5,352 research outputs found

    Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    Get PDF
    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs

    Quantification of air quality impacts of London Heathrow Airport (UK) from 2005 to 2012

    Get PDF
    Among other emission sources in the Greater London area, the international airport of Heathrow is recognised to be a major source of air pollution and is one of the UK locations where European air quality Limit Values are currently breached. However it is very difficult to differentiate between pollutants arising from airport operations and those from the large volumes of road traffic generated by the airport, as well as the nearby M4 and M25 motorways, A4 and A30 major roads, the conurbation of London and other external sources. In this study, eight years (January 2005 December 2012) of measurements of various air pollutants (NO, NO2, NOx, O-3, CO, PM10 and PM2.5) were investigated from 10 sites: eight sites are located within a distance of 2.5 km from the airport, while two sites representative of the regional background and of background air quality in London (Harwell (60 km WNW) and North Kensington (17 km ENE), respectively) were included. A series of statistical tools was thus applied to: (1) investigate the time series by analysing hourly data as diurnal, weekly, seasonal and annual patterns; (2) reveal the effects of the atmospheric circulation upon air pollution by analysing background-corrected polar plots and (3) quantify the impact of the airport upon air quality in the local area using the inter-site differences of measured concentrations. The results show different diurnal patterns in emissions of NOx from the airport and from the motorways. The concentration increment arising from passage of air across the airport during airport activity (6 am-10 pm) and with wind speed >3 m s(-1) is ca. 1-9 mu g m(-3) of NO2 and 2-20 mu g m(-3) of NOx at background stations. Such results are slightly lower than in a previous study analysing the 2001-2004 period. Air quality impacts of the M25 and M4 motorways are substantial only at the Hillingdon site (30 m from M4). Concentration increments of particulate matter can take either small positive or negative values. (C) 2015 Elsevier Ltd. All rights reserved

    Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Get PDF
    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 mu m). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for similar to 44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for similar to 20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (<14 nm). The remaining factors accounted for less than 10% of number counts, but were relevant for total volume concentrations: nighttime nitrate, regional pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies. (C) 2016 Elsevier Ltd. All rights reserved

    Gamma-Ray Burst Early Optical Afterglow Modelling

    Get PDF
    We discuss the evolution of a relativistic outflow responsible for producing the emission associated with GRBs. We investigate how afterglows are produced in the inter- action between the outflow and the ambient medium. Understanding the properties of the outflow from afterglow emission can be coupled with information obtained from the prompt component to constrain the magnetisation of the outflow. We analytically and numerically evaluate the relative strength of the reverse shock emission as the out- flow propagates into either a wind or ISM -type environment. We find that previous estimates of magnetisation based on the relative strength of forward and reverse shock emission had been underestimated by up to a factor of 100. We then apply our revised magnetisation estimate to a sample of 10 GRBs and find that 5 of the 10 events can be described by the ISM model. As recent studies have indicated that the fraction of en- ergy stored in the magnetic fields are small, our findings would suggest that the ejecta is driven by thermal pressure. Finally we consider how inhomogeneities present in the outflow can lead to variations in the very early afterglow. Considering small gradi- ent in the ejecta density profile modifies the rising index of the afterglow and can be equivalent to changing the dimensionless parameter ξ by a factor of 2. Uncertainties in determining the width of the ejecta present difficulties in understanding the distribution of GRBs afterglow rising index

    Model Development and Validation of Personal Exposure to Volatile Organic Compound Concentrations

    Get PDF
    Background: Direct measurement of exposure to volatile organic compounds (VOCs) via personal monitoring is the most accurate exposure assessment method available. However, its wide-scale application to evaluating exposures at the population level is prohibitive in terms of both cost and time. Consequently, indirect measurements via a combination of microenvironment concentrations and personal activity diaries represent a potentially useful alternative. Objective: The aim of this study was to optimize a model of personal exposures (PEs) based on microenvironment concentrations and time/activity diaries and to compare modeled with measured exposures in an independent data set. Materials: VOC PEs and a range of microenvironment concentrations were collected with active samplers and sorbent tubes. Data were supplemented with information collected through questionnaires. Seven models were tested to predict PE to VOCs in 75% (n = 370) of the measured PE data set, whereas the other 25% (n = 120) was used for validation purposes. Results: The best model able to predict PE with independence of measurements was based upon stratified microenvironment concentrations, lifestyle factors, and individual-level activities. The proposed model accounts for 40–85% of the variance for individual VOCs and was validated for almost all VOCs, showing normalized mean bias and mean fractional bias below 25% and predicting 60% of the values within a factor of 2. Conclusions: The models proposed identify the most important non-weather-related variables for VOC exposures; highlight the effect of personal activities, use of solvents, and exposure to environmental tobacco smoke on PE levels; and may assist in the development of specific models for other locations.peer-reviewe

    Inhibition of the Bloom's and Werner's syndrome helicases by G-quadruplex interacting ligands.

    Get PDF
    G-Quadruplex DNAs are folded, non-Watson-Crick structures that can form within guanine-rich DNA sequences such as telomeric repeats. Previous studies have identified a series of trisubstituted acridine derivatives that are potent and selective ligands for G-quadruplex DNA. These ligands have been shown previously to inhibit the activity of telomerase, the specialized reverse transcriptase that regulates telomere length. The RecQ family of DNA helicases, which includes the Bloom's (BLM) and Werner's (WRN) syndrome gene products, are apparently unique among cellular helicases in their ability to efficiently disrupt G-quadruplex DNA. This property may be relevant to telomere maintenance, since it is known that the sole budding yeast RecQ helicase, Sgs1p, is required for a telomerase-independent telomere lengthening pathway reminiscent of the "ALT" pathway in human cells. Here, we show that trisubstituted acridine ligands are potent inhibitors of the helicase activity of the BLM and WRN proteins on both G-quadruplex and B-form DNA substrates. Inhibition of helicase activity is associated with both a reduction in the level of binding of the helicase to G-quadruplex DNA and a reduction in the degree to which the G-quadruplex DNA can support DNA-dependent ATPase activity. We discuss these results in the context of the possible utility of trisubstituted acridines as antitumor agents for the disruption of both telomerase-dependent and telomerase-independent telomere maintenance

    Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry

    Get PDF
    Organic aerosol composition in the urban atmosphere is highly complex and strongly influenced by vehicular emissions which vary according to the make-up of the vehicle fleet. Normalized test measurements do not necessarily reflect real-world emission profiles and road tunnels are therefore ideal locations to characterise realistic traffic particle emissions with minimal interference from other particle sources and from atmospheric aging processes affecting their composition. In the current study, the composition of fine particles (diameter ≤2.5 μm) at an urban background site (Elms Road Observatory Site) and a road tunnel (Queensway) in Birmingham, UK, were analysed with direct infusion, nano-electrospray ionisation ultrahigh resolution mass spectrometry (UHRMS). The overall particle composition at these two sites is compared with an industrial harbour site in Cork, Ireland, with special emphasis on oxidised mono-aromatics, polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatics. Different classification criteria, such as double bond equivalents, aromaticity index and aromaticity equivalent are used and compared to assess the fraction of aromatic components in the approximately one thousand oxidized organic compounds at the different sampling locations.University of Birmingham, European Research Council (Grant ID: 279405

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London

    Get PDF
    As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud \u
    • …
    corecore