1,646 research outputs found

    Hydrodynamic interactions in active colloidal crystal microrheology

    Get PDF
    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts on the development of defects, the crystal regeneration as well as on the jamming behavior.Comment: 5 pages, 4 figure

    Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases

    Full text link
    We use a lattice Boltzmann (LB) kinetic scheme for modelling amphiphilic fluids that correctly predicts rheological effects in flow. No macroscopic parameters are included in the model. Instead, three-dimensional hydrodynamic and rheological effects are emergent from the underlying particulate conservation laws and interactions. We report evidence of shear thinning and viscoelastic flow for a self-assembled gyroid mesophase. This purely kinetic approach is of general importance for the modelling and simulation of complex fluid flows in situations when rheological properties cannot be predicted {\em a priori}.Comment: 7 pages, 5 figure

    Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids

    Get PDF
    During the last two years the RealityGrid project has allowed us to be one of the few scientific groups involved in the development of computational grids. Since smoothly working production grids are not yet available, we have been able to substantially influence the direction of software development and grid deployment within the project. In this paper we review our results from large scale three-dimensional lattice Boltzmann simulations performed over the last two years. We describe how the proactive use of computational steering and advanced job migration and visualization techniques enabled us to do our scientific work more efficiently. The projects reported on in this paper are studies of complex fluid flows under shear or in porous media, as well as large-scale parameter searches, and studies of the self-organisation of liquid cubic mesophases. Movies are available at http://www.ica1.uni-stuttgart.de/~jens/pub/05/05-PhilTransReview.htmlComment: 18 pages, 9 figures, 4 movies available, accepted for publication in Phil. Trans. R. Soc. London Series

    Interplay between microdynamics and macrorheology in vesicle suspensions

    Get PDF
    The microscopic dynamics of objects suspended in a fluid determines the macroscopic rheology of a suspension. For example, as shown by Danker and Misbah [Phys. Rev. Lett. {\bf 98}, 088104 (2007)], the viscosity of a dilute suspension of fluid-filled vesicles is a non-monotonic function of the viscosity contrast (the ratio between the viscosities of the internal encapsulated and the external suspending fluids) and exhibits a minimum at the critical point of the tank-treading-to-tumbling transition. By performing numerical simulations, we recover this effect and demonstrate that it persists for a wide range of vesicle parameters such as the concentration, membrane deformability, or swelling degree. We also explain why other numerical and experimental studies lead to contradicting results. Furthermore, our simulations show that this effect even persists in non-dilute and confined suspensions, but that it becomes less pronounced at higher concentrations and for more swollen vesicles. For dense suspensions and for spherical (circular in 2D) vesicles, the intrinsic viscosity tends to depend weakly on the viscosity contrast.Comment: 9 pages, 9 figures, to appear in Soft Matter (2014

    Computer Simulation of Particle Suspensions

    Get PDF
    Particle suspensions are ubiquitous in our daily life, but are not well understood due to their complexity. During the last twenty years, various simulation methods have been developed in order to model these systems. Due to varying properties of the solved particles and the solvents, one has to choose the simulation method properly in order to use the available compute resources most effectively with resolving the system as well as needed. Various techniques for the simulation of particle suspensions have been implemented at the Institute for Computational Physics allowing us to study the properties of clay-like systems, where Brownian motion is important, more macroscopic particles like glass spheres or fibers solved in liquids, or even the pneumatic transport of powders in pipes. In this paper we will present the various methods we applied and developed and discuss their individual advantages.Comment: 31 pages, 11 figures, to appear in Lecture Notes in Applied and Computational Mechanics, Springer (2006

    Closed formula for the transport of micro-nano-particle across model porous media

    Full text link
    In the last decade the Fick-Jacobs approximation has been exploited to capture the transport across constrictions. Here, we review the derivation of the Fick-Jacobs equation with particular emphasis on its linear response regime. We show that for fore-aft symmetric channels the flux of non-interacting systems is fully captured by its linear response regime. For this case we derive a very simple formula that captures the correct trends and that can be exploited as a simple tool to design experiments or simulations. Finally, we show that higher order corrections in the flux may appear for non-symmetric channels

    Mesoscopic simulation of diffusive contaminant spreading in gas flows at low pressure

    Get PDF
    Many modern production and measurement facilities incorporate multiphase systems at low pressures. In this region of flows at small, non-zero Knudsen- and low Mach numbers the classical mesoscopic Monte Carlo methods become increasingly numerically costly. To increase the numerical efficiency of simulations hybrid models are promising. In this contribution, we propose a novel efficient simulation approach for the simulation of two phase flows with a large concentration imbalance in a low pressure environment in the low intermediate Knudsen regime. Our hybrid model comprises a lattice-Boltzmann method corrected for the lower intermediate Kn regime proposed by Zhang et al. for the simulation of an ambient flow field. A coupled event-driven Monte-Carlo-style Boltzmann solver is employed to describe particles of a second species of low concentration. In order to evaluate the model, standard diffusivity and diffusion advection systems are considered.Comment: 9 pages, 8 figure

    Simulations of slip flow on nanobubble-laden surfaces

    Get PDF
    On microstructured hydrophobic surfaces, geometrical patterns may lead to the appearance of a superhydrophobic state, where gas bubbles at the surface can have a strong impact on the fluid flow along such surfaces. In particular, they can strongly influence a detected slip at the surface. We present two-phase lattice Boltzmann simulations of a flow over structured surfaces with attached gas bubbles and demonstrate how the detected slip depends on the pattern geometry, the bulk pressure, or the shear rate. Since a large slip leads to reduced friction, our results allow to assist in the optimization of microchannel flows for large throughput.Comment: 22 pages, 12 figure

    Role of the interplay between spinodal decomposition and crystal growth in the morphological evolution of crystalline bulk heterojunctions

    Full text link
    The stability of organic solar cells is strongly affected by the morphology of the photoactive layers, whose separated crystalline and/or amorphous phases are kinetically quenched far from their thermodynamic equilibrium during the production process. The evolution of these structures during the lifetime of the cell remains poorly understood. In this paper, a phase-field simulation framework is proposed, handling liquid-liquid demixing and polycrystalline growth at the same time in order to investigate the evolution of crystalline immiscible binary systems. We find that initially, the nuclei trigger the spinodal decomposition, while the growing crystals quench the phase coarsening in the amorphous mixture. Conversely, the separated liquid phases guide the crystal growth along the domains of high concentration. It is also demonstrated that with a higher crystallization rate, in the final morphology, single crystals are more structured and form percolating pathways for each material with smaller lateral dimensions
    • …
    corecore