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ABSTRACT 31 

Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies 32 

and globalization. Its impact on the environment is heavily debated, particularly in relation to 33 

climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air 34 

quality at ground-level due to airport operations. This latter environmental issue is of particular 35 

interest to the scientific community and policymakers, especially in relation to the breach of limit 36 

and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the 37 

busiest airports and the resulting consequences for public health. Despite the increased attention 38 

given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many 39 

research gaps remain.  Sources relevant to air quality include not only engine exhaust and non-40 

exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on 41 

the ground, the traffic due to the airport ground service, maintenance work, heating facilities, 42 

fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, 43 

intermodal transportation systems, and road traffic for transporting people and goods in and out to 44 

the airport. Many of these sources have received inadequate attention, despite their high potential 45 

for impact on air quality.  This review aims to summarise the state-of-the-art research on aircraft 46 

and airport emissions and attempts to synthesise the results of studies that have addressed this issue. 47 

It also aims to describe the key characteristics of pollution, the impacts upon global and local air 48 

quality and to address the future potential of research by highlighting research needs. 49 

 50 

Keywords: Aviation;  atmospheric pollution;  emissions;  LTO cycles;  particulate matter;  oxides 51 

of nitrogen 52 

53 
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1. INTRODUCTION 106 

Among pollution issues, poor air quality attracts a high level of interest within the scientific 107 

community and engages public opinion because of the known relationship between exposure to 108 

many air pollutants and increased adverse short- and long-term effects on human health (e.g., 109 

Schwartz, 1997; Ayres, 1998; Brunekreef and Holgate, 2002; Kampa and Castanas, 2008; Maynard, 110 

2009; Yang and Omaye, 2009; Rückerl et al., 2011). In addition, air pollution can seriously impair 111 

visibility (Hyslop, 2009), may damage materials in buildings and cultural heritage (Watt et al., 112 

2009; Screpanti and De Marco, 2009) and has direct and indirect effects upon climate (Ramanathan 113 

and Feng, 2009). While air pollution remains a major concern for developing countries (Fenger, 114 

2009; Liaquat et al., 2010) as a result of the rapid growth of population, energy demand and 115 

economic growth, developed countries have experienced a significant decline in the concentrations 116 

of many air pollutants over the past decade.  117 

 118 

Airport emissions (AEs) have received increasing attention in recent years because of the rapid 119 

growth of air transport volumes and the expected expansion to meet capacity needs for future years 120 

(Amato et al., 2010; Kurniawan and Khardi, 2011; Kinsey et al., 2011).  Most studies highlight 121 

knowledge gaps (e.g., Webb et al., 2008; Wood et al., 2008a; Lee et al., 2010) which are a matter of 122 

concern as the literature indicates that aircraft emissions can significantly affect air quality near 123 

airports (Unal et al., 2005; Carslaw et al., 2006; Herndon et al., 2008; Carslaw et al., 2008; 124 

Mazaheri et al., 2009; Dodson et al., 2009) and in their surroundings (Farias and ApSimon, 2006; 125 

Peace et al., 2006; Hu et al., 2009; Amato et al., 2010; Jung et al., 2011; Hsu et al., 2012). Emission 126 

standards for new types of aircraft engines have been implemented  since the late 1970s by the 127 

International Civil Aviation Organization (ICAO) through the Committee on Aircraft Engine 128 

Emissions (CAEE) and the subsequent Committee on Aviation Environmental Protection (CAEP). 129 

One of the key actions of the ICAO committees was the provision on engine emissions in Volume 130 

II of Annex 16 to the Convention on International Civil Aviation, the so-called “Chicago 131 
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Convention”, which recommended protocols for the measurement of carbon monoxide (CO), 132 

nitrogen oxides (NO+NO2=NOx), unburned hydrocarbons (UHC) and smoke number (SN) for new 133 

engines (ICAO, 2008). Standards were listed on a certification databank (EASA, 2013), which 134 

represents a benchmark for engine emissions performance and is used in many regulatory 135 

evaluations (ICAO, 2011). This regulation has produced significant improvements in engine and 136 

fuel efficiency and technical progress to reduce emissions. However, although these efforts have led 137 

to a substantial reduction in direct aircraft emissions over the past two decades, these gains may be 138 

offset by the forecast growth of the aviation industry and the resulting increase in airport traffic 139 

