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Calibration of lubrication force measurements by lattice Boltzmann simulations
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Many experiments explore the hydrodynamic boundary of a surface by approaching a colloidal
sphere and measuring the occurring lubrication force. However, in this case many different param-
eters like wettability and surface roughness influence the result. In the experiment these cannot be
separated easily. For a deeper understanding of such surface effects a tool is required that predicts
the influence of different surface properties. Here computer simulations can help. In this paper
we present lattice Boltzmann simulations of a sphere submerged in a Newtonian liquid and show
that our method is able to reproduce the theoretical predictions. In order to provide high precision
simulation results the influence of finite size effects has to be controlled. We study the influence
of the required system size and resolution of the sphere and demonstrate that already moderate
computing ressources allow to keep the error below 1%.

1. INTRODUCTION

During the last few decades the miniaturization of
technical devices down to submicrometric sizes has made
considerable progress. In particular, during the 1980s,
so-called microelectro-mechanical systems (MEMS) be-
came available for chemical, biological and technical ap-
plications leading to the rise of the discipline called “mi-
crofluidics” in the 1990s [1]. A wide variety of microflu-
idic systems was built. These include gas chromatog-
raphy systems, electrophoretic separation systems, mi-
cromixers, DNA amplifiers, and chemical reactors. Next
to those “practical applications”, microfluidics was used
to answer fundamental questions in physics including the
behavior of single molecules or particles in fluid flow or
the validity of the no-slip boundary condition [1, 2].

In recent years it became possible to perform very well
controlled experiments that have shown a violation of the
no-slip boundary condition in sub-micron sized geome-
tries. Since then, mostly experimental [2–10], but also
theoretical works [11–13], as well as computer simula-
tions [14–17] have been performed to improve our under-
standing of boundary slip. The topic is of fundamental
interest because it has practical consequences in the phys-
ical and engineering sciences as well as for medical and
industrial applications. Interestingly, also for gas flows,
often a slip length much larger than expected from clas-
sical theory can be observed. Extensive reviews of the
slip phenomenon have recently been published by Lauga
et al. [2] and Neto et al. [18].

Boundary slip is typically quantified by the slip length
β. This concept was proposed by Navier in 1823. He
introduced a boundary condition where the fluid velocity
at a surface is proportional to the shear rate at the surface
(at x = x0) [19], i.e.

vz(x0) = β
∂vz(x)

∂x
. (1)

In other words, the slip length β can be defined as the

distance from the surface where the relative flow velocity
vanishes.

Due to the large number of different parameters, a sig-
nificant dispersion of the results can be observed for very
similar experimental systems [2, 18]. For example, ob-
served slip lengths vary between a few nanometres [10]
and micrometers [4] and while some authors find a de-
pendence of the slip on the flow velocity [3, 6, 20], others
do not [4, 5]. The large variety of different experimental
results to some extend has its origin in surface-fluid in-
teractions. Their properties and thus their influence on
the experimental results are often unknown and difficult
to quantify. In addition there are many influences that
lead to the same effect in a given experimental setup as
intrinsic boundary slip – as for example a fluid layer with
lower viscosity than the bulk viscosity near the bound-
ary. Unless one is able to resolve the properties of this
boundary layer it cannot be distinguished from true or
intrinsic slip. Such effects can be categorized as apparent
slip.

In the literature a large variety of different effects lead-
ing to an apparent slip can be found. However, detailed
experimental studies are often difficult or even impossi-
ble. Here computer simulations can be utilized to predict
the influence of effects like surface wettability or rough-
ness. Most recent simulations apply molecular dynam-
ics and report increasing slip with decreasing liquid den-
sity [21] or liquid-solid interactions [16, 22], while slip
decreases with increasing pressure [15]. These simula-
tions are usually limited to some tens of thousands of
particles, length scales of the order of nanometres and
time scales of the order of nanoseconds. Also, shear
rates are usually orders of magnitude higher than in any
experiment [2]. Due to the small accessible time and
length scales of molecular dynamics simulations, meso-
scopic simulation methods like the lattice Boltzmann
method are well applicable for the simulation of microflu-
idic experiments. For a simple flow setup like Poiseuille
or Couette flow several investigations of slip models have
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been published [14, 23–26], but investigations for more
complex flows are rare.

