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A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel 

amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) 

(PDMS) macro-chain transfer agent (macroCTA) and post-polymerization modification was used to 

marry the hydrophobic and highly flexible properties of PDMS with the biological activity of 

glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA (Mn,th 

≈ 4900 g.mol-1, Đ = 1.1) to prepare well-defined PDMS-b-pBEA diblock copolymers (Đ = 1.1) which 

were then substituted with 1-thio-β-D-glucose or 1-thio-β-D-galactose under facile conditions to yield 

PDMS-b-glycopolymers. Compositions possessing ≈ 25 % of the glycopolymer block (by mass) were 

able to adopt a vesicular morphology in aqueous solution (≈ 210 nm in diameter) as indicated by TEM 

and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective 

binding with the lectin concanavalin A (Con A) as demonstrated by turbidimetric experiments. Self-

assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs 

(ranging from 2 – 20 μm in diameter).  Interaction of these cell-sized polymersomes with fimH positive 

E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster 

upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and 

possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to 

modulate the response of these synthetic cell mimics (protocells) towards biological entities through 

exploitation of selective ligand-receptor interactions, which may be readily tuned through a considered 

choice of carbohydrate functionality. 
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Introduction 

Cells are tremendously complex entities, the site of innumerable vital biological functions, and 

as such the mimicry of cellular structure and function via synthetic means is a highly appealing prospect. 

However, reproducing such complexity currently remains well beyond scientific capability. As such the 

present goal is to instead develop compartments structurally reminiscent of biological cells, termed 

protocells, which can perform one or more biological functions.1-6 Numerous examples of primitive 

synthetic cell models exploring different aspects of cellular function such as metabolism,7-8 growth9-10 

and division9, 11 have been reported using a range of synthetic approaches.  

In recognition of the supramolecular composition of cellular membranes, many protocell models 

are based on supramolecular assemblies of amphiphilic building blocks, either naturally-derived or 

wholly synthetic. Liposomes offer the most immediately comparable cell membrane models on a 

structural level since they are also typically comprised of low molar mass (< 1 kDa) phospholipids and 

have therefore been used extensively.12-17 However, a variety of non-lipidic synthetic building blocks 

have also been employed to prepare protocell models, including protein-polymer nano-conjugates,18 

polypeptides19 and block copolymers.3 Amphiphilic block copolymer vesicles (polymersomes) 

represent an appealing candidate as protocell models by virtue of the expansive chemical variety which 

can be accessed, offering the opportunity to control structural, mechanical and biological properties of 

the resultant polymersome membrane.20-23 Amphiphilic block copolymers are often referred to as 

“super” amphiphiles since they are of substantially higher molar mass  than phospholipids, and as such 

polymersomes possess thicker bilayer membranes than liposomes.24 While an increased membrane 

thickness typically corresponds to superior colloidal stability, it translates to a decrease in membrane 

fluidity and permeability. Indeed, the relationship between block copolymer molar mass and membrane 

properties such as membrane thickness, rigidity and permeability has been demonstrated.25-26  

Amphiphilic block copolymers containing a hydrophobic segment with a low glass transition 

temperature (Tg), such as poly(dimethylsiloxane) (PDMS), can generate “fluid” polymeric membranes 

with mechanical properties approaching those of natural membranes despite being substantially 

thicker.27 It has been found that ABA triblock copolymers consisting of two outer poly(2-
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methyloxazoline) (PMOXA) blocks and a PDMS middle block (PMOXA-PDMS-PMOXA) which self-

assemble to form vesicles are excellent for the reconstitution of membrane proteins and membrane 

channel proteins.28-33 Remarkably, the functionality of the reconstituted proteins was fully preserved, 

under a critical membrane thickness of 9.2 – 12.1 nm, despite their artificial host.34 Such an approach 

could be adopted for the preparation of a polymeric protocell model using amphiphilic block 

copolymers whereby the hydrophobic block contributes towards a “fluid” membrane structure while 

the hydrophilic block may be exploited to impart biological function via presentation of relevant 

chemical functionalities. 

One crucial property exhibited by cells is the ability to recognize, and interact with, their 

surroundings. This is possible due to the architecture of the cell membrane, a semipermeable 

supramolecular barrier which hosts a diverse variety of functional macromolecules. Such an array of 

complex surface chemistries permits discrimination between extracellular species, provoking an 

appropriate cellular response, a feature which the scientific community strives to mimic.35-38 

Carbohydrates are structurally complex  molecules which can participate in highly specific ligand-

receptor interactions with lectins (cell surface carbohydrate-binding proteins). The “docking” of 

carbohydrate-bearing cargo to the cell surface through such selective binding is an initial step in a 

number of biological functions such as fertilization, inflammation, virus docking and receptor-mediated 

endocytosis (RME).39-41 Carbohydrates are also readily derivatizable and as such glycosylated materials 

are often exploited by synthetic chemists as a targeting moiety.42-48 To this end, a number of 

supramolecular architectures such as micelles, worm-like micelles and vesicles have been formed from 

a variety of glycosylated amphiphilic building blocks, which have been demonstrated to bind selectively 

with lectins.49-51 Pasparakis and Alexander reported the preparation of large sub-micron polymersomes 

displaying glucose residues on the surface from a doubly hydrophilic poly(2-glucosyloxyethyl 

methacrylate)-block-poly(diethyleneglycol methacrylate)  (pDEGMA-b-pGEMA) copolymer made via 

reversible deactivation radical polymerization (RDRP) methods.52 These polymersomes were able to 

undergo selective binding with a GFP fluorescent E. coli strain expressing the fimH membrane receptor, 

which possesses high binding affinities for glucose and mannose, and furthermore it was demonstrated 
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that this specificity could be exploited to transfer small molecule “information” in the event of binding. 

