2 research outputs found

    Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression

    No full text
    Although the role of APP and PSEN genes in genetic Alzheimer's disease (AD) cases is well established, fairly little is known about the molecular mechanisms affecting Aβ generation in sporadic AD. Deficiency in Aβ clearance is certainly a possibility, but increased expression of proteins like APP or BACE1/β-secretase may also be associated with the disease. We therefore investigated changes in microRNA (miRNA) expression profiles of sporadic AD patients and found that several miRNAs potentially involved in the regulation of APP and BACE1 expression appeared to be decreased in diseased brain. We show here that miR-29a, -29b-1, and -9 can regulate BACE1 expression in vitro. The miR-29a/b-1 cluster was significantly (and AD-dementia-specific) decreased in AD patients displaying abnormally high BACE1 protein. Similar correlations between expression of this cluster and BACE1 were found during brain development and in primary neuronal cultures. Finally, we provide evidence for a potential causal relationship between miR-29a/b-1 expression and Aβ generation in a cell culture model. We propose that loss of specific miRNAs can contribute to increased BACE1 and Aβ levels in sporadic AD

    NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer's disease

    No full text
    Alzheimer's disease is characterized by two primary pathological features: amyloid plaques and neurofibrillary tangles. The interconnection between amyloid and tau aggregates is of intense interest, but mouse models have yet to reveal a direct interrelationship. We now show that NO may be a key factor that connects amyloid and tau pathologies. Genetic removal of NO synthase 2 in mice expressing mutated amyloid precursor protein results in pathological hyperphosphorylation of mouse tau, its redistribution to the somatodendritic compartment in cortical and hippocampal neurons, and aggregate formation. Lack of NO synthase 2 in the amyloid precursor protein Swedish mutant mouse increased insoluble β-amyloid peptide levels, neuronal degeneration, caspase-3 activation, and tau cleavage, suggesting that NO acts at a junction point between β-amyloid peptides, caspase activation, and tau aggregation
    corecore