147 research outputs found

    Polydimethylsiloxane-based giant glycosylated polymersomes with tunable bacterial affinity

    Get PDF
    A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) (PDMS) macro-chain transfer agent (macroCTA) and postpolymerization modification was used to marry the hydrophobic and highly flexible properties of PDMS with the biological activity of glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA (Mn,th ≈ 4900 g·mol–1, Đ = 1.1) to prepare well-defined PDMS-b-pBEA diblock copolymers (Đ = 1.1) that were then substituted with 1-thio-β-d-glucose or 1-thio-β-d-galactose under facile conditions to yield PDMS-b-glycopolymers. Compositions possessing ≈25% of the glycopolymer block (by mass) were able to adopt a vesicular morphology in aqueous solution (≈210 nm in diameter), as indicated by TEM and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective binding with the lectin concanavalin A (Con A), as demonstrated by turbidimetric experiments. Self-assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs (ranging from 2–20 μm in diameter). Interaction of these cell-sized polymersomes with fimH positive E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to modulate the response of these synthetic cell mimics (protocells) toward biological entities through exploitation of selective ligand–receptor interactions, which may be readily tuned through a considered choice of carbohydrate functionality

    Looped flow RAFT polymerization for multiblock copolymer synthesis

    Get PDF
    A looped flow process was designed for the synthesis of well-defined multiblock copolymers using reversible addition–fragmentation chain transfer (RAFT) polymerization. The reaction conditions were optimized to reach high conversions whilst maintaining a high end-group fidelity. The loop set-up proved to be a flexible, robust and time-efficient process for scaling-up multiblock copolymers

    High-resolution dielectric characterization of minerals: a step towards understanding the basic interactions between microwaves and rocks

    Get PDF
    Microwave energy was demonstrated to be potentially beneficial for reducing the cost of several steps of the mining process. Significant literature was developed about this topic but few studies are focused on understanding the interaction between microwaves and minerals at a fundamental level in order to elucidate the underlying physical processes that control the observed phenomena. This is ascribed to the complexity of such phenomena, related to chemical and physical transformations, where electrical, thermal and mechanical forces play concurrent roles. In this work a new characterization method for the dielectric properties of mineral samples at microwave frequencies is presented. The method is based upon the scanning microwave microscopy technique that enables measurement of the dielectric constant, loss factor and conductivity with extremely high spatial resolution and accuracy. As opposed to conventional dielectric techniques, the scanning microwave microscope can then access and measure the dielectric properties of micrometric-sized mineral inclusions within a complex structure of natural rock. In this work two micrometric hematite inclusions were characterized at a microwave frequency of 3 GHz. Scanning electron microscopy/energy-dispersive x-ray spectroscopy and confocal micro-Raman spectroscopy were used to determine the structural details and chemical and elemental composition of mineral sample on similar scale

    Roadmap Umwelttechnologien 2020 - State-of-the-Art-Report (Kurzfassung)

    Get PDF
    Globale Umweltprobleme wie der Klimawandel, die Verknappung des Süßwasserdargebots, der Verlust an Biodiversität oder der rasant steigende Verbrauch nicht erneuerbarer Rohstoffe werden den Handlungsdruck im Umweltbereich in den nächsten Jahrzehnten deutlich erhöhen. Obwohl viele der heutigen Umweltprobleme direkt oder indirekt durch Technik verursacht sind, beinhalten moderne Umwelttechnologien gleichzeitig das Potential zu ihrer Bewältigung. Vor diesem Hintergrund untersucht das BMBF-Projekt „Roadmap Umwelttechnologien 2020“ welche Beiträge Forschung und Technik für künftige Umweltinnovationen leisten können. Ziel des Projekts ist es, strategische Handlungsoptionen für die Forschungsförderung und die Unterstützung des Wissenstransfers in die Praxis aufzuzeigen. Als erstes Ergebnis des Projekts wurden in einem umfassenden State-of-the-Art-Report, Umweltprobleme und zugehörige technische Lösungsansätze entlang von sieben Umwelthandlungsfeldern dargestellt. Diese sind: Klimaschutz, Luftreinhaltung, Wasserschutz, Bodenschutz, Schonung endlicher Ressourcen, Abfallwirtschaft, Erhalt von Natur und Biodiversität. Der Report gibt einen umfassenden Überblick über reife Technologien und ihr Marktumfeld, neue Technologien und ihre Potentiale sowie mögliche Hemmnisse, die der Weiterentwicklung und Marktdurchdringung im Weg stehen. In der hier vorgelegten Kurzfassung des State-of-the-Art-Reports sind wesentliche Ergebnisse aus den sieben Handlungsfeldern zusammengefasst. Jedem Handlungsfeld ist ein so genannter „Kompass“ zugeordnet, der das Beziehungsgeflecht von Problemen, Lösungsansätzen und Technologien grafisch darstellt

    Intramolecular Energy and Electron Transfer Within a Diazaperopyrenium-Based Cyclophane

    Get PDF
    Molecules capable of performing highly efficient energy transfer and ultrafast photo-induced electron transfer in well-defined multichromophoric structures are indispensable to the development of artificial photosynthetic systems. Herein, we report on the synthesis, characterization and photophysical properties of a rationally designed multichromophoric tetracationic cyclophane, DAPPBox^(4+), containing a diazaperopyrenium (DAPP^(2+)) unit and an extended viologen (ExBIPY^(2+)) unit, which are linked together by two p-xylylene bridges. Both ^1H NMR spectroscopy and single crystal X-ray diffraction analysis confirm the formation of an asymmetric, rigid, box-like cyclophane, DAPPBox^(4+). The solid-state superstructure of this cyclophane reveals a herringbone-type packing motif, leading to two types of π···π interactions: (i) between the ExBIPY^(2+) unit and the DAPP^(2+) unit (π···π distance of 3.7 Å) in the adjacent parallel cyclophane, as well as (ii) between the ExBIPY^(2+) unit (π···π distance of 3.2 Å) and phenylene ring in the closest orthogonal cyclophane. Moreover, the solution-phase photophysical properties of this cyclophane have been investigated by both steady-state and time-resolved absorption and emission spectroscopies. Upon photoexcitation of DAPPBox^(4+) at 330 nm, rapid and quantitative intramolecular energy transfer occurs from the ^1*ExBIPY^(2+) unit to the DAPP^(2+) unit in 0.5 ps to yield ^1*DAPP^(2+). The same excitation wavelength simultaneously populates a higher excited state of ^1*DAPP^(2+) which then undergoes ultrafast intramolecular electron transfer from ^1*DAPP^(2+) to ExBIPY^(2+) to yield the DAPP^(3+•) – ExBIPY^(+•) radical ion pair in τ = 1.5 ps. Selective excitation of DAPP^(2+) at 505 nm populates a lower excited state where electron transfer is kinetically unfavorable

    Establishment of Fruit Bat Cells (Rousettus aegyptiacus) as a Model System for the Investigation of Filoviral Infection

    Get PDF
    Marburg virus and several species of Ebola virus are endemic in central Africa and cause sporadic outbreaks in this region with mortality rates of up to 90%. So far, there is no vaccination or therapy available to protect people at risk in these regions. Recently, different fruit bats have been identified as potential reservoirs. One of them is Rousettus aegyptiacus. It seems that within huge bat populations only relatively small numbers are positive for filovirus-specific antibodies or filoviral RNA, a phenomenon that is currently not understood. As a first step towards understanding the biology of filoviruses in bats, we sought to establish a model system to investigate filovirus replication in cells derived from their natural reservoir. Here, we provide the first insights into this topic by monitoring filovirus infection of a Rousettus aegyptiacus derived cell line, R06E. We were able to show that filoviruses propagate well in R06E cells, which can, therefore, be used to investigate replication and transcription of filovirus RNA and to very efficiently perform rescue of recombinant Marburg virus using reverse genetics. These results emphasize the suitability of the newly established bat cell line for filovirus research

    Identification of Allele-Specific RNAi Effectors Targeting Genetic Forms of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurological disorder affecting an estimated 5–10 million people worldwide. Recent evidence has implicated several genes that directly cause or increase susceptibility to PD. As well as advancing understanding of the genetic aetiology of PD these findings suggest new ways to modify the disease course, in some cases through genetic manipulation. Here we generated a ‘walk-through’ series of RNA Pol III-expressed shRNAs targeting both the α-synuclein A30P and LRRK2 G2019S PD-associated mutations. Allele-specific discrimination of the α-synuclein A30P mutation was achieved with alignments at position 10, 13 and 14 in two model systems, including a heterozygous model mimicking the disease setting, whilst 5′RACE was used to confirm stated alignments. Discrimination of the most common PD-linked LRRK2 G2019S mutation was assessed in hemizygous dual-luciferase assays and showed that alignment of the mutation opposite position 4 of the antisense species produced robust discrimination of alleles at all time points studied. Discrimination at this position was subsequently confirmed using siRNAs, where up to 10-fold discrimination was seen. The results suggest that RNAi-mediated silencing of PD-associated autosomal dominant genes could be a novel therapeutic approach for the treatment of the relevant clinical cases of PD in future

    Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein

    Get PDF
    Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1

    Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA

    Get PDF
    The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies
    corecore