Kubilis et al. reported a glycosylated giant polymersome protocell model made from amphiphilic 

poly(glucosyloxyethyl acrylamide)-block-poly(butyl acrylate) (pGEAm-b-pBA) synthesised via RAFT 

polymerization.53 Selective binding between the micron-scale, glucose-decorated polymersomes and 

fluorescent polystyrene beads functionalized with the lectin Concanavalin A (Con A), representing 

virus particles, was observed using confocal microscopy. Glycosylated nanoparticles are also promising 

materials in anti-adhesion therapy, since their lectin-binding with bacterial membranes can interfere 

with the binding between bacteria and mammalian cell membranes in the early stages of infection.54   

Previous comparative studies of membrane properties of liposomes and polymersomes 

determined by atomic force microscopy imaging and force spectroscopy showed that 

poly(dimethylsiloxane)-based polymersomes display a Young’s modulus of 17 ± 11 MPa and a bending 

modulus of 70 ± 50 × 10−19 J which are much closer to typical values for lipids in the gel-phase such as 

dipalmitoylphosphatidylcholine (110 ± 15 MPa and 14 ± 2 × 10−19 J, respectively) than those for other 

types of polymersomes such as polystyrene-based polymersomes (61 ± 6 MPa and 716 ± 103 × 10−19 J, 

respectively).27, 55-56 We therefore aimed to build upon these examples by designing a polymeric 

protocell model with a novel membrane composition, which possesses mechanical properties closer to 

that of a natural vesicular membrane and may “recognize” certain extracellular species via selective 

carbohydrate-lectin binding. Herein we report the development of a new amphiphilic block copolymer 

consisting of an extremely low Tg poly(dimethylsiloxane) hydrophobic segment and a glycopolymer 

hydrophilic segment prepared using a macro-chain transfer agent (macro-CTA), RAFT polymerization 

and post-polymerization modification approach. The self-assembly behavior and subsequent lectin-

binding potential of these novel block copolymers was first studied on the nano-scale using a solvent 

switch approach and turbidimetric experiments with ConA. These concepts were then translated to the 

micro-domain, using the block copolymers to form giant glycosylated polymersomes and studying their 

binding behavior with fimH positive E. coli.  
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 Results and Discussion 

The synthetic approach utilized for the preparation of the desired amphiphilic PDMS-b-

glycopolymer structures entailed the synthesis of a PDMS macroCTA followed by RAFT 

polymerization to give the reactive PDMS-b-poly(2-bromoethyl acrylate) (PDMS-b-PBEA) precursor, 

and finally the nucleophilic substitution of the pendant bromine groups with 1-thio carbohydrate 

derivatives, as shown in Scheme 1. RAFT polymerization was to synthesize these materials since it is 

very versatile and robust RDRP method, capable of controlling molar mass and molar mass distributions 

for a wide range of functional vinyl monomers.57-59 The macroCTA approach has previously been 

demonstrated to work well to obtain PDMS-containing block copolymers.58, 60-64  

 

 

Scheme 1. Synthetic approach for the preparation of well-defined amphiphilic PDMS-Glycopolymer diblock 

copolymers. 

 

The post-modification approach is appealing since a single well-defined precursor polymer can 

be used to prepare a range of functional polymers (e.g. possessing different carbohydrates) with the 

same degree of polymerization (DPn) and molar mass distribution (Đ). Glycopolymers have been 

successfully generated using a range of post-polymerization reactions including copper catalyzed azide-

alkyne cycloadditions, thiol-ene and thiol-yne “click” reactions, nucleophilic activated ester/amine 
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exchange and nucleophilic substitution.65 Recently, thio-bromo substitutions of alkyl-bromine 

containing precursors have been demonstrated as an efficient route towards well-defined 

glycopolymers.66-67 Barlow et al. reported the preparation of a wide range of functional RAFT polymers, 

including a glycopolymer, via nucleophilic substitution of well-defined poly(bromoethyl acrylate) 

precursors.66 These substitutions were quantitative in most cases and could be conducted under facile 

conditions, whilst substitution with 1-thio-β-D-glucose yielded a glycopolymer with a narrow molar 

mass distribution (Đ < 1.2). Pröhl et al. used this substitution to prepare relatively high molar mass (≈ 

35,000 g.mol-1) glycopolymers bearing a variety of different carbohydrates.67 We postulated that this 

thio-bromo nucleophilic substitution could be exploited to prepare well-defined PDMS-b-glycopolymer 

with a composition promoting self-assembly in aqueous solution into glycosylated polymersomes. 

 

Synthesis of PDMS macroCTA 

The PDMS-((propanoate) butyl trithiocarbonate) (PDMS-PBTC) macroCTA was prepared using 

an EDCI/DMAP catalyzed esterification between (propanoic acid)yl butyl trithiocarbonate (PABTC) 

and the commercially available monohydroxy terminated PDMS (average Mn ≈ 4670 g.mol-1) (PDMS-

OH) in accordance with a previously reported procedure and was characterized using 1H NMR 

spectroscopy and size exclusion chromatography (SEC).60 Successful esterification was confirmed by 

1H NMR spectroscopy, with the peak at 3.74 ppm (-CH2-OH) shifting to 4.29 ppm (-CH2-(O)O-) (Fig. 

S1). Furthermore, integration of the peak at 3.42 ppm (-S-CH2-CH2-) and 4.29 ppm (-CH2-(O)O-) 

confirmed quantitative esterification. THF-SEC of the PDMS-OH precursor and the PDMS-PBTC 

macro-CTA each possessed monomodal populations with narrow molar mass distributions (Ð < 1.1). 

The experimental molar mass obtained was substantially higher than theoretical values which can be 

attributed to the difference in hydrodynamic volume between PDMS and the poly(methyl methacrylate) 

narrow standards used for SEC calibration (Table 1).  
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RAFT polymerization of 2-bromoethyl acrylate using PDMS-PBTC macro-CTA   

RAFT polymerizations of 2-bromoethyl acrylate using the PDMS-PBTC macroCTA were 

conducted in 1,4-dioxane using dimethyl 2,2’-azobis(2-methylpropionate) (V-601) as initiator (Scheme 

1). Two diblock copolymer compositions were targeted whereby the final PDMS-b-glycopolymers 

would (theoretically) possess 25 % or 50 % glycopolymer (by mass), assuming complete substitution 

of the pendant bromine groups by 1-thio-β-D-glucose or 1- thio-β-D-galactose. It was expected that 

these compositions would exhibit different self-assembly behavior in aqueous media, with the former 

adopting a vesicular morphology and the latter forming micelles, or possibly worm-like micelles.68-70 

The concentration of monomer and initiator were fixed for each polymerization ([BEA]0 = 0.55 mol.L-

1, [V-601]0 = 2.5 × 10-3 mol.L-1) and each polymerization was left at 66 °C for 4 h, while the 

concentration of PDMS-PBTC was varied to target different degrees of polymerization (DPn) for the 

PBEA block. The polymerizations were stopped at moderate monomer conversions (< 70 %) in order 

to reduce the occurrence of termination events and other side reactions. The degree of polymerization 

and theoretical molar mass of the purified polymers were determined using 1H NMR spectroscopy by 

comparing the integrals of the peak(s) at 0.4 –0.5 ppm (4 protons, assigned d and f in Fig. 1b) with the 

peaks at 3.4 – 3.6 ppm (assigned z and i).  
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Figure 1. THF-SEC chromatograms of PDMS-PBTC macroCTA and purified PDMS60-b-PBEA polymers following 

4 h of RAFT polymerization at 66 °C in 1,4-dioxane (a). 1H NMR spectra (CDCl3) of the PDMS60-PBTC macroCTA 

and purified PDMS60-b-PBEA6 (P1) following 4 h of RAFT polymerization at 66 °C in 1,4-dioxane (b). 

 

PDMS60-b-PBEAn diblock copolymers with DPn,(BEA) of ≈ 6 and ≈ 16 (P1 and P2, respectively) 

were obtained following precipitation in MeOH/H2O. THF-SEC revealed monomodal populations with 

a clear shift towards higher molar mass from the initial PDMS-PBTC macroCTA (Fig. 1a and Table 1) 

and narrow molar mass distributions (Ð  < 1.1) indicating the RAFT polymerization proceeded in a 

controlled manner. The block copolymers were also characterized using differential scanning 

calorimetry (DSC) (Fig. S8 and S9, supporting information). The glass transition (Tg ~ -125 °C), cold 

crystallization transition (Tc ~ -88 °C) and melting transition (Tm ~ -50 °C) typically attributed to PDMS 

were all observed.60 Finally, elemental analysis of the purified polymers was consistent with the 

predicted structures and indicate retention of the pendant bromine group (Table S1 in supporting 

information) following RAFT polymerization.  
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Table 1. Summary of PDMS60-b-pBEA diblock copolymers prepared via RAFT polymerization with the PDMS-

PBTC macroCTA. 

Entry Composition 

DPn,(BEA)  

(target) 

DPn,(BEA) 

(NMR)[a] 

(g.mol-1)  

Mn,th Mn,SEC ÐSEC 

1 PDMS-PBTC - - 4900 6750 1.08 

2[b]  (P1) PDMS60-b-PBEA6 10 6 5950 8050 1.09 

3[b] (P2) PDMS60-b-PBEA16 25 16 7750 9050 1.10 

SEC performed in THF using PMMA narrow standards for calibration. 

[a] Determined from 1H NMR data. 

    
[b] Polymerization conditions: [BEA]0 = 0.55 mol.L-1, [V-601]0 = 2.5 mmol.L-1, 4 h at 66 °C. 

 

Post-polymerization substitution 

Following the synthesis of the precursor PDMS60-b-PBEAn diblock copolymers P1 and P2, the 

pendant bromine groups were substituted with either 1-thio-β-D-glucose or 1-thio-β-D-galactose to 

generate the desired amphiphilic diblock copolymers PDMS60-b-P(GluEA)n (P1Glu and P2Glu) and 

PDMS60-b-P(GalEA)n (P1Gal and P2Gal). Since the thio-sugars were purchased in their sodium salt 

forms, no additional base was required to facilitate the nucleophilic substitution. For substitution of the 

precursor copolymers, a solvent system of DMSO and N-methyl-2-pyrrolidone (NMP) (35/65 by 

volume, respectively) was used. This solvent system was selected since it is both aprotic and relatively 

polar, to allow for an efficient SN2 substitution, and moreover was able to readily solubilize both the 

hydrophobic precursor polymer and the hydrophilic thio-sugar. A two-fold excess of thio-sugar with 

respect to bromine moieties was employed to ensure complete substitution.  The resulting substituted 

polymers were obtained in high yields (> 85 %) following purification via dialysis and lyophilization. 

Heteronuclear single quantum correlation (HSQC) spectroscopy experiments were instrumental in 

characterization of the substituted polymers (Fig. S2 – S7, supporting information). Following 

modification, the peak at δ(1H,13C): 3.50, 28.64 ppm corresponding to the CH2 adjacent to the bromine 

pendant group (CH2-CH2-Br) disappears and is replaced with new peaks at δ(1H,13C): 2.70 – 2.90, 27.94 

ppm attributed to the new CH2-CH2-S- species. Additionally, peaks corresponding to the new thio-sugar 

pendant groups are observed which indicate successful substitution (assigned 1-6 in Fig. S4 – 7). 
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Finally, the peaks corresponding to the ω-chain end of the polymers (assigned m-p in Fig. 1b and Fig. 

S2/3) are no longer observed indicating loss of the RAFT end group, which is unsurprising since the 

nucleophilic thio-sugar anion (which is used in excess) may also undergo nucleophilic addition to the 

trithiocarbonate moiety, yielding free thiol ω-chain ends. As a result it is possible that some disulphide 

bonds form following exposure to air, either between two ω-chain ends or between ω-chain end and 

excess thiosugar, yielding a BAB triblock copolymer or an AB diblock copolymer with an additional 

thioglucose at the ω-chain end, respectively. DSC of the substituted polymers reveals a loss of Tm (Fig. 

S8/9). This is potentially due to the influence of the glycopolymer block on the molecular packing which 

may hinder the crystallization of PDMS. With the substituted P1 polymers (P1Glu and P1Gal) no thermal 

transition corresponding to the Tg of the new glycopolymer block could be identified due to the low 

molar mass of this block (Fig. S8). However for the substituted P2 polymers a new Tg attributed to 

glycopolymer blocks are observed at 82 °C and 80 °C for P2Glu and P2Gal, respectively (Fig. S9). 

Elemental analysis of the purified polymers confirmed complete loss of bromine following substitution 

whilst the content of carbon and hydrogen increase slightly in close agreement with the predicted 

structure (Table S1 in supporting information), indicating quantitative substitution. Interestingly, for 

substitution of P1 and P2 with 1-thio-β-D-galactose it was necessary to work at substantially greater 

dilution (two-fold compared to when 1-thio-β-D-glucose was used) to ensure both the PDMS-b-PBEA 

precursors and thio-galactose remained in solution, also necessitating the introduction of a small amount 

of water (3 % by volume) to facilitate solubilization of the thio-sugar. Nevertheless, P1Gal and P2Gal 

were still obtained in high yields, and successful substitution was confirmed. 

 

Polymersome formation and binding with Con A  

The self-assembly behaviour of these novel well-defined amphiphilic glycopolymers was 

investigated. P1Glu and P1Gal, possessing a high hydrophobic content (approximately 75 % by mass), 

were expected to adopt a vesicular morphology. Meanwhile P2Glu and P2Gal, theoretically possessing 

50 % hydrophobic content (by mass), were expected to self-assemble to give micelles or worm-like 

micelles.20, 23, 69, 71 However, it is recognized that the adopted morphology of block copolymer self-
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assemblies is determined by a number of factors which dictate the packing behavior of the polymeric 

blocks, and not simply the hydrophobic/hydrophilic mass ratio.68 Moreover, the self-assembly process 

employed can have a strong influence on the final morphology obtained.69, 72  

A simple solvent-switch method from an initial THF/MeOH solution (95:5) to water was 

employed with P1Glu and P1Gal to induce self-assembly in water. The subsequent suspensions (which 

were turbid at a concentration of 2 mg.mL-1) were studied by dynamic light scattering (DLS) and static 

light scattering (SLS). DLS measurements revealed the presence of monomodal populations possessing 

an average hydrodynamic diameter (Dh) of ≈ 210 and 220 nm for P1Glu and P1Gal, respectively, and 

polydispersity indices (PDI) of 0.1 or below (Table 2, Fig. 2b, S10 and S11). The average apparent 

molar mass (Ma) and aggregation number (Nagg) of the self-assemblies was determined by SLS using an 

Ornstein-Zernicke representation of the scattering data (Table 2 and Fig. S12). Considering the 

structural similarity of P1Glu and P1Gal and (theoretically) equal molar mass (approximately 6700 g.mol-

1), it was interesting to observe a substantial difference in Nagg (5.4 × 104 and 13.8 × 104, respectively) 

according to SLS data despite possessing similar Dh as indicated by DLS. This could be attributed to 

the difference in polydispersity between the two samples, or even possibly a difference in the packing 

arrangement of the different glycopolymers. Nonetheless, the narrow polydispersity indices (PDI ≤ 0.1), 

large hydrodynamic diameters (Dh > 200 nm) and aggregation numbers (Nagg > 5 × 104) determined via 

DLS and SLS support the hypothesis that the self-assemblies were of vesicular morphology.  

 

Table 2. Light scattering data for PDMS-glyco-polymersomes in water prepared via solvent switch. 

 

Entry 
Mn,th

[a]
        

(g.mol-1) 

Dh  (z-av)                     

(nm) 

PDI dn/dc[b]            

(mL.g-1) 

Mapp                   

(g.mol-1) 

Nagg 

P1Glu 6700 212 0.11 0.301 3.46 × 108 5.40 × 104 

P1Gal 6700 221 0.02 0.254 8.81 × 108 1.38 × 105 

P2Glu 9600 337[c] 0.46[c] - - - 
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P2Gal 9600 325 0.21 - - - 

[a] Theoretical molar mass of block copolymers assuming quantitative substitution of precursor. 

[c] dn/dc determined using a differential refractometer. 

[c] Bimodal distribution: populations at 600 nm and 25 nm (see supporting information). 

DLS conducted at 0.5 mg.ml-1 

 

Transmission electron microscopy (TEM) was performed to further assess the morphology of the 

self-assemblies of P1Glu and P1Gal (Fig. 2d and S13). Individual spherical objects are observed with 

diameters ranging from 150 and 250 nm, which is in good agreement with the DLS data obtained, and 

in the case of P1Glu it is possible to discern a bilayer membrane (Fig. 2d). Interestingly, in some 

instances for the self-assemblies of P1Glu multiple lamellae could be observed, which may indicate that 

some species were in fact multilamellar polymersomes, or possibly unilamellar polymersomes which 

had flattened into an ordered thin film (Fig. S13). In other cases, multilamellar objects which could 

potentially be explained by the “fusing” of two or more polymersomes may be observed (Fig. S13). 

The occurrence of these interesting formations could possibly be due to re-organization of the very 

flexible polymeric membrane during sample preparation for dry-state TEM.  
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Figure 2. Schematic of self-assembled polymersomes (a). DLS traces of P1Glu (red trace) and P1Gal (blue trace) 

polymersomes at 0.5 mg.mL-1 in phosphate buffer (pH 7) (b). Absorbance profiles of P1Glu (red trace) and P1Gal 

(blue trace) polymersomes in phosphate buffer (pH 7) upon the addition of concanavalin A (2 mins) and 

concentrated glucose solution (20 mins) (c). TEM micrographs of P1Glu polymersomes (scale bar is 100 nm) (d/e). 