(ICAO, 2011). Furthermore, the ICAO regulation address only four main generic pollutants and a 140 

more detailed chemical and physical characterization of exhausts is required to quantitatively and 141 

qualitatively assess aircraft emissions. An increasing number of studies provide a detailed chemical 142 

speciation for many exhaust compounds, including gases and airborne particulate matter (e.g., 143 

Anderson et al., 2006; Herndon et al., 2008; Agrawal et al., 2008; Mazaheri et al., 2009; Onash et 144 

al., 2009; Herndon et al., 2009; Kinsey et al., 2011; Mazaheri et al., 2011; Santoni et al., 2011). 145 

However, the literature remains very sparse and many questions remain unresolved because of the 146 

large differences in measurement strategies, technologies and methods, compounds analysed and 147 

environments studied.  148 

 149 

Aircraft exhausts are only one of several sources of emission at an airport (ICAO, 2011).  Although 150 

exhaust plumes from aircraft engines were conventionally considered to account for most of the 151 

emissions, other sources are present within modern airports and contribute to air pollution at the 152 

local scale. Among these, tyre, brake and asphalt wear and the re-suspension of particles due to the 153 

turbulence created by the aircraft movements can account for large fractions of total particulate 154 

matter mass (e.g., British Airports Authority, 2006), but their chemical and physical characteristics 155 

have been investigated in only a few studies (Bennett and Christie, 2011; Bennett et al., 2011). 156 

Moreover, the emissions of the units providing power to the aircraft on the ground have received 157 
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relatively little consideration despite their potentially high impact on the local air quality (Schäfer et 158 

al., 2003; Ratliff et al., 2009; Mazaheri et al., 2011). These units include the auxiliary power units 159 

(APUs), which are small on-board gas-turbine engines, and the ground power units (GPUs) 160 

provided by airports. In addition, airport ground service equipment (GSEs) further impact the air 161 

quality (e.g., Nambisan et al., 2000; Amin, 2001; Schäfer et al., 2003). GSEs include most of the 162 

equipment that an airport offers as a service for flights and passengers and includes a large number 163 

of vehicles, such as passenger buses, baggage and food carriers, container loader, refilling trucks, 164 

cleaning, lavatory services and de/anti-icing vehicles, and tugs, which are used to move any 165 

equipment or to push the aircraft between gates and taxiways. Only few studies are available on the 166 

air traffic-related emissions produced by ground services such as GSEs, GPUs or APUs (e.g., Webb 167 

et al., 2008; Ratliff et al., 2009; Mazaheri et al., 2011; Presto et al., 2011). 168 

 169 

Additional sources may also be present at airports, including maintenance work, heating facilities, 170 

fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, 171 

etc. Moreover, as many airports are located far from cities, their emission inventories should also 172 

include sources not directly present within a terminal, but on which the airport has an influence. 173 

These sources may include intermodal transportation systems or road traffic including private cars, 174 

taxis, shuttle buses and trucks for transporting people and goods in and out of the airport.  175 

 176 

As most large airports are located near heavily populated urban settlements, in combination they 177 

have a potentially significant impact on the environment and health of people living in their 178 

vicinity. For example, 150 airports in the USA are located in areas designated to be in non-179 

attainment for one or more criteria air pollutants (Ratliff et al., 2009). In undertaking air quality 180 

assessments and the development of successful mitigation strategies, it is therefore fundamental to 181 

consider all the aspects associated with the entire “airport system”. However, current information 182 

on many aspects of this polluting source is inadequate, including a detailed speciation of 183 
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hydrocarbons, physicochemical characteristics of particles, volatile and semi-volatile emissions and 184 

