ever observed between two outbursts (about 5 yr). The total number of M31 novae with X-ray counterpart was increased to 79 and we subjected this extended catalogue to detailed statistical studies. Four previously indicated correlations between optical and X-ray parameters could be confirmed and improved. We found indications that the multi-dimensional parameter space of nova properties might be dominated by a single physical parameter. We discuss evidence for a different X-ray behaviour of novae in the M31 bulge and disk. Exploration of the multi-wavelength parameter space of optical and X-ray measurements is shown to be a powerful tool for examining properties of extragalactic nova populations. While there are hints that the different stellar populations of M31 (bulge vs disk) produce dissimilar nova outbursts, there is also growing evidence that the overall behaviour of an average nova might be understood in surprisingly simple terms.Comment: 39 pages (half of them for 9 tables), 14 figures, accepted for publication in A&A; updated after language editing stag

    Statistics of lowest excitations in two dimensional Gaussian spin glasses

    Get PDF
    A detailed investigation of lowest excitations in two-dimensional Gaussian spin glasses is presented. We show the existence of a new zero-temperature exponent lambda describing the relative number of finite-volume excitations with respect to large-scale ones. This exponent yields the standard thermal exponent of droplet theory theta through the relation, theta=d(lambda-1). Our work provides a new way to measure the thermal exponent theta without any assumption about the procedure to generate typical low-lying excitations. We find clear evidence that theta < theta_{DW} where theta_{DW} is the thermal exponent obtained in domain-wall theory showing that MacMillan excitations are not typical.Comment: 4 pages, 3 figures, (v2) revised version, (v3) corrected typo

    Correct extrapolation of overlap distribution in spin glasses

    Full text link
    We study in d=3 dimensions the short range Ising spin glass with Jij=+/-1 couplings at T=0. We show that the overlap distribution is non-trivial in the limit of large system size.Comment: 6 pages, 3 figure

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat

    Photon Blockade in the Ultrastrong Coupling Regime

    Get PDF
    We explore photon coincidence counting statistics in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime usual normal order correlation functions fail to describe the output photon statistics. By expressing the electric-field operator in the cavity-emitter dressed basis we are able to propose correlation functions that are valid for arbitrary degrees of light-matter interaction. Our results show that the standard photon blockade scenario is significantly modified for ultrastrong coupling. We observe parametric processes even for two-level emitters and temporal oscillations of intensity correlation functions at a frequency given by the ultrastrong photon emitter coupling. These effects can be traced back to the presence of two-photon cascade decays induced by counter-rotating interaction terms.Comment: minor revisions, supplementary information added, accepted for publication in PR

    On "the authentic damping mechanism" of the phonon damping model

    Full text link
    Some general features of the phonon damping model are presented. It is concluded that the fits performed within this model have no physical content

    Spectral densities and partition functions of modular quantum systems as derived from a central limit theorem

    Full text link
    Using a central limit theorem for arrays of interacting quantum systems, we give analytical expressions for the density of states and the partition function at finite temperature of such a system, which are valid in the limit of infinite number of subsystems. Even for only small numbers of subsystems we find good accordance with some known, exact results.Comment: 6 pages, 4 figures, some steps added to derivation, accepted for publication in J. Stat. Phy

    Recent discoveries of supersoft X-ray sources in M 31

    Get PDF
    Classical novae (CNe) have recently been reported to represent the major class of supersoft X-ray sources (SSSs) in the central area of our neighbouring galaxy M 31. This paper presents a review of results from recent X-ray observations of M 31 with XMM-Newton and Chandra. We carried out a dedicated optical and X-ray monitoring program of CNe and SSSs in the central area of M 31. We discovered the first SSSs in M 31 globular clusters (GCs) and their connection to the very first discovered CN in a M 31 GC. This result may have an impact on the CN rate in GCs. Furthermore, in our optical and X-ray monitoring data we discovered the CN M31N 2007-11a, which shows a very short SSS phase of 29 - 52 days. Short SSS states (durations < 100 days) of CNe indicate massive white dwarfs (WDs) that are candidate progenitors of supernovae type Ia. In the case of M31N 2007-11a, the optical and X-ray light curves suggest a binary containing a WD with M_WD > 1.0 M_sun. Finally, we present the discovery of the SSS counterpart of the CN M31N 2006-04a. The X-ray light curve of M31N 2006-04a shows short-time variability, which might indicate an orbital period of about 2 hours.Comment: 4 pages, 1 figure; Proc. of workshop "Supersoft X-ray Sources - New Developments", ESAC, May 2009; accepted for publication in Astronomische Nachrichte
    corecore