TEM micrograph of P1Gal polymersomes (scale bar is 200 nm) (f/g). 

Encouraged that the P1Glu and P1Gal diblock copolymer compositions were self-assembling to 

adopt the desired vesicular morphology, turbidimetric experiments were conducted with the 

glycosylated polymersomes to demonstrate the availability of carbohydrate moieties in solution and the 

selectivity of their binding behaviour with lectins. The lectin concanavalin A (Con A), which possesses 

a strong binding affinity for mannose and glucose, was chosen to demonstrate the selective binding of 

glucose-decorated polymersomes (P1Glu).67, 73-74 Addition of Con A to P1Glu in PBS (pH 7, DLS traces 

prior to Con A addition shown in Fig. 2b) resulted in an increase in absorbance due to aggregation of 

the polymersomes, while for the galactose-decorated polymersomes (P1Gal) only a small decrease in 

absorbance was observed due to dilution (Fig. 2c). The subsequent addition of excess glucose resulted 

in a sharp decrease in absorbance for P1Glu, indicating partial breakdown of the aggregates, while again 

only a small decrease in absorption was observed for P1Gal polymersomes due to dilution. The response 

of the P1Gal polymersomes towards Con A and excess glucose respectively indicate a reversible, non-

covalent binding mechanism characteristic of carbohydrate-lectin interactions.  

Meanwhile, application of the same solvent-switch method with P2Glu and P2Gal resulted in the 

observation of poorly-defined populations, exhibiting large hydrodynamic volumes and broad size 

distributions (Table 2). Indeed, in the case of P2Glu a bimodal distribution was observed with 

populations of substantially different diameter (≈ 600 nm and ≈ 25 nm) (Fig. S14).  
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Formation of giant glycosylated polymersomes (GGPs) and their interaction with fimH positive 

E. coli.  

Having demonstrated that the novel PDMS-glycopolymers P1Glu and P1Gal could undergo self-

assembly in solution to form vesicular morphologies and that the membranes of the polymersomes may 

undergo selective binding with lectins, attention turned towards generating GGPs as a simple synthetic 

cell mimic. As mentioned above, the average size and size distribution of polymersomes for a certain 

block copolymer composition is strongly dependent on the formation process.20, 72 Micron-scale 

polymersomes have been reported previously using an electroformation process, a film-rehydration 

method whereby rehydration is induced under an oscillating electric field.24, 75-76 For P1Glu and P1Gal, 

the electroformation method used was adapted from previous work by Kubilis et al.53 A custom-made 

electroformation apparatus was employed in this study. Polymer solutions containing rhodamine B 

octadecyl ester perchlorate were deposited on the surfaces of both electrodes of indium tin oxide-coated 

glass plates in the electroformation apparatus. Application of AC voltage between the two electrodes 

during the swelling of the polymer film in water led to the formation of stable unilamellar GGPs with 

sizes ranging from approximately 2 - 20 µm in diameter as revealed by fluorescent laser scanning 

confocal microscopy (LSCM) (Fig. 3a/b and S15).  
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Figure 3. Giant glycosylated polymersomes of P1Glu (Scale bar 10 μm) (a) and P1Gal (Scale bar 20 μm) (b). CFP-

fluorescent E. coli (DH5α) (fimH positive) in PBS (Scale bar 10 μm) (c). P1Glu GGPs (d) and P1Gal GGPs (e) 

following the addition of the (fimH positive) E. coli (Scale bars 10 and 20 μm respectively). The giant polymersome 

membranes were stained with rhodamine B octadecyl ester perchlorate during the electroformation process. 

Numbers of individual GGPs observed via confocal fluorescence microscopy before and after the addition of the 

(fimH positive) E. coli (f). 

 

The GGPs were then employed in interaction studies with a cyan fluorescent protein (CFP) 

fluorescent E. coli strain (DH5α) expressing the fimH protein, a bacterial adhesion which exhibits strong 

selectivity towards mannose (kd = 2.3 μM).77 Importantly, for the purpose of these interaction studies, 

fimH possesses greater binding affinity for glucose (kd = 9.2 mM) than galactose (kd = 100 mM), and 

therefore the different GGPs could be expected to interact differently in the presence of the bacteria.77 

Interestingly, the glucose-decorated GGPs (P1Glu) were observed to form large clusters following 

addition of the fimH positive E. coli, believed to be driven by the carbohydrate-lectin interactions (Fig. 

3d and S15). Indeed, almost no individual GGPs were observed (Fig. 3f). This clustering effect would 

suggest that the interactions between glucose-decorated GGPs and the bacteria are relatively strong by 
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virtue of the multivalent presentation of glucose moieties despite fimH only possessing moderate 

affinity towards this carbohydrate. Furthermore, it was interesting that individual GGPs within the 

clusters, while appearing slightly diminished in size compared to the GGPs without the presence of E. 

coli, maintained their vesicular morphology.  

 In contrast, the galactose-decorated GGPs (P1Gal) do not cause substantial clustering, and in 

most cases the GGPs were present individually (Fig. 2f). However, there was evidence that the GGPs 

and fimH positive E. coli were interacting (Fig. 2e and S15). It was interesting to observe strong 

colocalized fluorescence around the lamellar of the P1Gal GGPs which was not observed with the P1Glu 

GGPs. This would indicate that there is still some level of interaction between the galactose-decorated 

GGPs due to the large abundance of galactose moieties, although not strong enough to induce clustering 

as in the case of the glucose-decorated GGPs. That both GGPs are able to interact with the E. coli with 

profoundly difference outcomes due to the differing strength of the respective carbohydrate-lectin 

interactions, is an extremely interesting and exciting observation. The potential to modulate the 

response of these protocell models towards bacteria, either by instigating clustering of GGPs around 

the bacteria or simply immobilizing bacteria onto the surface of individual GGPs though selection of 

the appropriate carbohydrate moiety could be exploited for different biological applications.   

