284 research outputs found

    Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP)

    Get PDF
    Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group’s discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public

    Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning.

    Get PDF
    The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation. Images were captured for the cytokinesis-block micronucleus (CBMN) assay across three laboratories using methyl methanesulphonate (1.25-5.0 Όg/mL) and/or carbendazim (0.8-1.6 Όg/mL) exposures to TK6 cells. Human-scored image sets were assembled and used to train and test the classification abilities of the "DeepFlow" neural network in both intra- and inter-laboratory contexts. Harnessing image diversity across laboratories yielded a network able to score unseen data from an entirely new laboratory without any user configuration. Image classification accuracies of 98%, 95%, 82% and 85% were achieved for 'mononucleates', 'binucleates', 'mononucleates with MN' and 'binucleates with MN', respectively. Successful classifications of 'trinucleates' (90%) and 'tetranucleates' (88%) in addition to 'other or unscorable' phenotypes (96%) were also achieved. Attempts to classify extremely rare, tri- and tetranucleated cells with micronuclei into their own categories were less successful (≀ 57%). Benchmark dose analyses of human or automatically scored micronucleus frequency data yielded quantitation of the same equipotent concentration regardless of scoring method. We conclude that this automated approach offers significant potential to broaden the practical utility of the CBMN method across industry, research and clinical domains. We share our strategy using openly-accessible frameworks

    The ENCODE Project at UC Santa Cruz

    Get PDF
    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website () is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples

    Improving Translational Relevance in Preclinical Psychopharmacology (iTRIPP)

    Get PDF
    Animal models are important in preclinical psychopharmacology to study mechanisms and potential treatments for psychiatric disorders. A working group of 14 volunteers, comprising an international team of researchers from academia and industry, convened in 2021 to discuss how to improve the translational relevance and interpretation of findings from animal models that are used in preclinical psychopharmacology. The following paper distils the outcomes of the working group’s discussions into 10 key considerations for the planning and reporting of behavioural studies in animal models relevant to psychiatric disorders. These form the iTRIPP guidelines (Improving Translational Relevance In Preclinical Psychopharmacology). These guidelines reflect the key considerations that the group thinks will likely have substantial impact in terms of improving the translational relevance of behavioural studies in animal models that are used to study psychiatric disorders and their treatment. They are relevant to the research community when drafting and reviewing manuscripts, presentations and grant applications. The iTRIPP guidelines are intended to complement general recommendations for planning and reporting animal studies that have been published elsewhere, by enabling researchers to fully consider the most appropriate animal model for the research purpose and to interpret their findings appropriately. This in turn will increase the clinical benefit of such research and is therefore important not only for the scientific community but also for patients and the lay public

    The Consensus Coding Sequence (Ccds) Project: Identifying a Common Protein-Coding Gene Set for the Human and Mouse Genomes

    Get PDF
    Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.National Human Genome Research Institute (U.S.) (Grant number 1U54HG004555-01)Wellcome Trust (London, England) (Grant number WT062023)Wellcome Trust (London, England) (Grant number WT077198

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Predicting At-Risk Opioid Use Three Months After Ed Visit for Trauma: Results from the AURORA Study

    Get PDF
    OBJECTIVE: Whether short-term, low-potency opioid prescriptions for acute pain lead to future at-risk opioid use remains controversial and inadequately characterized. Our objective was to measure the association between emergency department (ED) opioid analgesic exposure after a physical, trauma-related event and subsequent opioid use. We hypothesized ED opioid analgesic exposure is associated with subsequent at-risk opioid use. METHODS: Participants were enrolled in AURORA, a prospective cohort study of adult patients in 29 U.S., urban EDs receiving care for a traumatic event. Exclusion criteria were hospital admission, persons reporting any non-medical opioid use (e.g., opioids without prescription or taking more than prescribed for euphoria) in the 30 days before enrollment, and missing or incomplete data regarding opioid exposure or pain. We used multivariable logistic regression to assess the relationship between ED opioid exposure and at-risk opioid use, defined as any self-reported non-medical opioid use after initial ED encounter or prescription opioid use at 3-months. RESULTS: Of 1441 subjects completing 3-month follow-up, 872 participants were included for analysis. At-risk opioid use occurred within 3 months in 33/620 (5.3%, CI: 3.7,7.4) participants without ED opioid analgesic exposure; 4/16 (25.0%, CI: 8.3, 52.6) with ED opioid prescription only; 17/146 (11.6%, CI: 7.1, 18.3) with ED opioid administration only; 12/90 (13.3%, CI: 7.4, 22.5) with both. Controlling for clinical factors, adjusted odds ratios (aORs) for at-risk opioid use after ED opioid exposure were: ED prescription only: 4.9 (95% CI 1.4, 17.4); ED administration for analgesia only: 2.0 (CI 1.0, 3.8); both: 2.8 (CI 1.2, 6.5). CONCLUSIONS: ED opioids were associated with subsequent at-risk opioid use within three months in a geographically diverse cohort of adult trauma patients. This supports need for prospective studies focused on the long-term consequences of ED opioid analgesic exposure to estimate individual risk and guide therapeutic decision-making

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis.

    Get PDF
    BackgroundNeurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome.MethodsWe conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models.ResultsWe included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region.InterpretationNeurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission
    • 

    corecore