FIG. 1: A sketch of a slip measurement based on a modified
atomic force microscope (AFM). For technical reasons the
surface is moved with the velocity v towards the sphere which
is attached to the cantilever of the AFM. The laser is used to
measure the bending of the cantilever which can be related to
the drag force F .

The experimental investigation of apparent slip can be
based on different setups. Very popular is the modifica-
tion of an atomic force microscope (AFM) by adding a
silicon sphere to the tip of the cantilever. A sketch of
such an experiment is shown in Fig.1. While moving the
surface towards the sphere, the drag force can be mea-
sured with a high precision. It is possible to measure the
amount of slip at the wall by comparing the drag force
with its theoretical value [9, 27]. However, there are some
eventually problematic limitations of this setup. Those
include the hydrodynamic influence of the cantilever, a
twist of the cantilever or uncontrolled roughness on the
sphere or the approached surface. Further, the exact ve-
locity of the sphere is hard to control since the drag force
and the bending of the cantilever can lead to an acceler-
ation of the sphere. This contributes to a deviation from
the ideal case and causes sophisticated corrections of the
approaching velocity to be required.

In this publication a simulation method for such AFM
based lubrication experiments is presented. We focus on
demonstrating that our method is able to reproduce the
theoretical prediction for a simple no-slip case and inves-
tigate its limits.

The remainder of this paper is arranged as follows:
after this introduction we describe the theoretical back-
ground and our simulation method. Then we show that
the method is able to reproduce the theoretical predic-
tions with great accuracy. Further, we investigate the in-
fluence of finite size effects. We determine the minimum
system size and resolution of discretization required to
push the finite size effect below an acceptable limit and
demonstrate the limits of the simulation method.

2. THEORETICAL BACKGROUND

In this section the commonly used theory is recapitu-
lated. In most of the experiments the relative velocity
v of the sphere with the radius R is so small that the
simple Reynolds theory for the lubrication force

FRe = 6πµvR2/d, (2)

can be applied, where µ is the dynamic viscosity of the
fluid [28]. For larger distances d between the surface of
the sphere and the approached boundary the force does
not converge towards the Stokes drag force FSt = 6πµvR
for a sphere moving freely in a fluid. Therefore this sim-
ple Reynolds lubrication fails in case of a larger velocity
v or greater separations d, where the Stokes force is not
sufficiently small to be neglected. The system can be de-
scribed accurate by the theory of Maude [29]. The base
of the theory is a solution for two spheres approaching
each other with the same rate. By transforming the co-
ordinates, applying symmetry arguments and setting the
radius of one of the spheres to infinity one arrives at a fast
converging sum for the drag force acting on the sphere:

FMa = 6πµvRλ1, (3)

with

λ1 = − 1
3 sinh ξ

×

(

∑

∞

n=1

n(n+1)[8e(2n+1)ξ+2(2n+3)(2n−1)]
(2n−1)(2n+3)[4 sinh2(n+ 1

2 )ξ−(2n+1)2 sinh2 ξ]

−
∑

∞

n=1

n(n+1)[(2n+1)(2n−1)e2ξ
−(2n+1)(2n+3)e−2ξ]

(2n−1)(2n+3)[4 sinh2(n+ 1
2 )ξ−(2n+1)2 sinh2 ξ]

)

,

where ξ = d/R. The term given by λ1 cannot be treated
analytically. Thus, we evaluate λ1 numerically with a
convergence of 10−10. A more practical approximation
of (3) is given in the same paper [29]:

F (h) = 6πµRv

(

9

8

R

d
+ 1

)

(4)

Here one can easily see that the force converges towards
the Stokes force for an infinite distance d and towards
the Reynolds lubrication (2) for small separations d.