 

Conclusion 

A novel amphiphilic diblock copolymer composed of a highly flexible PDMS hydrophobic block 

and a biologically-relevant glycopolymer hydrophilic block was synthesized in this work. Using a 

PDMS macroCTA, well-defined PDMS-b-pBEA diblock copolymers were prepared via RAFT 

polymerization (Đ = 1.1) which could then be substituted post-polymerization under facile conditions 

(room temperature) to yield the desired copolymer composition. Compositions possessing ≈ 25 % 

glycopolymer block (by mass) were able to adopt a vesicular morphology in solution, which was 

demonstrated on both the nanoscale and microscale by utilizing different self-assembly processes. The 

ability of these polymersomes to interact with biological receptors was also demonstrated on both the 

nanoscale and microscale, using ConA and fimH positive E. coli respectively. Excitingly, in the latter 
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system the differing strength in carbohydrate-lectin interactions between GGPs possessing different 

carbohydrates resulted in profoundly disparate responses. Using this approach, the 

hydrophilic/hydrophobic balance of the resulting diblock copolymer may be readily controlled through 

RAFT polymerization, while a number of different sugars may be introduced through a single precursor 

in a facile synthetic procedure. These features may enable both the morphology, and the biological 

interaction of subsequent self-assemblies to be readily tuned.  To this end, we believe that the 

electroformed giant (cell-sized) glycosylated polymersomes represent a unique example of a synthetic 

system that displays a cellular behavior.  
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Experimental Section 

Materials 

Acryloyl chloride, 2-bromoethanol, 4-(dimethylamino)pyridine, anhydrous dimethyl sulfoxide, 

methanol, anhydrous N-methyl-2-pyrrolidone, poly(dimethylsiloxane) (monohydroxy terminated, 

average Mn ~ 4,670 g.mol-1) and 1-thio-β-D-glucose sodium salt, 4-(dimethylamino)pyridine (DMAP) 

and rhodamine B octadecyl ester perchlorate were obtained from Sigma-Aldrich. D-glucose anhydrous, 

dimethyl sulfoxide, 1,4-dioxane, tetrahydrofuran and triethylamine were obtained from Fisher 

Scientific. Chloroform and dichloromethane were obtained from VWR. Dimethyl 2,2’-azobis(2-

methylpropionate) (V-601) was obtained from Wako Chemicals. N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC.HCl) was obtained from Iris Biotech. 1-thio-β-D-galactose 

sodium salt was obtained from Carbosynth. Concanavalin A was obtained from MP biomedicals. 

Carbon coated TEM grids were obtained from EM Resolutions (UK). The chain transfer agent 2-

(((butylthio)-carbonothioyl)thio)propanoic acid, called (propanoic acid)yl butyl trithiocarbonate 

(PABTC), was synthesized according to a previously reported protocol.78 The CFP bacteria used are 

DH5α E.coli (non-pathogenic lab strain) transformed with the plasmid PSF-OXB20-FRCFP and were 

supplied by the lab of Dr Fernandez-Trillo at the University of Birmingham. This plasmid gives the 

bacteria resistance to Kanamycin at 50 μg.ml-1 final concentration. The bacteria were maintained on LB 

agar plates or grown in LB media liquid broth, both supplemented with Kanamycin and incubated at 37 

°C overnight. LB Agar plates with bacteria are stored at 4 °C. 

Methods 

Nuclear Magnetic Resonance (NMR) spectroscopy: NMR spectra of the PDMS-PBTC and PDMS-

b-PBEA block copolymers P1 and P2 (in CDCl3) were recorded on a Bruker Avance III 400 HD MHz 

spectrometer at 25 °C (298 K):1H (400 MHz), 13C (100 MHz). HSQC and associated 1H NMR spectra 

of PDMS-b-pBEA P1 and P2, PDMS-b-2(2-(1-β-D-thioglucose)ethyl acrylate) P1Glu and P2Glu, and 

PDMS-b-P(2-(1-β-D-thiogalactose)ethyl acrylate) P1Gal and P2Gal (in THF-d8/Methanol-d4) were 

recorded using a Bruker Avance III 500 MHz spectrometer at 25 °C (298 K): 1H (500 MHz), 13C (125 

MHz). 
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Size Exclusion Chromatography (SEC): SEC was conducted using an Agilent 390-LC MDS 

instrument equipped with differential refractive index (DRI) and dual wavelength UV detectors. The 

system was equipped with a PLgel 5 μm guard column followed by 2 x PLgel Mixed C columns (300 

x 7.5 mm). The eluent was THF with 2 % TEA (triethylamine) and 0.01 % BHT (butylated 

hydroxytoluene) additives. Samples were run at 1 ml/min at 30 °C. Poly(methyl methacrylate) (Agilent 

EasyVials) narrow standards with a molar mass range of 5.5 × 102 to 1.568 × 106 g.mol-1 were used to 

calibrate the SEC system. Analyte samples were filtered through a polytetrafluoroethylene (PTFE) 

membrane with 0.2 μm pore size prior to injection. Experimental molar mass (Mn,SEC) and dispersity 

(Ð) values of the synthesised polymers were determined using Agilent GPC/SEC software. 

Differential Scanning Calorimetry (DSC): Thermal transitions of PDMS-containing diblock 

polymers were measured under nitrogen on a Mettler Toledo DSC1. Three heating and cooling cycles 

in a temperature range of -123.15 K (-150 °C) to 453.15 K (180 °C) were performed at a scan rate of 

10 K.min-1
. 

Dynamic Light Scattering (DLS): Size measurements were conducted on a Malvern Zetasizer Nano-

ZS at 25 °C with a 4 mW He-Ne 633 nm laser at a scattering angle of 173 ° (back scattering), assuming 

the refractive of PDMS (1.410). The measurements were repeated three times with automatic 

attenuation selection and measurement position. Results were analyzed using Malvern DTS 6.20 

software. 

Static light scattering (SLS): Light scattering measurements were conducted using an ALV-CGS3 

system operating with a vertically polarized laser with the wavelength λ = 632 nm. Measurements were 

taken at 25 °C over a range of scattering wave vectors (q = 4πnsin(θ/2)/λ, where θ is the angle of 

observation and n the refractive index of the solvent. The incremental refractive indices (dn/dC) of P1Glu 

and P1Gal solutions were determined by measuring their refractive indices at concentrations ranging 

from 0.1 to 0.01 mg.mL-1 using a Shodex RI detector operating at a wavelength of 632 nm.   

Transmission electron microscopy (TEM): The carbon-coated TEM grids were glow discharged prior 

to sample preparation to increase the hydrophilicity of the surface. For sample preparation, 10 μL of a 

0.2 mg.mL-1 solution of polymer self-assemblies in water was placed onto the TEM grid and left for 60 
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seconds. The grid was then blotted dry with filter paper. Images were obtained on a JEOL2011 200 kV 

LaB6 transmission electron microscope fitted with a Gatan Ultrascan™ 1000 camera.  

Confocal fluorescence microscopy: Confocal fluorescence microscopy images were taken with a 

Zeiss 880 LSM with sequential argon laser imaging using wavelengths of 488 nm (CFP) and 514 nm 

(Rhodamine B octadecyl ester perchlorate). Unless stated otherwise, laser intensity was set to 5 %, with 

pinhole diameter at 76.1 μm. Images were taken with 40 and 63x oil immersion lenses. 

UV/Vis turbidity experiments: Absorbance measurements were conducted using an Agilent Carey 60 

UV-Vis spectrometer. For turbidimetric studies, a 0.5 mg/mL solution of P1Glu vesicles were prepared 

by dilution of a 2.0 mg/mL aqueous solution with water (to 1 mg.mL-1) followed by phosphate buffer 

(0.05 mol.L-1) to give a final concentration of 0.5 mg.mL-1 (in 0.025 mol.L-1 PB buffer). For 

measurements 0.8 mL of this solution was transferred to a 4.5 mL polystyrene cuvette, and absorbance 

readings were collected every second at 500 nm. After 2 minutes, 0.2 mL of a 2.0 mg.mL-1 solution of 

concanavalin A in PB (≈ 2 × 10-5 mol.L-1) was introduced and quickly mixed using an Eppendorf pipette. 

After another 18 minutes, 0.2 mL of a 100 mg.mL-1 D-glucose solution was introduced and quickly 

mixed using an Eppendorf pipette. Readings were collected using Agilent Carey WinUV kinetics 

application software. 

GGP interactions with E. coli: A single colony was suspended in phosphate-buffered saline (PBS; pH 

7.4, 100 µL). With a micropipette, an aliquot of 50 µL was added slowly to the GGPs in ultrapure water 

and incubated for 30 min to allow stabilization of GGPs before imaging using fluorescence confocal 

microscopy. 

Synthesis 

Synthesis of 2-bromoethyl acrylate (BEA): BEA monomer was synthesized according to a previously 

reported procedure.66, 79 In a typical reaction, 2-bromoethanol (67 g, 38 mL, 0.54 mol) was dissolved in 

CH2Cl2 (300 mL), to which triethylamine (82.2 mL, 59.7 g, 0.59 mol) was added under a nitrogen 

atmosphere, and the reaction was cooled to 0 °C. Acryloyl chloride (47.9 g, 53.4 mL, mol) in CH2Cl2 

(30 mL) was subsequently added dropwise over an hour with stirring. The reaction was allowed to warm 
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to room temperature overnight with continued stirring. Upon completion, the reaction mixture was 

filtered, the solid residue washed with CH2Cl2, and the organic layer washed with water (2 × 100 mL) 

and then brine (2 × 100 mL). The organic layer was dried over anhydrous MgSO4 and filtered, and the 

solvent was removed under reduced pressure. The product was purified by distillation under reduced 

pressure (∼1 mbar, 39−40 °C) to give 2-bromoethyl acrylate as a clear colorless liquid in 80 % yield; 

bp 41−43 °C (0.68 mmHg). 1H NMR (400 MHz, 298 K, CDCl3, δ): 6.42 (dd, J = 17.4, 1.3 Hz, 1 H, 

−C=CH2), 5.82 (dd, J = 17.4, 10.5 Hz, 1 H, CH2=CH−), 6.08 (dd, J = 10.5, 1.3 Hz, 1 H, −C=CH2), 4.40 

(t, J = 6.1 Hz, 2 H, −O−CH2−CH2−), 3.48 (t, J = 6.2 Hz, 2 H, −CH2−CH2−Br). 

Synthesis of PDMS-PBTC: The PDMS-PBTC macro-CTA was prepared via an EDCI/DMAP-

catalyzed esterification of the carboxylic acid R group of the PABTC CTA with the ω-chain end 

hydroxyl of the PDMS according to a previously reported procedure.60 A solution of N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDCI) (0.754 g, 3.93 mmol) in 

dichloromethane (25 mL) was added drop-wise to a solution of PDMS-OH (13.1 g, 2.81 mmol), 

PABTC (1.000 g, 4.19 mmol) and DMAP (0.051 g, 0.42 mmol) in dichloromethane (10 mL) at < 10 

°C. Following addition, the reaction was allowed to stir for 16 hours at room temperature. The opaque 

red/orange solution was washed with 1 M sodium hydroxide solution (2 x 60 mL) and distilled water 

(2 x 60 mL). The organic layer was dried over MgSO4, concentrated under vacuum and purified by 

flash chromatography (silica, 100 % dichloromethane). The purified macro-CTA was concentrated 

under vacuum to afford the product as yellow oil (yield: 8.931 g, 65 %). 1H NMR (400 MHz, 298 K, 

CDCl3, δ:) 4.29 (2H, t, J = 5.6 Hz, O–CH2–CH2–CO2), 3.69 (2H, t, O–CH2–CH2–CO2), 4.84 (1H, q, J 

= 7.3 Hz, S–CH(CH3)–CO2), 3.42 (2H, t, J = 7.0 Hz, O–CH2–(CH2)2–Si), 3.35 (2H, t, J = 7.4 Hz, CH2–

CH2–S), 0.93 (3H, t, J = 7.3 Hz, CH3–(CH2)3–S), 0.89 (3H, t, J = 7.1 Hz, CH3–(CH2)3–Si), 1.43 (2H, 

m, CH3–CH2– CH2–CH2–S), 1.64–1.71 (4H, m, CH3–(CH2)3–Si, 1.61–1.63 (3H, d, J = 7.4 Hz, S–

CH(CH3)–CO2), 0.07 (3H, m, Si(CH3)2–O). 

