585 research outputs found

    Localized f electrons in CexLa1-xRhIn5: dHvA Measurements

    Full text link
    Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that the Ce 4f electrons remain localized for all x, with the mass enhancement and progressive loss of one spin from the de Haas-van Alphen signal resulting from spin fluctuation effects. This behavior may be typical of antiferromagnetic heavy fermion compounds, inspite of the fact that the 4f electron localization in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR

    Orbital quantization in the high magnetic field state of a charge-density-wave system

    Full text link
    A superposition of the Pauli and orbital coupling of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wavevector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 under a strongly tilted magnetic field.Comment: 14 pages including 4 figure

    Adaptive Plasticity in Wild Field Cricket's Acoustic Signaling

    Get PDF
    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience

    Competition between Pauli and orbital effects in a charge-density wave system

    Full text link
    We present angular dependent magneto-transport and magnetization measurements on alpha-(ET)2MHg(SCN)4 compounds at high magnetic fields and low temperatures. We find that the low temperature ground state undergoes two subsequent field-induced density-wave type phase transitions above a critical angle of the magnetic field with respect to the crystallographic axes. This new phase diagram may be qualitatively described assuming a charge density wave ground state which undergoes field-induced transitions due to the interplay of Pauli and orbital effects.Comment: 11 pages, 4 figures, shown at the APS march meeting 2000, appears in the Ph.D. thesis of J. S. Qualls (Florida State University, 1999), and submitted to PR

    Simulating Cosmic Microwave Background maps in multi-connected spaces

    Full text link
    This article describes the computation of cosmic microwave background anisotropies in a universe with multi-connected spatial sections and focuses on the implementation of the topology in standard CMB computer codes. The key ingredient is the computation of the eigenmodes of the Laplacian with boundary conditions compatible with multi-connected space topology. The correlators of the coefficients of the decomposition of the temperature fluctuation in spherical harmonics are computed and examples are given for spatially flat spaces and one family of spherical spaces, namely the lens spaces. Under the hypothesis of Gaussian initial conditions, these correlators encode all the topological information of the CMB and suffice to simulate CMB maps.Comment: 33 pages, 55 figures, submitted to PRD. Higher resolution figures available on deman

    Magnetogenesis and the dynamics of internal dimensions

    Full text link
    The dynamical evolution of internal space-like dimensions breaks the invariance of the Maxwell's equations under Weyl rescaling of the (conformally flat) four-dimensional metric. Depending upon the number and upon the dynamics of internal dimensions large scale magnetic fields can be created. The requirements coming from magnetogenesis together with the other cosmological constraints are examined under the assumption that the internal dimensions either grow or shrink (in conformal time) prior to a radiation dominated epoch. If the internal dimensions are growing the magnitude of the generated magnetic fields can seed the galactic dynamo mechanism.Comment: 27 in RevTex style, four figure

    Entropy and universality of Cardy-Verlinde formula in dark energy universe

    Full text link
    We study the entropy of a FRW universe filled with dark energy (cosmological constant, quintessence or phantom). For general or time-dependent equation of state p=wρp=w\rho the entropy is expressed in terms of energy, Casimir energy, and ww. The correspondent expression reminds one about 2d CFT entropy only for conformal matter. At the same time, the cosmological Cardy-Verlinde formula relating three typical FRW universe entropies remains to be universal for any type of matter. The same conclusions hold in modified gravity which represents gravitational alternative for dark energy and which contains terms growing at low curvature. It is interesting that BHs in modified gravity are more entropic than in Einstein gravity. Finally, some hydrodynamical examples testing new shear viscosity bound, which is expected to be the consequence of the holographic entropy bound, are presented for the early universe in the plasma era and for the Kasner metric. It seems that the Kasner metric provides a counterexample to the new shear viscosity bound.Comment: LaTeX file, 39 pages, references are adde

    Superior outcomes of nodal metastases compared to visceral sites in oligometastatic colorectal cancer treated with stereotactic ablative radiotherapy

    Get PDF
    Background: Stereotactic ablative radiotherapy (SBRT) is a radical option for oligometastatic colorectal cancer (CRC) patients, but most data relate to visceral metastases. Methods: A prospective, multi-centre database of CRC patients treated with SBRT was interrogated. Inclusion criteria were ECOG PS 0–2, ≤3 sites of disease, a disease free interval of >6 months unless synchronous liver metastases. Primary endpoints were local control (LC), progression free survival (PFS) and overall survival (OS). Results: 163 patients (172 metastases) were analysed. The median FU was 16 months (IQR 12.2–22.85). The LC at 1 year was 83.8% (CI 76.4%−91.9%) with a PFS of 55% (CI 47%−64.7%) respectively. LC at 1 year was 90% (CI 83%−99%) for nodal metastases (NM), 75% (63%−90%) for visceral metastases (VM). NM had improved median PFS (9 vs 19 months) [HR 0.6, CI 0.38–0.94, p = 0.032] and median OS (32 months vs not reached) [HR 0.28, CI 0.18–0.7, p = 0.0062] than VM, regardless of whether the NM were located inside or outside the pelvis. On multivariate analysis, NM and ECOG PS 0 were significant good prognostic factors. An exploratory analysis suggests KRAS WT is also a good prognostic factor. Conclusion: Nodal site is an important prognostic determinant of SBRT that should incorporated into patient selection. We hypothesise this may have an immunoediting basis

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore