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Abstract

Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets,
rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active
individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit
plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified
the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus.
Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more
attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more
often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly
higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis
chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter
interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male
variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size
explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings
suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual
context they experience.

Citation: Bertram SM, Harrison SJ, Thomson IR, Fitzsimmons LP (2013) Adaptive Plasticity in Wild Field Cricket’s Acoustic Signaling. PLoS ONE 8(7): e69247.
doi:10.1371/journal.pone.0069247

Editor: Nicolas Chaline, Université Paris 13, France
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Introduction

Organisms exhibit phenotypic plasticity when individual geno-

types produce different phenotypes in different environments [1–

3]. Phenotypic plasticity is adaptive when phenotypes are matched

to the environment and result in elevated fitness [1,4–7]. Adaptive

phenotypic plasticity can evolve provided that genetic variation in

phenotypic traits is sufficient, plasticity is not constrained by

pleiotropy or epistasis, and costs remain relatively low [6,8–14].

Adaptive phenotypic plasticity is most likely to evolve when

variable environments are predictable [15].

Fitness plays a key role in determining costs and benefits of

phenotypic plasticity, making sexually selected traits ideal for use

in plasticity studies [14] because males with the most exaggerated

sexual traits usually have the highest fitness [16,17]. Sexual traits

also typically reflect condition [18] since only individuals in top

condition should be able to bear the costs of advertising with the

most exaggerated traits [19]. Sexually selected traits should,

therefore, act as phenotypically plastic gauges of an individual’s

condition [18,20–23]. Several studies have revealed that sexually

selected traits exhibit adaptive phenotypic plasticity. Adaptively

plastic sexual traits can be fixed and irreversible at maturity or can

be highly flexible and changeable throughout adulthood, changing

as different environments are encountered [18,24,25]. For

example, there are two male morphs in dung beetles (Onthophagus

taurus), large males with elaborate weaponry that guard their

mates, and small males with reduced weaponry that sneak

copulate [26]. The social environment in which mothers are

reared influences horn length in mate-guarding sons, although not

in sneak copulating sons. Mothers reared with conspecifics

produce sons with longer horns, while mothers reared in isolation

produce sons with shorter horns [27]. In contrast, in the two-

spotted field cricket (Gryllus bimaculatus), mating strategies are

flexible. Males in the presence of rivals court females sooner, at

higher rates, and transfer larger spermatophores than they do in

control non-rival environments [28]. These examples reveal that

changes in the socio-sexual environment can result in adaptively

plastic mating strategies (reviewed by [29]).

Here we explore whether rhythmic changes in the socio-sexual

environment result in adaptively plastic mate attraction behaviors

in North American spring (G. veletis) and fall (G. pennsylvanicus) field

crickets. Male crickets signal acoustically to attract females using

long distance mate attraction signals (chirps). They raise their

forewings and rub them together; each closing stroke produces a

pulse of sound, and males concatenate pulses into chirps [30].
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Much is known about cricket long distance mate attraction

signaling and mating behavior at the population level. Cricket

density often changes in a rhythmic pattern as a result of

predictable fluctuations in the biotic (predator and parasite

density) and abiotic (light and temperature levels) environment

(summarized in Table S1). For example, mate signaling in male

Texas field crickets, G. texensis, aligns positively with female mating

activity, but negatively with parasitoid tachinid fly (Ormia ochracea)

host-searching activity [31,32]. Given that the density of

conspecific rivals and potential mates determines the intensity of

sexual selection [33–38], the fitness of any given phenotype should

also exhibit temporal rhythms that align with population rhythms.

Males may therefore exhibit adaptive phenotypic plasticity in their

mate attraction signals to match the temporally fluctuating

competitive context they encounter [39–41].

Tantalizing evidence suggests that male crickets exhibit socio-

sexual dependent differences in their signaling plasticity through-

out the day, and that condition limits this plasticity. Wild G.

campestris females exhibit natural rhythmic fluctuations in their

mating behavior, with most mating occurring in the afternoon and

early evening (12:00–21:00 h) and little occurring in the night and

morning (21:00–12:00; [37]). Jacot et al. [37] provided supple-

mental food to wild G. campestris and revealed that better fed males

align their signaling activity with mate availability. During times

when female mate-searching activity was naturally reduced in the

wild, the signaling effort of food-supplemented males did not differ

from that of control males. However, during times when female

mate-searching activity was naturally elevated in the wild, the

signaling effort of food-supplemented males was significantly

elevated compared to unfed conspecifics (controls). Food-supple-

mented males exhibit plastic signaling behaviors in the wild,

optimizing their signaling effort to maximize their potential for

mating success [37]. This phenotypic plasticity is likely adaptive, as

female G. campestris preferentially mate with males that signal most

often [42].