Synthesis of PDMS-pBEA diblock copolymers: PDMS60-PBTC (0.898 g, 0.926 mL, 0.184 mmol), 

BEA (0.327 g, 0.226 mL, 1.837 mmol), 1,4-dioxane (2.065 g, 1.999 mL) and V-601 (10 mg.mL-1 

solution in 1,4-dioxane, 0.194 g, 0.188 mL, 8.15 × 10-3 mmol) were added to a vial equipped with a 
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magnetic stirrer bar. The solution was bubbled with nitrogen for 15 minutes then placed into a 

thermostated oil bath set at 66 °C and allowed to stir for 4 h. The polymerization was stopped by cooling 

the reaction to room temperature and exposure to air. The crude polymer was precipitated directly into 

MeOH/H2O (70:30), re-dissolved in THF (≈ 3 mL) and precipitated again into MeOH/H2O. The 

precipitated polymer was dissolved in THF (≈ 3 mL) and the solvent removed under reduced pressure 

to yield PDMS60-b-PBEA6 as a yellow oil (1.010 g). The degree of polymerization (DPn) of purified 

PDMS-PBEA polymers were determined by comparing the integrals of the peak(s) from 0.4 – 0.5 ppm 

(4 protons, assigned d and f in fig. 1) with the peaks from 3.4 – 3.6 ppm (assigned z and i in Fig. 1): 

Post-polymerization substitution with 1-thio-β-D-glucose: PDMS60-b-PBEA6 (P1) (0.228 g, 0.038 

mmol, 0.229 mmol BEA moieties) was added to a 20 mL vial equipped with a magnetic stirrer bar. The 

vial was sealed with a rubber septum and purged with nitrogen. Anhydrous NMP (5.20 mL) and 

anhydrous DMSO (2.80 mL) were introduced via syringe and the polymer was allowed to dissolve 

resulting in a turbid yellow solution. Nitrogen was bubbled through the solution for 20 mins. 1-thio-β-

D-glucose sodium salt (0.101 g, 0.458 mmol in 5.10 mL anhydrous DMSO) was introduced via syringe 

(final DMSO:NMP ratio of 60:40, by volume). Nitrogen was bubbled through the solution for 20 and 

the substitution was left stirring under nitrogen for 16 h at room temperature. The resulting clear yellow 

solution was diluted with distilled water and dialyzed against distilled water (MWCO: 1 kDa). The 

volume of water was reduced and PDMS60-b-P(2-(1-thio-β-D-glucose)ethyl acrylate)6 (P1Glu) was 

obtained as a white solid following lyophilization. Substitution of PDMS60-b-PBEA16 (P2) was 

performed in the same manner with the final DMSO:NMP ratio set at 65:35 (by volume) to yield P2Glu. 

Post-polymerization substitution with 1-thio-β-D-galactose: PDMS60-b-PBEA6 (P1) (0.226 g, 0.038 

mmol, 0.228 mmol BEA moieties) was added to a 50 mL round-bottomed flask equipped with a 

magnetic stirrer bar. Anhydrous NMP (9.00 mL) and anhydrous DMSO (3.60 mL) were introduced via 

syringe and the polymer was allowed to dissolve resulting in a yellow solution. Nitrogen was bubbled 

through the solution for 20 mins. 1-thio-β-D-galactose sodium salt (0.104 g 0.456 mmol, dissolved in 

10.40 mL DMSO and 0.80 mL distilled water) was introduced via syringe (final DMSO:NMP:H2O 

ratio of 59:38:3, by volume). Nitrogen was bubbled through the solution for 20 and the substitution was 
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left stirring under nitrogen for 16 h at room temperature. The resulting clear yellow solution was diluted 

with distilled water and dialyzed against distilled water (MWCO: 1 kDa). The volume of water was 

reduced and PDMS60-b-P(2-(1-thio-β-D-galactose)ethyl acrylate)6 (P1Gal) was obtained as a white solid 

following lyophilization. Substitution of the PDMS60-b-PBEA16 (P2) was performed in the same 

manner with the final DMSO:NMP:H2O ratio set at 63:34:3 (by volume) to yield P2Gal. 

Self-assembly of PDMS-glycopolymers via solvent switch: A fresh solution of block copolymer (3.81 

mg.mL-1) in THF/MeOH (95/5 v/v) was prepared in a glass vial equipped with a magnetic stirrer bar. 

Distilled water was added gradually with gentle stirring to give a final polymer concentration of 2 

mg.mL-1 following removal of the organic solvents. The solutions were allowed to stir for two days to 

allow the organic solvents to evaporate.   

Self-assembly of PDMS-glycopolymers via Electroformation process: Giant polymersomes of P1Glu 

and P1Gal were prepared using a previously reported electroformation procedure and setup.53 A 20 μL 

solution of P1Glu in THF/MeOH (3:1 v/v) (5 mg.mL-1), containing rhodamine B octadecyl ester 

perchlorate (0.05 wt. %) was deposited on two indium tin oxide (ITO) coated glass slide electrodes. 

The solvent was removed under reduced pressure to form thin films on the ITO slides. A rubber spacer 

filled with MilliQ water (250 µL) was sandwiched between the two slide electrodes. An electric field 

(1.2 V, 10 Hz, sinusoidal wave form) was applied for 18 h to yield giant polymersomes. The resulting 

giant polymersome-containing solution was transferred to a glass slip bottomed container. 
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