To measure the slip length β experiments apply a cor-
rection f∗ that takes into account the surface properties.

Fβ = f∗F (h) (5)

In case of a surface with the slip length β and a vanishing
slip on the surface of the sphere, the correction f∗ is given
by [11]

f∗ =
1

4

(

1 +
3d

2β

[(

1 +
h

4β

)

ln

(

1 +
4β

d

)

− 1

])

. (6)

This equation is valid for a perfectly flat surface with
finite slip, but it does not allow to distinguish between
slip and other effects like surface roughness. Therefore it
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is of importance to perform computer simulations which
have the advantage that all relevant parameters can be
changed independently without modifying anything else
in the setup. Thus, the influence of every single modifi-
cation can be studied in order to present estimates of the
influence on the measured slip lengths. The first step in
this process is to validate the simulation method and to
understand its merits and flaws. In general most com-
puter simulations suffer from the fact that only a small
system can be described and that one is usually not able
to simulate the whole experimental system in full detail.
For this reason it is mandatory to understand which res-
olution of the problem is required to keep finite size ef-
fects under control and to cover the important physics
correclty.

d

n
FIG. 2: A sketch of the simulated system. The distance be-
tween the surface and the sphere is d and the system length
is n. The surrounding fluid is not shown.

In Fig. 2 a sketch of the simulated system is shown.
A sphere embedded in a surrounding fluid is simulated.
While the sphere approaches a surface the force acting
on it id recorded. We perform simulations with different
sphere radius R and different system length n to investi-
gate finite size effects. For simpicity we set the x and z
dimension to the same value n and keep the propagation
dimension y constant at 512 lattice units. A typical ap-
proach to limit finite size effects is to use periodic bound-
ary conditions. However in such a system the sphere then
interacts with its periodic images. Hasimoto gives a the-
oretical solution for the drag force [30] of a sphere in a
periodic array as it appears if all boundaries are periodic:

FHa =
FSt

1 − 2.83a + 4.19a3 − 27.4a7 + O(a9)
(7)

Here, a = R/n is the ratio between the radius of the
sphere R and the system length n. The case we are deal-
ing with in this paper is different and more complex due
to a broken symmetry caused by the approached surface.
For the approximation given by (7) the main contribu-
tion of the periodic interaction is between the periodic
images in front and behind the sphere. Due to the rigid
boundary, these are not present in our case.

Besides a finite simulated volume most simulation
methods utilize a finite discretization of the simulated
objects, i.e. the sphere in our case. This means that
the finite size and the resolution influence the result of
a simulation. However, it is usually possible to limit the
influence of finite size effects and the loss of accuracy by
discretization if those errors are known and taken into ac-
count properly. Therefore, we study the finite size effects
in a simulation of a sphere in a periodic system approach-
ing a rigid no slip boundary and investigate how different
resolutions of the sphere influence the force acting on it.

3. SIMULATION METHOD

The simulation method used to study microfluidic de-
vices has to be chosen carefully. While Navier-Stokes
solvers are able to cover most problems in fluid dynam-
ics, they lack the possibility to include the influence of
molecular interactions as needed to model boundary slip.
Molecular dynamics simulations (MD) are the best choice
to simulate the fluid-wall interaction, but the computer
power today is not sufficient to simulate length and time
scales necessary to achieve orders of magnitude which are
relevant for experiments. However, boundary slip with a
slip length β of the order of many molecular diameters
σ has been studied with molecular dynamics simulations
by various authors [7, 16, 17, 31].