Here we quantify variation in field cricket mate signaling

plasticity at the species and individual level. At the species level,

we examine the temporal signaling rhythms of two cricket

species. We captured spring and fall field crickets as adults in

their natural environments and asked whether, under controlled

abiotic and biotic conditions, males exhibited the same rhythmic

signaling patterns as previously described in the wild. We

focused on spring and fall field crickets for two reasons. First,

the signaling and mating diel rhythms of wild G. pennsylvanicus

and G. veletis have been described. Gryllus pennsylvanicus males

have high mate signaling activity throughout the night that

peaks just before sunrise; signaling activity is much lower during

the day [32]. Male G. pennsylvanicus signaling diel rhythms are

synchronized with female G. pennsylvanicus mating activity diel

rhythms, with most mating (88%) occurring at night and around

sunrise in the wild (highest activity: 22:00–09:59; lowest activity:

10:00–21:59; [32]). Conversely, in G. veletis the highest signaling

activity starts just before sunrise and continues for several hours

following sunrise; signaling activity is much lower in the late

afternoon and early evening but starts to gradually increase

following sunset. Male G. veletis signaling diel rhythms are

synchronized with female G. veletis mating activity diel rhythms,

with most mating (81%) occurring during the day, peaking

around sunrise and for several hours following it in the wild

(highest activity: 04:00–15:59; lowest activity: 16:00–03:59; [32]).

Second, the geographic distributions and mating seasons of G.

veletis and G. pennsylvanicus overlap spatially and temporally. In

Ontario, Canada, temporal overlap in breeding seasons occurs

as G. veletis breeds from May to early July, while G. pennsylvanicus

breeds from June through October [32]. Spatial overlap also

occurs, with both species preferring grassy fields and rocky

crevices (SMB, SJH, IRT, and LPF personal observations).

Hybridization is lethal between G. pennsylvanicus and G. veletis

[43]. The temporal (within a day) differences in signaling

activity described above have the potential to act as a

behavioral barrier, preventing the potential mating that could

occur when breeding seasons overlap. We compare and contrast

signaling effort of field-captured G. pennsylvanicus and G. veletis

monitored in the laboratory to reports of their signaling

behavior in the wild.

We also provide the first species level investigation into how the

fine scale structure of long distance mate attraction signals

(Figure 1) changes over the course of the day. Plasticity in signal

structure may be important because small differences in sound

structure can influence female mating decisions. For example,

females tend to prefer males that produce loud chirps (G. lineaticeps:

[44]; G. bimaculatus: [45]) at low carrier frequencies (G. bimaculatus:

[46]; G. campestris: [47,48]; note G. pennsylvanicus prefer 5 kHz over

4 kHz signals [49]). Female crickets also prefer either average or

elevated number of pulses per chirp (G. campestris: [46,50]; G.

texensis: [51]), species specific pulse periods (e.g. G. campestris: 40–

60 msec [52]; G. bimaculatus: 40–60 msec [53]; G. pennsylvanicus:

35–60 msec [49,54], G. veletis: 40–70 msec [54]), short chirp

intervals (G. integer: [51]), high chirp rates (G. lineaticeps: [55]), long

chirp durations (G. lineaticeps: [44]), and long calling bouts (G.

integer: [56]). We therefore examine how G. pennsylvanicus and G.

veletis alter the fine scale components of their signals through the

course of the day.

At the individual level, we quantify phenotypic plasticity in mate

attraction behavior. Given that the density of competitive rivals

and female mates exhibit diel rhythms [32], the potential fitness

payoffs of any given phenotype should also exhibit diel rhythms

that align with species level rhythms. We therefore asked whether

individual males exhibit phenotypic plasticity in their mate

attraction signals that match the temporally fluctuating compet-

itive and mating context they experience. We examined plasticity

by comparing signaling behavior during two daily time periods:

when mating activity is typically high in the wild versus when it is

typically low. Higher mating activity means higher density of

conspecific rival males and potential mates. We also examined

whether body size (pronotum area) or residual mass (on body size)

influenced signaling plasticity. We define condition as variation in

resource acquisition and assimilation ability [57], which may result

from differences in resource availability in the environment and/

or individual physiological or genetic differences in the ability to

locate, assimilate and utilize resources. Wild-caught crickets that

naturally vary in body size and residual mass should allow us to

explore the effect of natural variation in resource abundance and

acquisition ability experienced during development in the wild.

Bretman et al. [29] hypothesized males in high and low condition

should exhibit minimal plasticity, whereas males in intermediate

condition should display high plasticity, because intermediate

condition males should have the stores available to amplify their

signals when conditions are best but not enough stores to

constantly maintain amplified signals. We therefore followed

Bretman et al. [29] and predicted that males in average condition

should display more adaptive signaling plasticity than males in

high or low condition. Our correlational study exploring variation

in plasticity is the first step towards determining whether crickets

exhibit genotype by environment interactions in their signaling

behaviors (eg. [58–60]).

Field Cricket Signaling Plasticity
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Methods

Ethics Statement
Our study was conducted in accordance with the guidelines of

the Canadian Council on Animal Care. We thank Art Weis and

Koffler Scientific Reserve (Jokers Hill - University of Toronto) for

allowing us to collect crickets on their property and for hosting our

laboratory.

Collection and Husbandry
We captured wild adult Gryllus veletis in Mississippi Mills, ON in

May and June 2010, and G. pennsylvanicus at the Koffler Scientific

Reserve (Jokers Hill - University of Toronto) near King City, ON

in August 2010 (no collecting permits required). Crickets were

housed individually in 520 mL clear plastic containers with a

screened lid and crumpled unbleached paper towel as shelter.

