7 research outputs found

    Effect of silage botanical composition on ruminal biohydrogenation and transfer of fatty acids to milk in dairy cows

    No full text
    Ruminal biohydrogenation and transfer of fatty acids (FA) to milk were determined for 4 silages with different botanical compositions using 4 multiparous Norwegian Red dairy cows [(mean ± SD) 118 ± 40.9 d in milk, 22.5 ± 2.72 kg of milk/d, 631 ± 3.3 kg of body weight, 3.3 ± 0.40 points on body condition score at the start of the experiment] fitted with rumen cannulas. Treatments consisted of 4 experimental silages: a mix of the first and third cut of organically managed short-term grassland with timothy (Phleum pratense L.) and red clover (Trifolium pratense L.; 2 yr old; ORG-SG); organically managed long-term grassland with a high proportion of unsown species (6 yr old; ORG-LG); conventionally managed ley with perennial ryegrass (Lolium perenne L.; CON-PR); and conventionally managed ley with timothy (CON-TI). The herbages were cut, wilted, and preserved with additive in round bales and fed at 0.90 of ad libitum intake. A barley (Hordeum vulgare L.) concentrate constituted 300 g/kg of dry matter of the total feed offered. A Latin square design (4 × 4) with 3-wk periods and the last week in each period used for sampling was implemented. Omasal flows of FA were measured using Yb acetate, Cr-EDTA, and the indigestible neutral detergent fiber fraction as indigestible markers. The composition of FA was analyzed in feed, omasal digesta, and milk. Compared with ORG-LG, ORG-SG had a higher herbage proportion of red clover (0.36 vs. 0.01) and lower proportions of timothy (0.42 vs. 0.18), smooth meadowgrass (Poa pratensis L.), meadow fescue (Festuca pratensis Huds.), white clover (Trifolium repens L.), dandelion (Taraxacum spp.), and creeping buttercup (Ranunculus repens L.). The silages were well preserved. The concentration of neutral detergent fiber was higher and the concentration of Kjeldahl-N was lower for CON-TI than for the other silages. Silage type had no effect on dry matter intake, but milk yield was lower for CON-TI than for the other silages. Apparent biohydrogenation of C18:3n-3 was lower for ORG-SG (932 g/kg) than for ORG-LG (956 g/kg), CON-PR (959 g/kg), and CON-TI (958 g/kg). Compared with the grass-based silages, ORG-SG and ORG-LG resulted in higher omasal flows of C18:1 trans FA and higher milk fat proportions of C18:1 trans FA and C18:2 cis-9,trans-11. Apparent recovery of C18:3n-3 in milk was higher for ORG-SG (61 g/kg) than for ORG-LG (33 g/kg), CON-PR (34 g/kg), and CON-TI (38 g/kg), and milk fat proportion of C18:3n-3 was higher for ORG-SG than for CON-TI. Milk fat proportions of C16:0 were lower for ORG-SG and ORG-LG compared with those for CON-PR and CON-TI. It was concluded that high proportions of red clover and other dicotyledons in the silages affected ruminal biohydrogenation and increased milk fat proportions of beneficial FA

    Methane emissions, feed intake and total tract digestibility in lambs fed diets differing in fat content and fibre digestibility

    No full text
    This study determined enteric methane (CH4) emissions, intake, and apparent total tract digestibility of diets varying in fibre digestibility and fat content. A Latin square design with two levels of fat [2.0% and 6.0% dry matter (DM); low and high] and two levels of fibre digestibility [low fibre digestibility (LFbD) or high fibre digestibility (HFbD)] was used. Higher dry matter intake (DMI) was observed (P < 0.01) for LFbD versus HFbD diets (2.56 vs. 2.14 kg d−1, respectively), with no effect of fat. Fibre, DM, and organic matter digestibility were higher (P < 0.01) for HFbD than LFbD diets. Increasing fat did not affect intake or digestibility of DM or dietary constituents but there was a fibre digestibility × fat content interaction (P < 0.01) for fat digestibility. There was also a fat content × fibre digestibility interaction (P < 0.05) for CH4 (g kg−1 DMI, organic matter intake, neutral detergent fibre intake, and percent gross energy intake), with emissions being higher when fat was added to the HFbD than the LFbD diet. The CH4 emissions per kilogram of neutral detergent fibre (NDF) digested were higher (P < 0.01) for the HFbD than the LFbD diet. Methane emissions were increased by the HFbD diet, but inclusion of fat had a differential impact on CH4 emissions as a proportion of DMI or NDF intake in diets differing in fibre digestibility.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages

    Get PDF
    The objective of this research was to determine the chemical composition and ruminal degradation of the crude protein (CP), total and individual amino acids of leaves from tropical forages: perennial soybean (Neonotonia wightii), cassava (Manihot esculenta), leucaena (Leucaena leucocephala) and ramie (Boehmeria nivea), and to estimate the intestinal digestibility of the rumen undegradable protein (RUDP) and individual amino acids of leaves from the tropical forages above cited, but including pigeon pea (Cajanus cajan). Three nonlactating Holstein cows were used to determine the in situ ruminal degradability of protein and amino acids from leaves (6, 18 and 48 hours of ruminal incubation). For determination of the intestinal digestibility of RUDP, the residue from ruminal incubation of the materials was used for 18 hours. A larger concentration of total amino acids for ramie and smaller for perennial soybean were observed; however, they were very similar in leucaena and cassava. Leucine was the essential amino acid of greater concentration, with the exception of cassava, which exhibited a leucine concentration 40.45% smaller. Ramie showed 14.35 and 22.31% more lysine and methionine, respectively. The intestinal digestibility of RUDP varied from 23.56; 47.87; 23.48; 25.69 and 10.86% for leucaena, perennial soybean, cassava, ramie and pigeon pea, respectively. The individual amino acids of tropical forage disappeared in different extensions in the rumen. For the correct evaluation of those forages, one should consider their composition of amino acids, degradations and intestinal digestibility, once the amino acid composition of the forage does not reflect the amino acid profiles that arrived in the small intestine. Differences between the degradation curves of CP and amino acids indicate that degradation of amino acids cannot be estimated through the degradation curve of CP, and that amino acids are not degraded in a similar degradation profile
    corecore