In this paper we use the lattice Boltzmann method,
where one discretizes the Boltzmann kinetic equation

[

∂

∂t
+ u∇x +

F̂

m
∇u

]

η(x,u, t) = Ω (8)

on a lattice. η(x,u, t) indicates the probability to find a
single particle with mass m and velocity u at the time
t and position x. F̂ accounts for external forces. The
derivatives represent simple propagation of a single par-
ticle in real and velocity space whereas the collision oper-
ator Ω takes into account molecular collisions in which a
particle changes its momentum due to a collision with an-
other particle. Further, the collision operator drives the
distribution η towards an equilibrium distribution ηeq.

In the lattice Boltzmann method time, positions, and
velocity space are discretized on a lattice in the follow-
ing way. The distribution η is only present on lattice
nodes xk. The velocity space is discretized so that in
one discrete timestep δt the particles travel with the dis-
crete velocities ci towards the nearest and next nearest
neighbours xk + ciδt. Since a large proportion of the
distribution stays at the same lattice node a rest veloc-
ity c0 is required. c0 represents particles not moving to
a neighboring site. In short we operate on a three di-
mensional grid with 19 velocities (i = 0..18) which is
commonly referred to as D3Q19. After the streaming
of the population density, the population on each lat-
tice node is relaxed towards an equilibrium such that
mass and momentum are conserved. It can be shown
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by a Chapman-Enskog procedure that such a simulation
method reproduces the Navier-Stokes equation [32]. In
the lattice Boltzmann method the time t is discretized in
time steps δt, the position x is discretized in units of dis-
tance between neighbouring lattice cells, and the velocity
u is discretized using the velocity vectors ci. These form
the natural lattice units of the method which are used in
this paper if not stated otherwise.

The implementation we are using originates to
A. Ladd [33]. It applies a so called multi relaxation time
collision operator. The distribution η is transformed via
a transformation matrix T into the space of the moments
mj of the distribution. A very accessible feature of this
approach is that some of the moments mj have a physical
meaning as for example the density

ρ = m0 =
∑

i

ηi (9)

or the momentum in each direction x, y, z,

m1,2,3 = e1,2,3

∑

i

ηici. (10)

e1,2,3 is the unity vector in Cartesian directions. The
moments mj relax with an individual rate Sj towards
the equilibrium meq

j . The equilibrium distribution meq

conserves mass m0 and momentum m1,2,3 and is a dis-
cretized version of the Maxwell distribution. Thus the
lattice Boltzmann equation (8) can be written as

η(xk + ciδt, ci, t + δt) − η(xk, ci, t)

= T j
i

−1
Sj [mj(xk, t) − meq

j ]. (11)

The multi relaxation time approach has several advan-
tages compared to other lattice Boltzmann schemes.
These include a higher precision at solid boundaries and
the direct accessibility of the moments which represent
physical properties. The latter can be utilized to easily
implement thermal fluctuations or external and internal
forces [34].

A feature of the implementation we are using is the
possibility to simulate particles suspended in fluid. The
simulation method is described extensively in the litera-
ture [33–35]. Therefore only a brief description is given
here. The movement of the particles is described by a
simple molecular dynamics algorithm. However it should
be noted here that we simulate a sphere moving with
a constant velocity. Therefore any forces acting on the
sphere do not influence its movement. The fluid-particle
interaction is achieved by the solid-fluid boundary inter-
action acting on the surface of the sphere. When the
sphere is discretized on the lattice all lattice sites inside
the sphere are marked as boundary nodes with a mov-
ing wall boundary condition. This boundary condition
at the solid-fluid interface is constructed in such a way
that there is as much momentum transferred to the fluid
as required for the fluid velocity to match the boundary
velocity vb of the particle. The center of mass velocity

of the particle and the rotation are taken into account.
This way the transfered momentum and thus the hydro-
dynamic force acting on the sphere are known. Techni-
cally speaking a link bounce back boundary condition is
implemented for the solid nodes together with a momen-
tum transfer term. The link bounce back implies that
the distributions that would move inside the boundary
with the velocity ci are reversed in direction with oppo-
site velocity ck.