They were provided with unlimited water and food (powdered

Harlan Teklad Inc. Rodent diet no. 8604 M, Harlan Laborato-

ries, Madison, WI, USA). Crickets were transferred to Carleton

University where they were housed in a temperature and

photoperiod controlled greenhouse at 2862uC on a 14:10 h

light:dark cycle.

Acoustic Recording
We recorded the long distance mate attraction signals of wild-

caught adult male G. veletis and G. pennsylvanicus by placing each

male’s container in an electronic acoustic recording system

(EARS-II; designed and developed for our laboratory by Cam-

bridge Electronic Design, Cambridge, UK). Gryllus veletis males

were caught locally so their acoustic mate attraction signals could

be recorded in the EARS-II starting the morning immediately

following capture. Following capture, G. pennsylvanicus had a 2–6

day delay before they could be recorded, resulting from our having

to complete all field collections prior to transporting the crickets

back to Carleton University. All males had their acoustic mate

attraction signals recorded for 2–4 days in the EARS-II. We

Figure 1. Waveforms of long-distance mate attraction signals of one G. pennsylvanicus and one G. veletis male. Figures show typical
long-distance mate attraction signal for each species and how signaling typically changes during time periods indicative of low (A & B) and high (C &
D) mating activity in the wild. Signal fine-scale properties are indicated as follows: ChD = chirp duration; IChD = interchirp duration; PPCh = pulses per
chirp; PD = pulse duration; IPD = interpulse duration; and PP = pulse period, which combines PD and IPD.
doi:10.1371/journal.pone.0069247.g001
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recorded a total of 63 G. pennsylvanicus and 32 G. veletis. Of these,

almost all males signaled for mates, with the exception of 1 G.

pennsylvanicus and 3 G. veletis.

The EARS-II consists of three units, each capable of recording

the acoustic mate attraction signals of 32 males in real time (96

males in total; refer to [61] for detailed descriptions). Microphones

(electret condenser type KECG2742PBL-A; Kingstate Electronics,

Tamshui, Taipei, Taiwan) are positioned next to LED lights which

are set to a 14:10 h light:dark cycle. Each microphone and light

combination is held 6.6-cm above the top of the male’s container.

Males are separated from their neighbors by acoustically isolated

enclosures (7-cm thick Styrofoam box lined with 3.5-cm thick

acoustic foam) that contain both microphone and LED light. This

design minimizes the likelihood of individuals detecting their

neighbors’ signals. The Styrofoam boxes are configured in a 464

array on six shelving units within our greenhouse.

We recorded the long distance mate attraction calls of each

male for 2–4 days. Sounds were recorded at 31.25 kHz. The

microphones are continuously monitored and analyzed using

CricketSong software (designed by Cambridge Electronic Design

Ltd., Cambridge, UK; for details see [61]). The EARS II

CricketSong software automatically filters out background noise

and auto-adjusts the amplitude threshold for quiet or loud

individuals. CricketSong software creates an acoustic file for each

male for every hour he spends in the EARS II unit. We analyzed

each acoustic file using Spike2 v6.12 (Cambridge Electronic

Design, Cambridge, UK) to produce an hourly summary of the

nine signaling parameters quantified: signaling time (# min in the

hour), pulse duration (ms), interpulse duration (ms), pulse period

(ms), pulses per chirp, chirp duration (ms), interchirp duration

(ms), amplitude (dB), and carrier frequency (Hz) (Figure 1). Note,

signaling time represents the total amount of time the individual

spent signaling in that hour, whereas the other eight signaling

parameters are represented by mean parameter values for that

hour. We included pulse period, even though it is not a separate

trait but instead combines pulse duration and interpulse duration,

because females are known to prefer species specific pulse periods

(G. pennsylvanicus: 35–60 msec [49,54], G. veletis: 40–70 msec [54]).

We included pulse duration and interpulse duration so that we

could know what component of the signal males were changing to

change pulse period.

Body Size and Weight Measurements
Following acoustic recording we photographed live crickets in a

dorsal position using a Zeiss Discovery V12 stereo dissecting

microscope (AxioVision v4.8, Carl Zeiss; magnification: 56,

resolution: ,1.60 mm). We used these photographs to quantify

each male’s pronotum area (mm2). Males were weighed using a

Denver Instruments balance (Pinnacle Series model PI-314;

precision 60.1 mg). Males were then added to the stock

population to mate with collected females and build a laboratory

culture.

Statistical Methods
We performed statistical analyses in JMP v10.0.0 (SAS Institute

Incorporated, Cary, NC, USA). Residual mass was quantified

using a logistic regression of mass on pronotum area. Males were

categorized as being in high, average, or low condition depending

on whether they fell within the upper, middle, or bottom third of

rank ordered residual mass scores. Similarly, males were

categorized as high, average, or low condition depending on their

rank ordered body size (pronotum area) scores.

We ensured that all parameters were normally distributed using

Shapiro-Wilk Goodness of Fit tests. All parameters were normally

distributed except signaling time and inter-chirp duration; we Box-

Cox transformed these two parameters for both species. To

quantify species-level differences in signaling behavior we used

ANOVA. We compared nine different signaling parameters, and

we corrected for multiple tests using Benjamini and Yekutieli’s

[62] false discovery rate (FDRB-Y) method; our FDRB-Y corrected

alpha was P,0.0177. To visualize temporal signaling rhythms at

the species level we quantified signaling behavior across 24 hours

using six different time periods (period 1 = 00:00–03:59;

2 = 04:00–07:59; 3 = 08:00–11:59; 4 = 12:00–15:59; 5 = 16:00–

19:59; 6 = 20:00–23:59). We visually compared our temporal

rhythm plots that quantified wild-caught crickets signaling in the

laboratory to previously published temporal rhythm plots that

quantified wild-crickets signaling over a 24-hour period [32].

To investigate phenotypic plasticity in signaling behavior at the

individual level we employed repeated measures general linear

mixed models (GLMM) using restricted maximum likelihood

(REML). We used the restricted maximum likelihood approach

because we had missing cells (some males did not signal in a period

on some days). The models included individual as a random effect,

two time periods (high and low mating activity, see below for

details) as a fixed effect, male condition (body size and residual

mass) as fixed effects, and mating activity * residual mass and

mating activity * body size interaction terms. Each male’s signals

were repeatedly measured across the two mating activity levels

previously defined by French and Cade [32] for wild populations:

G. pennsylvanicus high = 22:00–09:59, low = 10:00–21:59; G. veletis

high = 04:00–15:59, low = 16:00–03:59. We ran each of these

models twice, once using continuous condition measures and once

using categorical (high, medium, or low) condition variables. Our

overall findings did not differ between the two model types

(continuous or categorical condition measures), so we only present

our categorical findings. We ran 36 different mixed effect models:

9 parameters62 species62 condition runs, and our FDRB-Y

corrected alpha level of significance was P,0.0120.

Results

Species Differences
Male crickets exhibited strong temporal rhythms in their

signaling behavior that differed across species (Figure 2). During

times of the day that G. pennsylvanicus mating activity is highest in

the wild (22:00–09:59; [32]) males chirped more often and louder,

with shorter interpulse, pulse period, chirp, and interchirp

durations, and at slightly higher carrier frequencies. During times

of the day that G. veletis mating activity is highest in the wild

(04:00–15:59; [32]) males chirped more often, with more pulses

per chirp, longer interpulse, pulse period, and chirp durations,

shorter interchirp durations, and at lower carrier frequencies.

Note: time effects were significant (Table S2). Gryllus pennsylvanicus

and G. veletis also differed in other ways, with G. pennsylvanicus males

signaling more often, at slightly lower carrier frequencies, with

longer pulse, interpulse, pulse period, and interchirp durations,

and shorter chirp durations than G. veletis (Table 1; Figure 2). Note,

however, that there was extensive overlap between species in all

traits. Both species chirped at similar amplitudes and included 3–4

pulses in their chirps (Table 1; Figure 2F and 2B, respectively), and

kept their pulse durations relatively constant through time

(Figure 2C).

Individual Differences
Male crickets used phenotypically plastic signals, generally

investing more effort into long distance mate attraction signaling

during the time of day that mating activity is highest in the wild.

Field Cricket Signaling Plasticity
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Figure 2. Signaling diel rhythms in G. pennsylvanicus (solid lines) and G. veletis (dotted lines). Error bars are standard error of the mean.
Horizontal lines at the top of each panel depict the time of day that mating activity is highest (from [32]). Time periods: 1 = 00:00–03:59; 2 = 04:00–
07:59; 3 = 08:00–11:59; 4 = 12:00–15:59; 5 = 16:00–19:59; 6 = 20:00–23:59.
doi:10.1371/journal.pone.0069247.g002

Field Cricket Signaling Plasticity

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69247



Our models investigating whether individuals exhibit plasticity in

their signaling behavior were highly significant, explaining 71–

97% of the variation in signaling traits (Tables 2–4). Time period,

representing periods of high or low mating activity in the wild,

explained 3–22% of the signaling variation; individual identity

explained 54–93% (Tables 2–4). During times that mating activity

is highest in the wild (22:00–09:59; [32]), G. pennsylvanicus males

generally signaled more often, with shorter breaks between pulses

and shorter pulse periods, more pulses per chirp, louder chirps,

and higher carrier frequencies (Figures 1 and 3; Tables 2 and 3).

Male G. pennsylvanicus were, however, highly variable in their

signaling plasticity, with a few males signaling in a manner that

appeared maladaptive. For example, some males signaled less

often and with quieter signals when mating activity is typically

highest and signaled more often and louder when mating activity is

typically lowest. Body size explained some of these differences in

phenotypic plasticity. However, contrary to our prediction,

average-sized males did not exhibit more phenotypic plasticity in

their amplitude or pulses per chirp across mating activity contexts;

rather, large and small (based on pronotum area) males did. Large

and small males signaled louder and with more pulses per chirp

when mating activity is highest in the wild and quieter with fewer

pulses per chirp when mating activity is lowest. Residual mass did

not explain differences in phenotypic plasticity.

Gryllus veletis males also used phenotypically plastic signals and

invested more effort into mate signaling during times that mating

activity is highest in the wild (04:00–15:59; [32]). Males generally

signaled more often, with longer breaks between pulses, pulse

periods, and chirp durations when mating activity is typically

highest in the wild (Figure 3; Tables 2 and 4). Similar to G.

pennsylvanicus, G. veletis males were also highly variable in their

plasticity, with a few signaling in an apparently maladaptive

manner (Figure 3). Some males signaled less often and more

quietly during times that mating activity is highest in the wild and

more often and louder when mating activity is lowest. Neither

body size nor residual mass significantly explained among-male

variation in phenotypic plasticity.

Discussion

Given that the density of conspecific rivals and potential mates

determines the intensity of sexual selection [33–38], male field

crickets should be selected to exhibit adaptive phenotypic plasticity

in their mate attraction signals that matches the socio-sexual

competitive context they experience. Our findings support this

idea. Most males signaled plastically, aligning their mate attraction

signals to the temporally fluctuating socio-sexual context they

faced. Males signaled for mates following distinct diel rhythms that

differed across species. Male signaling diel rhythms are synchro-

nized so that they are in phase with female mating activity diel

rhythms in the wild. Male G. pennsylvanicus signaled more often (14

versus 9 min/hr), louder (62 vs 60 dB), with elevated carrier

frequencies (4.7 vs 4.6 kHz), shorter interpulse durations (38 vs

40 msec), and shorter pulse periods (57 vs 59 msec) during the

high versus low mating activity time periods, respectively (high

22:00–09:59 vs low 10:00–21:59; [32]). This plasticity appears

adaptive given that female G. pennsylvanicus preferentially mate with

males that signal most often [63] and are more attracted to loud

signals played at 5 kHz versus quiet ones played at 4 kHz, and

signals with pulse periods falling within the 35–60 msec range

[49,54]. Male G. veletis signaled more often (7 vs 3 min/hr), with

longer interpulse durations (37 vs 35 msec), longer pulse periods

(53 vs 50 msec) and longer chirp durations (128 vs 118 msec)

during the high versus low mating activity time periods (high

04:00–15:59 vs low 16:00–03:59; [32]). While less is known about

female G. veletis’ mating preferences, one study revealed females

are attracted to signals with pulse periods that ranged from 40–

70 msec [54]. Female G. veletis may be similar to other cricket

Table 1. Interspecific differences in G. pennsylvanicus and G. veletis long distance mate attraction signaling parameters.

Signaling Trait Species Mean ± SD Range F P DF R2
adj

Signaling Time G. pennsylvanicus 12.1168.05 0–34.78 59.1074 ,0.0001 1,93 0.3820

(min/hour) G. veletis 5.1865.56 0–19.73

Pulse Duration G. pennsylvanicus 18.4261.55 14.61–22.43 46.8997 ,0.0001 1,89 0.3377

(msec) G. veletis 16.1361.35 13.64–17.94

Interpulse Duration G. pennsylvanicus 39.3162.54 33.99–44.81 14.5101 0.0003 1,89 0.1305

(msec) G. veletis 36.8963.38 32.81–45.43

Pulse Period G. pennsylvanicus 57.7463.20 49.22–66.45 37.2571 ,0.0001 1,89 0.2872

(msec) G. veletis 53.0263.89 47.65–63.37

Pulses Per Chirp G. pennsylvanicus 3.4660.35 2.53–4.04 2.9071 0.0917 1,89 0.0208

(count) G. veletis 3.6060.43 2.71–4.67

Chirp Duration G. pennsylvanicus 112.02612.74 75.89–132.66 23.2040 ,0.0001 1,89 0.1979

(msec) G. veletis 126.14613.63 101.06–151.91

Interchirp Duration G. pennsylvanicus 918.276278.07 442.52–1774.00 18.9743 ,0.0001 1,89 0.7996

(msec) G. veletis 564.646137.06 371.85–852.20

Amplitude G. pennsylvanicus 61.0167.30 41.06–81.72 0.2757 0.6009 1,89 0.0081

(dB) G. veletis 61.8867.59 47.25–79.03

Carrier Frequency G. pennsylvanicus 4.6460.21 4.16–5.11 78.6988 ,0.0001 1,89 0.4633

(kHz) G. veletis 5.0560.20 4.63–5.43

SD = standard deviation; F = equality of variances test; Our corrected alpha FDRB–Y level of significance is P,0.0177 to account for the 9 models run; DF = degrees of
freedom; R2

adj = ratio of variability between group means to the overall sample variability, adjusted for number of explanatory terms.
doi:10.1371/journal.pone.0069247.t001
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Figure 3. Signaling plasticity across times of high and low mating activity in nature. Mating activity in nature: G. pennsylvanicus
high = 22:00–09:59, low = 10:00–21:59; G. veletis high = 04:00–15:59, low = 16:00–03:59 ([32]). Each thin gray line represents an individual. Significant
time period effects are shown using heavy black lines; significant interactions between mating activity and size are shown with three lines (solid -
large, dotted - medium, dashed - small); statistics are shown in Tables 2–4.
doi:10.1371/journal.pone.0069247.g003
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species and preferentially mate with males that signal most often

and with long chirp durations [42,44,63–66]. If so, plasticity in

male G. veletis signaling traits would be adaptive.

Species-level differences in temporal signaling rhythms also

appear adaptive. The mating seasons of G. pennsylvanicus and G.

veletis overlap spatially and temporally. Since G. pennsylvanicus and

G. veletis both breed in grassy fields and rock crevices (SMB, SJH,

IRT, LPF), it is likely that their habitats overlap in mid-summer.

Gryllus pennsylvanicus and G. veletis differ in the time of day when

peak calling and mating activity occurs, with G. pennsylvanicus

peaking at night and G. veletis peaking in the morning. Given the

fine-scale structure of most mating signal parameters overlap

extensively across the two species, these temporal differences may

act as a behavioral barrier to reproductively isolate the two species.

While we conclude that males are changing their signaling

throughout the day in response to female mating activity, it is also

possible that females are instead mating more during these times of

day because males are signaling more. The causal relationships

between male signaling and female mating activities should be

explored by measuring female receptivity to mating throughout

the day while controlling for male signaling behavior.

Condition Dependency?
Sexually selected traits should act as phenotypically plastic

gauges of an individual’s condition because only individuals in top

condition should be able to bear the costs of advertising with the

most exaggerated traits. Predictions differ about how condition

influences plasticity. Bretman et al. [29] predicted a concave

relationship between condition and plasticity, where males in high

and low condition exhibit minimal plasticity, whereas males in

intermediate condition exhibit high plasticity. They theorized that

intermediate condition males should have the stores available to

amplify their signals when environmental conditions are best, but

not enough stores to constantly maintain amplified signals.

Conversely, Jacot et al. [37] predicted a negative linear relation-

ship between condition and plasticity. They suggested males in low

condition should exhibit high phenotypic plasticity because they

only have sufficient resources available to invest when the net

benefits are highest. These differences in predictions likely results

from how the authors define low condition males, but regardless,

our results do not support either of them. Although variation in

body size (pronotum area) explained some of the variation in

signaling plasticity in G. pennsylvanicus, the largest individuals

exhibited the highest adaptive plasticity, not the intermediate-sized

individuals (as predicted by Bretman et al. [29]) or smallest

individuals (as hypothesized by Jacot et al. [37]). Body size is

partially indicative of resource availability during development

[66], but is also a heritable trait in many field cricket species [67–

70]. Larger individuals may have superior genotypes, making

larger males capable of both growing larger during development

and exhibiting more adaptive signaling plasticity during adult-

hood, a hypothesis that requires testing.

Residual mass did not explain variation in signaling plasticity.

We assumed that males with low residual mass were in worse

condition than males with average or high residual mass.

However, some low residual mass males may be better at

acquiring resources and therefore more willing to risk investing

energy into signaling, because it can be easily replaced. If so, this

would have confounded our results for how residual mass

influenced plasticity. Our ad libitum feeding regime following field

capture could also have confounded our results for how residual

mass influences plasticity. For these reasons and many others

[57,71–74], residual mass may not be a strong measure of

condition in crickets [75,76].

Hill [23] recommends quantifying condition using physiologi-

cal, cellular, and biochemical processes. Supporting Hill’s [23]

assertion, our recent research suggests that differences in

carbohydrate metabolism may more accurately denote condition

in chirping crickets [29]. Metabolic power for signaling comes

from work caused by the thoracic muscles closing the plectrum

against the file during the production of a sound pulse [77].

Energetic signaling costs are dependent on the total number of

pulses produced and on the average number of teeth struck during

the production of a pulse [78–80]. While the energetic costs of

chirping are not very high, reaching only 1–46 resting metabolic

rate [78–85], the costs may be high enough for some males to not

be able to alter the quality or quantity of their signals. Future

research should examine whether plastic signaling is tied to the

ability to metabolize carbohydrates.

Temperature-Induced Plasticity?
Our fine scale signaling plasticity results were unlikely to result

from minor changes in ambient temperature. We controlled for

temperature by conducting our study in a climate-controlled

greenhouse. However, while the temperature remained close to

28uC throughout our experiment, it occasionally climbed as high

as 30uC during the day and fell as low as 26uC at night. Increasing

temperature decreases interpulse, chirp and interchirp durations

[78,86–91]. The slight temperature fluctuations experienced in the

greenhouse are unlikely to explain the signaling plasticity because

we observed that interpulse, chirp, and interchirp durations

increased throughout the morning hours, as the greenhouse warmed

with the morning sun.

Maladaptive Behavior?
A handful of males behaved in a seemingly maladaptive

manner, consistently producing unattractive signals or signaling

Table 2. How signaling effort plasticity is influenced by time
of day (subdivided by mating period), residual mass, and body
size.

Species
Independent
Variables DF F Ratio P R2

adj IV%

G. pennsylvanicus Mating Activity
(MA)

1,58 26.8220

,0.0001 0.8068 66.12

Residual Mass
(RM)

2,58 0.3436 0.7107

Body Size
(BS)

2,58 1.0531 0.3554

RM * MA 2,58 1.4248 0.2489

BS * MA 2,58 1.1146 0.3350

G. veletis Mating Activity
(MA)

1,26 11.7550 0.0020 0.7673 61.41

Residual Mass
(RM)

2,26 0.0556 0.9460

Body Size (BS) 2,26 1.4155 0.2609

RM * MA 2,26 0.0250 0.9753

BS * MA 2,26 0.9030 0.4177

Repeated measures ANOVA model output investigating plasticity in signaling
time across high and low mating activity time periods; MA = Mating Activity;
RM = Residual Mass, BS = Body Size; IV% = Variance explained by individual
effects in the repeated measures model; FDRB–Y alpha P,0.0120. Note: this
legend also applies to Table 3 and 4.
doi:10.1371/journal.pone.0069247.t002
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Table 3. How G. pennsylvanicus fine scale signaling parameter plasticity is influenced by time of day (subdivided by mating
period), residual mass, and body size.

Signaling
Traits

Independent
Variables DF F Ratio P R2

adj IV %

Pulse
Duration

Mating Activity (MA) 1,57 0.0124 0.9116 0.9205 84.85

Residual Mass (RM) 2,57 1.3350 0.2713

Body Size (BS) 2,57 1.6897 0.1937

RM * MA 2,57 0.7575 0.4735

BS * MA 2,57 1.3054 0.2790

Interpulse
Duration

Mating Activity (MA) 1,57 95.5756 ,0.0001 0.9535 90.76

Residual Mass (RM) 2,57 0.4490 0.6405

Body Size (BS) 2,57 0.8869 0.4175

RM * MA 2,57 0.5570 0.5760

BS * MA 2,57 0.6657 0.5179

Pulse
Period

Mating Activity (MA) 1,57 47.0348 ,0.0001 0.9413 88.92

Residual Mass (RM) 2,57 0.2271 0.7976

Body Size (BS) 2,57 0.6112 0.5462

RM * MA 2,57 0.8750 0.4224

BS * MA 2,57 0.0027 0.9973

Pulses
Per Chirp

Mating Activity (MA) 1,57 8.9179 0.0042 0.9614 92.85

Residual Mass (RM) 2,57 0.4277 0.6541

Body Size (BS) 2,57 0.2076 0.8132

RM * MA 2,57 0.3012 0.7411

BS * MA 2,57 6.6881 0.0025

Chirp
Duration

Mating Activity (MA) 1,57 4.2342 0.0442 0.9522 91.06

Residual Mass (RM) 2,57 0.8741 0.4228

Body Size (BS) 2,57 0.4781 0.6224

RM * MA 2,57 0.7047 0.4985

BS * MA 2,57 2.6607 0.0786

Interchirp
Duration

Mating Activity (MA) 1,57 0.1573 0.6931 0.8842 79.89

Residual Mass (RM) 2,57 0.0832 0.9203

Body Size (BS) 2,57 0.9505 0.3926

RM * MA 2,57 0.6129 0.5453

BS * MA 2,57 1.7478 0.1834

Amplitude Mating Activity (MA) 1,57 13.5078 0.0005 0.9326 87.26

Residual Mass (RM) 2,57 0.4173 0.6608

Body Size (BS) 2,57 1.3263 0.2735

RM * MA 2,57 0.6394 0.5314

BS * MA 2,57 5.5090 0.0065

Carrier
Frequency

Mating Activity (MA) 1,57 85.1932 ,0.0001 0.9719 93.87

Residual Mass (RM) 2,57 0.6229 0.5400

Body Size (BS) 2,57 4.4165 0.0165

RM * MA 2,57 4.1034 0.0216

BS * MA 2,57 1.7301 0.1865

doi:10.1371/journal.pone.0069247.t003
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Table 4. How G. veletis fine scale signaling parameter plasticity is influenced by time of day (subdivided by mating period),
residual mass, and body size.

Signaling
Traits

Independent
Variables DF F Ratio P R2

adj IV %

Pulse
Duration

Mating Activity (MA) 1,22 0.6028 0.4457 0.8996 79.81

Residual Mass (RM) 2,23 2.3163 0.1213

Body Size (BS) 2,23 2.5329 0.1015

RM * MA 2,22 0.7563 0.4812

BS * MA 2,22 2.5092 0.1043

Interpulse
Duration

Mating Activity (MA) 1,21 10.5859 0.0037 0.8439 73.45

Residual Mass (RM) 2,22 0.0534 0.9481

Body Size (BS) 2,22 1.3417 0.2818

RM * MA 2,21 0.5118 0.6065

BS * MA 2,21 0.2086 0.8134

Pulse
Period

Mating Activity (MA) 1,21 12.0577 0.0022 0.8845 80.79

Residual Mass (RM) 2,22 0.4665 0.6332

Body Size (BS) 2,22 0.2223 0.8024

RM * MA 2,22 0.7880 0.4674

BS * MA 2,22 0.9810 0.3911

Pulses
Per Chirp

Mating Activity (MA) 1,22 2.3425 0.1400 0.8978 80.52

Residual Mass (RM) 2,23 2.3490 0.1180

Body Size (BS) 2,23 0.5839 0.5658

RM * MA 2,22 0.3506 0.7081

BS * MA 2,22 1.2535 0.3050

Chirp
Duration

Mating Activity (MA) 1,22 12.3159 0.0019 0.8364 69.23

Residual Mass (RM) 2,23 1.5760 0.2283

Body Size (BS) 2,23 0.3790 0.6887

RM * MA 2,22 0.3121 0.7351

BS * MA 2,22 2.7546 0.0853

Interchirp
Duration

Mating Activity (MA) 1,22 5.6811 0.0261 0.7803 66.20

Residual Mass (RM) 2,23 0.1097 0.8965

Body Size (BS) 2,23 0.0798 0.9236

RM * MA 2,22 1.5068 0.2434

BS * MA 2,22 1.1061 0.3484

Amplitude Mating Activity (MA) 1,23 4.6936 0.0411 0.8104 58.79

Residual Mass (RM) 2,23 3.4634 0.0483

Body Size (BS) 2,23 4.9375 0.0164

RM * MA 2,23 0.3832 0.6860

BS * MA 2,22 0.4849 0.6221

Carrier
Frequency

Mating Activity (MA) 1,22 5.2173 0.0326 0.7053 54.40

Residual Mass (RM) 2,22 1.0355 0.3717

Body Size (BS) 2,22 0.5955 0.5599

RM * MA 2,22 0.1494 0.8621

BS * MA 2,22 0.3335 0.7201

doi:10.1371/journal.pone.0069247.t004
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most during the time of day that mating activity is lowest in the

wild. Why do some males signal maladaptively? While G.

pennsylvanicus mating activity is highest at night and around sunrise

(22:00–09:59), some mating (12%) occurred during the rest of the

day (10:00–21:59; [32]). Similarly, while G. veletis mating activity is

highest in the early morning and throughout the day (04:00–

15:59), some mating (19%) occurred during evening hours (16:00–

03:59; [32]). Males that signal more when mating activity is lowest

may be less aggressive or less able to compete with males during

peak mating hours, and may instead signal during times of lower

competition. Variation in signaling plasticity could also stem from

age, fighting experience, or mating experience differences among

males. We captured males as adults in the field, so age and social

experience are unknown. Male signaling changes with age (G.

pennsylvanicus: [92]; G. veletis: [93]) and so males may also alter

signaling plasticity with age/experience.

Male variation in signaling plasticity could also stem from

female behavioral plasticity in the wild. Wild female G.

pennsylvanicus and G. veletis are likely to exhibit variation in the

types of signals to which they are most attracted. Whereas female

field crickets are generally most responsive to specific signaling

parameters, some females exhibit narrow mating preferences while

other females exhibit broad preferences [54]. Female age and

mating history may play a role, because older and mated females

are typically much choosier than younger and virgin females [54].

Virgin females are more likely to mate and mate more quickly

than previously-mated females [94]. Differences in choosiness

could result from physiological differences, changes in hormonal

levels altering auditory receptiveness, and/or lower residual

reproductive value [95]. Female social experience could also

shape differences in preference. The perceived attractiveness of

previously encountered males influences pre- and post-copulatory

mate choice decisions with subsequent males [96]. Given that

females in the wild may exhibit mate preference plasticity, the

seemingly maladaptive mate signaling strategies of males may in

fact not be maladaptive.

Regardless of the underlying causes of some individuals

signaling more attractively or more often during the non-peak

mating hours, this signaling may be risky. Signaling during non-

peak mating hours may increase the potential of interbreeding (G.

pennsylvanicus with G. veletis). Given hybridization is lethal [43],

signaling more attractively or more often during the non-peak

mating hours may be maladaptive.

Conclusions and Future Directions
Phenotypic plasticity can be adaptive when phenotypes align

with environmental changes. In crickets, environmental changes

result in rhythmic fluctuations in the density of sexually active

individuals (summarized in Table S1). Given that density strongly

influences the intensity of sexual selection [33–38], we asked

whether crickets exhibit plasticity in their signaling behavior that

aligns with these rhythmic fluctuations in the socio-sexual

environment. Our findings suggest that most crickets exhibit

phenotypically plastic mate attraction signals that match the

temporally fluctuating socio-sexual context they experience. Our

findings also suggest cricket signaling plasticity may be adaptive.

Our correlational study exploring variation in plasticity is the first

step towards determining whether crickets exhibit genotype by

environment interactions in their signaling behaviors (e.g., [58–

60]). Future research should (1) quantify the signaling plasticity of

crickets reared in the laboratory to allow us to control for mating

experience, condition, and age effects [97, submitted] and (2)

examine whether plastic signaling is tied to the ability to

metabolize carbohydrates. If signaling plasticity of crickets reared

in the laboratory is similar to wild crickets, then future research

should also (3) quantify the underlying genetic basis of signaling

plasticity.

Supporting Information

Table S1 Literature review of how cricket and parasit-
oid density change over the course of a day. Studies with

different results are presented in separate rows, and studies with

the same results are presented in the same row. A dash (2)

indicates the species was not observed during that time period. a

French Polynesia; b Australia; c Hawaii;.

(DOCX)

Table S2 Repeated measures ANOVA using repeated
measures general linear mixed models (GLMM) utiliz-
ing the restricted maximum likelihood (REML) ap-
proach to investigate whether signaling behavior
changed over the course of a day. Individual was classified

as a random effect, while time was classified as a fixed effect using

six time periods: Time: 1 = 00:00–03:59; 2 = 04:00–07:59;

3 = 08:00–11:59; 4 = 12:00–15:59; 5 = 16:00–19:59; 6 = 20:00–

23:59. Separate models were run for G. pennsylvanicus and G. veletis

and for each of the 9 signaling parameters. Our corrected alpha

FDRB-Y level of significance is P,0.0143 to account for the 18

models run. Our models were generally highly significant

explaining 55–88% of the variation in signaling traits: time of

day explained 3–15% of the signaling variation, while individual

identity explained 40–85%.

(DOCX)
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