η(x + ciδt, ci, t + δt)=η(x + ciδt, ck, t)+
2aciρvbci

c2
s

(12)

η(x, ck, t + δt)=η(x, ci, t)+
2aciρvbci

c2
s

(13)

Here, aci are weight factors taking into account the dif-
ferent lengths of the lattice vectors.

While the center of mass of the sphere moves, new lat-
tice nodes become part of the particle, while others be-
come fluid. Therefore particles do not perform a continu-
ous movement but rather small jumps. After each jump
the fluid is out of equilibrium but relaxes very quickly
back to the quasi static state. In order to average out
statistical fluctuations imposed by the discrete movement
of the particle, one has to average the recorded force over
several time steps. We choose to average over intervals
of 999 steps.

If not stated otherwise the simulation parameters are
v = 0.001 µ = 0.1 and the radius is varied between R = 4
and R = 16. The approached boundary is a plain no-
slip wall which is realized by a mid grid bounce back
boundary condition.

Along the open sides periodic boundary conditions are
applied so that the sphere can interact with its mirror
leading to the to be avoided finite size effects. As noted
in Fig. 2 the length of the system in x and y direction is
n. The size of the simulation volume is varied to explore
the influence of finite size effects.

4. RESULTS

In this contribution we vary the system length n and
the radius of the sphere R. A major contribution to the
finite size effects is the interaction of the sphere with its
periodic image. Therefore a larger system length should
reduce this effect dramatically. However when the hydro-
dynamic influence of the wall becomes larger finite size
effects become smaller. This can be explained by the
fact that the friction at the boundary suppresses the hy-
drodynamic interaction of the particle with its periodic
image. Instead the dominant interaction is between the
particle and the surface. It is mandatory for a better un-
derstanding of the system to learn how these finite size
effects can be described, quantified, and controlled.

First we study a system with a constant sphere radius
R = 16 and varying system length n. In Fig. 3 the drag
force F normalized by the Stokes force FSt = 6πµvR and
the inversed normalized drag force are plotted. In the
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FIG. 3: Normalized lubrication force F

FSt
and the inverted

normalized lubrication force FSt

F
versus the normalized dis-

tance d/R for different system lengths n. The radius of the
sphere is fixed at R = 16. The deviation for n = 192 is signif-
icant at larger radii, but can be neglected for small distances.
For n = 512 there is nearly no deviation from the exact solu-
tion of Maude (3). In addition the deviation of the first order
approximation (4) is below 1% for d > R/2.

inversed case the deviations for the larger distance d can
be seen more clearly. Fig. 3 shows that the deviation for
the small system n = 192 close to the wall is very small,
however the force does not converge to the Stokes force
FSt. Here effects similar to the one reported by Hasimoto
(7) appear: for a smaller separation d the force decays
with 1

d
while it approaches a constant value for large d.

The constant values should be given by the Stokes force
FSt, but can be larger due to the interaction with the
periodic image. In the 1/F plots it can be seen that
the deviation is not a constant offset or factor but rather
starts at a critical value of d/R. From there the force
quickly starts to approach a constant value.

In Fig. 4 the relative error E = F−FMaude

F
is plotted

for different system sizes n and a constant radius R. The
error for the largest system n = 512 in Fig 4 is constantly
below 1% for larger distances. At distances less than
d < R/2 the error rises due to the insufficient resolution

of the fluid filled volume between the surface of the sphere
and the boundary. Another possible effect is the fact that
the sphere rather jumps over the lattice than to perform
a continuous movement. Additionally it can be seen that
for distances less than d = R the error for the different
system sizes n collapses. The reason is that for smaller
distances the lubrication effect which is independent of
the system length n dominates the free flow and therefore
suppresses finite size effects due to the periodic image.
The deviation that can be seen in the plot at the large d
has its origin in the transient. Since the fluid is in rest
at the start of the simulation and it takes some time to
reach a steady state this can only be avoided by longer
simulations. An interesting fact to point out is that the
deviation between the Maude solution and the first order
approximation is below 1%.
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FIG. 4: Symbols denote the relative error E = F−FMaude

FMaude
in %

versus the normalized distance d/R for different system sizes
n. The line shows the first order approximation. As expected
the error close to the wall deviates due to the discretization
of the small distance d. The error becomes larger for large d
due to the influence of the periodic image.

Since the sphere is discretized on the lattice it is im-
portant to understand if this discretization has an effect
on the lubrication force. Therefore we perform simula-
tions with a radius of R = 4, 8, 16 at a constant ratio
R/n = 1/32 between the radius and the system length.
Fig. 5 depicts the normalized lubrication force F

FSt
and

the inverted normalized lubrication force FSt

F
versus the

normalized distance d/R for different radii R. It can be
seen that the discretization of the sphere has little influ-
ence on the measured force.

Fig. 6 shows the relative error E for different radii. For
all radii the finite size effects due to the periodic image
are negligible since the ratio between R/n is sufficiently
small. The deviation from the Maude theory for sep-
arations d > R are below 2% for all radii. Therefore,
one has to concentrate on the small distances d where
significant deviations appear. In our case this distance
is better resolved for larger R (note that in the plot the
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FIG. 5: Normalized lubrication force F

FSt
and the inverted

normalized lubrication force FSt
F

versus the normalized dis-
tance d/R for different radii R but constant ratio R/n = 1/32

normalized distance is shown). In addition the resolution
of the sphere is better for larger R. For R = 4 the devia-
tion is more noisy and here the discretization really has
an effect on the drag force F. Additionally there should
be three or more lattice sites between the surface of the
sphere and the boundary. If that is not the case the hy-
drodynamic interaction is not resolved sufficiently. If the
distance between surface and sphere is smaller than half
a lattice spacing the two surfaces merge and the method
fails. Hence it it advantageous to choose a large radius
in order to be able to reduce the relative distance to the
boundary (in units of the sphere radius) or to resolve a
possible surface structure.

For R ≥ 8 the deviations have a regular shape and fol-
low the deviation for the first order approximation. The
trend to follow the first order approximation is stronger
for R = 16 but here the noise is reduced further and all
errors seem to be systematic. Therefore the deviation has
to be described as a systematic error of the method that
has its origin in the “jumping-standing” like movement
of the sphere. The first order approximation is a quasi
static approximation and represents the actual simulated
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FIG. 6: Relative error E = F−FMaude
FMaude

in % versus the nor-

malized distance d/R for different radii n at a constant ratio
R/n = 4

128
(symbols). As expected the error close to the wall

deviates, ue to the discretization of the small distance d. For
R = 4 the deviation fluctuates due to the low resolution but
for R = 16 it follows the first order approximation. The line
corresponds to the first order approximation.

movement more correctly than the theory of Maude.
It should be noted that the finite size effects for R = 16

and R/n = 1/16 due to the interaction with the periodic
image are much more significant than the discretization
effect. By choosing a large simulation volume, a radius
R > 8 and focusing on the force for separations d <
2R one can reduce those effects to a deviation of the
measured force from the theoretically predicted value of
less than 1%.

5. CONCLUSION

Lattice Boltzmann simulations of a sphere immersed
into a Newtonian liquid approaching a solid no slip
boundary have been presented. We have shown that the
solution of Maude (3) can be reproduced and demon-
strated that at a ratio R/n = 1/32 finite size effects are
below 2% and can be neglected near the boundary. We
have also demonstrated that a sphere radius of R = 8
provides a sufficient resolution. Based on this calibration
it is now possible to investigate the influence of differ-
ent surface properties such as roughness and slip on the
lubrication force on AFM based slip measurements.
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