especially the secondary transformations from the aging of aircraft exhausts and other airport-185 

related emissions. Some of these gaps are well summarised in a US Transportation Research Board 186 

report (Webb et al., 2008). 187 

 188 

1.1 Aims and Outline of the Review 189 

Since the scientific literature on AEs remains very sparse and many questions are still open, this 190 

review aims to summarise the state-of-the-art of airport emissions research and attempts to 191 

synthesise and analyse the published studies. An overview of current information on airport-related 192 

emissions is presented and the key characteristics of the pollution and the impacts on the local and 193 

global air quality are discussed. This review further summarises the various methodologies used for 194 

measurements and attempts to critically interpret the data available in the literature.  Finally, this 195 

review will highlight priority areas for research. 196 

 197 

The next section traces the main stages of the development of civil aviation, by focusing especially 198 

on the changes and development strategies of modern airport systems. Recent traffic data and 199 

statistics are presented and the trends are also discussed in order to understand the potential future 200 

growth of air transport, which is fundamental to forecasting the impacts of aviation in future years. 201 

The third section gives an overview of the operation of aircraft engines, briefly discusses the most 202 

widely used technologies, describes some fuel characteristics, such as the sulfur content, and 203 

analyses the current use and future jet fuel consumption scenarios. The fourth section reviews the 204 

current information on aircraft engine exhaust: the landing and take-off cycles are described since 205 

they are commonly used to assess aircraft emissions during the operational conditions within an 206 

airport and within the atmospheric surface boundary layer; the main gaseous and particulate-phase 207 

compounds emitted by aircraft are listed and their key chemical and physical characteristics are 208 

described in separate subsections. A summary of data on the emission indices for many pollutants is 209 
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also provided. The fifth section describes the non-exhaust emissions related to aircraft operations, 210 

such as the tyre and brake wear and the re-suspension of runway material, which have been little 211 

investigated even though they may have serious impacts on local air quality. The sixth section 212 

reviews data on the non-aircraft emissions potentially present within an airport, including the 213 

ground service equipment emissions, the auxiliary/ground power units and others. The seventh 214 

section presents the results of studies conducted indoors and outdoors at airports to directly assess 215 

the impacts of AEs upon human health. Finally, this paper reviews the results of the recent literature 216 

on aircraft emissions and other airport-related contributions to highlight the potential role of AEs 217 

upon local air quality. 218 

 219 

2.  PRESENT SCENARIOS AND FUTURE PERSPECTIVES OF CIVIL AVIATION 220 

AND AIRPORTS 221 

The Airport Council International (ACI, 2013) has reported recent statistics on the air traffic 222 

volumes for 2012: more than 79 million aircraft movements carried annually 5.7 billion passengers 223 

between 1,598 airports located in 159 countries, and reported that the total cargo volume handled by 224 

airports was 93 million tonnes. However, these numbers are expected to further increase in the 225 

forthcoming decades: in the past half century, the aviation industry has experienced a strong and 226 

rapid expansion as the world economy has grown and the technology of air transport has developed 227 

(Baughcum et al., 1999). Generally, air traffic has been expressed as revenue passenger kilometres 228 

(RPKs) by multiplying the number of revenue-paying passengers aboard the vehicle by the travelled 229 

distance, or occasionally in revenue tonne kilometres (RTK). Figure 1 shows the absolute growth of 230 

aviation recorded by ICAO in terms of RPK, RTK and aircraft kilometres from the 1930s to today 231 

(ICAO, 2013; Airlines for America, 2013). Despite some global-scale events, such as the Gulf crisis 232 

(1991), the terrorist attack of 11th September 2011, the outbreak of severe acute respiratory 233 

syndrome (SARS) in 2002‒2003 and the recent global economic crisis (2008‒2009), an average 234 

annual growth rate of 5% was observed and this trend is expected to continue over the next decades 235 
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mainly driven by the economic growth of emerging regions (ACI, 2007; 2008; Airbus, 2012; 236 

Boeing, 2013). It is anticipated that there will be more than 9 billion passengers globally by 2025 237 

and more than 214 million tonnes of total world freight traffic are forecast over almost 120 million 238 

air traffic movements (ACI, 2007). The future growth of air transport will inevitably lead to the 239 

growth of airline fleets and route networks and will therefore lead to an associated increase in 240 

airport capacity in terms of both passengers and cargo. This poses questions as to the consequent 241 

impact on air quality. 242 

 243 

3.  AIRCRAFT: CHARACTERISTICS AND IN-USE TECHNOLOGIES 244 

Emissions from aircraft engines are recognised as a major source of pollutants at airports and have 245 

been extensively investigated over the past 40 years. Initially, the main historical concern for 246 

supersonic aircraft was over stratospheric ozone depletion (Johnston, 1971) and secondarily about 247 

the formation of contrails at cruising heights (Murcray, 1970;  Schumann, 2005) and indirect effect 248 

on the Earth’s radiative budgets (Kuhn, 1970). Apart the development of the Concorde and the 249 

Tupolev Tu-144, a supersonic fleet flying in the stratosphere was never developed and today all 250 

commercial airliners are subsonic equipped with turbofan or turboprop engines. Therefore, the main 251 

present issue arising from civil aviation has today shifted to the increased levels of ozone in the 252 

upper troposphere and lower stratosphere resulting from the atmospheric chemistry of emitted NOx 253 

(Lee et al., 2010 and reference therein). Furthermore, the development of increasingly restrictive 254 

legislation on ambient air quality and the implementation of enhanced monitoring networks in many 255 

developed countries has highlighted the effects of aircraft emissions at ground-level and the 256 

deterioration of air quality near airports.  257 

 258 

3.1  Engines  259 

Engines for civil and general aviation are generally classified as gas turbine engines (turbofan and 260 

turboprop) fuelled with aviation kerosene (also named jet fuel) and internal combustion piston 261 
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engines fuelled with aviation gasoline, often referred as avgas (ICAO, 2011). The majority of 262 

modern airliners are equipped with turbofan engines. These engines are derived from predecessor 263 

turbojet engines developed during World War II. A turbojet is composed of an inlet compressor, a 264 

combustion section adding and igniting fuel, one or more turbines extracting energy from the 265 

exhaust gas in expansion and driving the compressor. A final exhaust nozzle accelerates the exhaust 266 

gas from the back of the engine to generate thrust. Turbofan engines use a turbojet as a core to 267 

produce energy for thrust and for driving a large fan placed in front of the compressor. In modern 268 

airliners, the fan provides most of the thrust. The “bypass ratio” refers to the ratio of mass flux 269 

bypassing the combustor and turbine to the mass flux through the core: high-bypass ratios are 270 

preferred for civil aviation for good fuel efficiency and low noise. Some small and regional airliners 271 

are instead equipped with turboprop engines, which use a turbine engine core fitted with a reduction 272 

gear to power propellers. A simplified diagram of a turbofan engine is provided in Figure 2. In 273 

August 2013 the ICAO (EASA, 2013) listed a total of 487 in-use turbofan engines (including 274 

packages): Table 1 provides a summary of the current engine families mounted in the most popular 275 

airliners (75% of total in-use turbofan engines). 276 

 277 

Reciprocating piston engines are predominately fitted in small-sized aircraft typically related to 278 

private use, flying clubs, flight training, crop spraying and tourism. Internal piston engines run 279 

under the same basic principles as spark ignition engines for cars, but generally require higher 280 

performance. Four-stroke-cycle engines are commonly used, more rarely these can be two-stroke 281 

and occasionally diesel. The principal difference between jet and piston engines is that combustion 282 

is continuous in jet engines and intermittent in piston engines. Other flying vehicles may be present 283 

within an airport, such as helicopters. These vehicles are usually less numerous than the airliners in 284 

most terminals, but in some circumstances their contribution to the air quality cannot be 285 

disregarded. Today, most modern helicopters are equipped with turboshaft engines, whose 286 
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functioning is similar to a turbojet but are optimised to generate shaft power instead of jet thrust. 287 

This review abbreviates turbojet (TJ), turbofan (TF), turboprop (TP) and turboshaft (TS). 288 

 289 

3.2  Fuel Characteristics 290 

At the current time, almost all aviation fuel (jet fuel) is extracted from the middle distillates of crude 291 

oil (kerosene fraction), which distils between the gasoline and the diesel fractions. The kerosene-292 

type fuels most used worldwide in civil aviation are of Jet A and Jet A-1 grades: Jet A is used in 293 

most of the world, except North America where Jet A-1 is used. An exhaustive review of jet fuel 294 

production processes is given elsewhere (Liu et al., 2013). The specifications of such fuels are 295 

addressed by two organizations, the American Society for Testing and Materials (ASTM) and the 296 

United Kingdom Ministry of Defence (MOD). Jet A is used for almost all commercial aviation 297 

flying within or from the USA and is supplied against the ASTM D1655  specification. It has a 298 

flash point minimum of 38°C and a freeze point maximum of −40°C. Jet A-1 is widely used outside 299 

the USA and follows the UK DEF STAN 91-91 (Jet A-1) and ASTM D 1655 (Jet A-1) 300 

specifications. It has same flash point as Jet A but a lower freeze point (maximum of ‒47°C) and a 301 

mean C/H ratio of C12H23 (Lewis et al., 1999; Chevron Corporation, 2006; Lee et al., 2010). Other 302 

fuels can be used as an alternative to Jet A-1. Jet B is a wide-cut type fuel covering both the naphtha 303 

and kerosene fractions of crude oil and is used in very cold climates, e.g. in northern Canada where 304 

its thermodynamic characteristics (mainly lower freeze point and higher volatility) are suitable for 305 

handling and cold starting. ASTM publishes a specification for Jet B, but in Canada it is supplied 306 

against the Canadian specification CAN/CGSB 3.23. Other specifications also exist such as 307 

DCSEA (France) and GHOST (Russia). TS-1 is the main jet fuel grade available in Russian and 308 

CIS states, along with T-1, T-2 and RT;  it is a kerosene-type fuel with slightly higher volatility 309 

(flash point is 28°C minimum) and lower freeze point (<−50°C) compared to Jet A and A-1 fuels. 310 

Various types of jet fuels are instead regulated by Chinese specifications: RP-1 and RP-2 are 311 

kerosene-type fuels similar to Russian TS-1, while RP-4 to Jet B. Nowadays, virtually all jet fuel in 312 
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China is RP-3, which is quite comparable to Jet A-1 (Shell, 2013).  Fuels for military purposes are 313 

formulated for high-performances and are regulated separately by many governments; some of 314 

these (JP grades for USA and NATO forces) were used in several studies (e.g., Anderson et al., 315 

2006; Chen et al., 2006; Cowen et al., 2009; Cheng et al., 2009; Cheng and Corporan, 2010; 316 

Santoni et al., 2011). The kerosene-based JP-8 grade is currently the primary fuel for NATO 317 

aircraft. Corporan et al. (2011) reported some JP-8 characteristics. 318 

 319 

Jet fuels are a mixture of thousands of different hydrocarbons. The range of their molecular weights 320 

is restricted by the distillation: in kerosene-type fuels (e.g., Jet A and Jet A-1) the carbon number 321 

ranges between about 8 and 16, while in wide-cut jet fuels (Jet B), between about 5 and 15. Spicer 322 

et al. (1994) reported that jet fuel is primarily composed of species with five or more carbons and 323 

70% of the compounds by weight contain 11–14 carbon atoms. Most of the hydrocarbons in jet fuel 324 

are members of the normal parafins, iso-paraffin, cycloparaffin, aromatic and alkene classes: 20% 325 

n-paraffins, 40% iso-paraffin, 20% naphthenes and 20% aromatics are typical (Lindstedt and 326 

Maurice, 2000; Liu et al., 2013 and reference therein). Moreover, a series of different additives are 327 

required or approved for use by ASTM and DEF STAN specifications to enhance or maintain some 328 

fuel properties, improve performance or handling. Among those approved for Jet A and Jet A-1 329 

fuels, some hindered phenols serve as antioxidants, the di-ethylene glycol monomethyl ether acts as 330 

icing inhibitor, the N,N´-disalicylidene-1,2-propane diamine is added as chelating agent for many 331 

metal ions. Other additives act as electrical conductivity/static dissipaters, corrosion inhibitor and 332 

biocides: a summary is listed in Chevron Corporation (2006). 333 

 334 

The aviation industry is nowadays investing significant effort towards the use of alternative fuels 335 

(Blakey et al., 2011; Williams et al., 2012). Since aircraft emissions are recognised to be closely 336 

linked to the fuel composition (Beyersdorf et al., 2013 and reference therein), recently the 337 

introduction of synthetic fuels and bio-fuels instead of common oil-derivate jet fuels has been much 338 
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discussed in terms of beneficial effects upon exhaust emissions (e.g., Corporan et al., 2005; 2007; 339 

DeWitt et al., 2008; Timko et al., 2010a; Corporan et al., 2011; Lobo et al., 2011; Williams et al., 340 

2012; Cain et al., 2013). Among others, the Fischer-Tropsch (FT) fuel seems to be a potential 341 

candidate for replacing, or mixing with, oil-derived conventional jet fuels. The FT reaction was 342 

developed in the first half of twentieth century and uses a mixture of carbon monoxide and 343 

hydrogen to produce a complex product stream of paraffins, olefins, and oxygenated compounds 344 

such as alcohols and aldehydes via product upgrading (e.g., cracking, fractionation, and 345 

isomerisation). The mechanism is explained in Liu et al. (2013). The FT process leads to a fuel with 346 

low aromatic content and no sulfur, which are reported to be beneficial in reduction of emissions of 347 

particulate matter and its precursors from aircraft engines (Corporan et al., 2007; Timko et al., 348 

2010a; Lobo et al., 2011). Corporan et al. (2011) report gas chromatograms and hydrocarbon 349 

content of JP-8 and various alternative jet fuels. To study the effects of FT fuel usage on aircraft 350 

gaseous and particulate emissions the Alternative Aviation Fuel Experiment (AAFEX) was carried 351 

out in 2009: results are spread across various papers (e.g., Lee et al., 2011; Santoni et al., 2011; 352 

Anderson et al., 2011; Kinsey et al., 2012a,b; Beyersdorf et al., 2013). 353 

 354 

Avgas for general aviation is distilled separately from the most common motor gasoline and is 355 

formulated for stability, safety, and predictable performance under a wide range of environments. 356 

Nowadays there are two main grades (100 and 100LL low lead) regulated by the ASTM D 910 and 357 

UK DEF STAN 91-90 specifications. Tetraethyl Pb is added to avgas for increasing fuel octane and 358 

avgas 100LL has a lead content up to 0.56 g Pb L‒1. The impact of general aviation is under 359 

discussion, since it was reported as one of the largest remaining source of lead emissions to the air 360 

in the USA (e.g., Carr et al., 2011). Avgas is principally composed of isoparaffinic and aromatic 361 

hydrocarbons and their carbon numbers vary from about 4 (butane) to 10, with the most prevalent 362 

carbon number being 8 (Chevron Corporation, 2006). It may include tetraethyl lead as antiknock 363 

additive, icing inhibitors, antioxidants and others. 364 
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3.3  Sulfur Content in Fuels 365 

Over the past decades there has been a worldwide trend to decrease sulfur content in fuels and many 366 

jurisdictions, including the USA and the European Union, have recently required very low sulfur 367 

levels in road and marine fuels to reduce the SOx and particulate matter emissions from the 368 

transport sector. A similar reduction has not occurred for jet fuel although at the beginning of the 369 

2000s the IPCC indicated that reducing the sulfur content of kerosene will reduce SOx emissions 370 

and sulphate particle formation (IPCC, 1999). The maximum sulfur content of aviation fuel has 371 

remained at 3 g S kg fuel‒1, or 3000 ppm by mass (Lewis et al., 1999; Ebbinghaus and Wiesen, 372 

2001; Anderson et al., 2005; Barrett et al., 2012). However, lower values of fuel sulfur content 373 

(FSC) have commonly been reported: Fahey et al.(1999) stated that in the world market at the 374 

beginnings of the 2000s the FSC was near 400 ppm; Hileman et al. (2010) reported that average 375 

FSC in commercial Jet A, Jet A-1 and military JP-8 fuel grades varied between 550 to 750 ppm; 376 

Agrawal et al. (2008) reported that FSC in the fuel was 300 ppm. Popovicheva et al. (2004) and 377 

Demirdjian et al. (2007) reported that the aviation kerosene TS-1 has a FSC of 1100 ppm and less 378 

than 10−4 wt.% of metals. 379 

 380 

FSC in jet fuels is directly related to the SO2 emissions in aircraft exhaust (e.g., Arnold et al., 381 

1998a; Schumann et al., 1998; Hunton et al., 2000). Some research projects, such as APEX-1, were 382 

designed to study the effects of FSC on aircraft engine emissions (e.g., Wey et al., 2006; 2007; 383 

Kinsey, 2009; Onash et al., 2009). Generally the studies reported that the emissions of both SO2 and 384 

sulphates are proportional to S levels in fuels, but no systematic difference between the low and 385 

high sulfur fuels in terms of other emitted organic sulfur species (OCS and CS2) were reported 386 

(Anderson et al., 2006). The conversion of S(IV) to S(VI) is amply discussed later in this review. 387 

 388 

Recently, the impact of ultra-low sulfur jet fuel (15 ppm) upon public health, climate, and 389 

economics was examined by Barrett et al. (2012). They reported that the use of ultra-low sulfur 390 
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fuels on a global-scale will cost 1−4 billion US $ per year, but may prevent 900−4000 air quality-391 

related premature mortalities per year. Moreover, Barrett and co-authors also stated that the 392 

radiative forcing (RF) associated with reductions in atmospheric sulphate, nitrate, and ammonium 393 

loading can be estimated as +3.4 mW m‒2, i.e. equivalent to about 1/10th of the warming due to 394 

CO2 emissions from aviation. 395 

 396 

3.4  Current Use and Future Jet Fuel Consumption Scenarios 397 

The availability of reliable information on fuel consumption is essential to make robust estimates of 398 

aviation emissions at both global and regional scales. Various estimates of aviation fuel 399 

consumption are available in the literature and generally refer only to jet fuel, since piston-powered 400 

flights were estimated to account for approximately 2% of propeller (piston plus turboprops) and ~ 401 

0.05% of total (propeller plus jet) fuel burn (Kim et al., 2007). Gauss et al. (2006) estimated a total 402 

of 169 Tg fuel globally burned in 2000, of which 152 Tg is due to civil flights. The AERO2k global 403 

aviation emissions inventories reported a total of 176 Tg of kerosene used in 2002 for both civil 404 

(156 Tg) and military (19.5 Tg) aviation (Eyers et al., 2004); other studies of the 2000-2005 period 405 

estimated that the global aviation industry consumed approximately 170-203 Tg of kerosene per 406 

year with an evident decrease in 2001-2002 following the drop of aviation traffic due to the 11th 407 

September 2001 and SARS events (Kim et al., 2007); Wilkerson et al. (2010), Whitt et al. (2011) 408 

and Olsen et al. (2013)  reported that the global commercial aircraft fleet burned 188 Tg of fuel in 409 

2006;  Chèze et al. (2011) reported a world consumption of  229 Mt of jet fuel in 2008. These 410 

estimates accounted for approximately 3% of current annual fossil fuel energy usage (Barrett et al., 411 

2010, and reference therein). Data from OPEC (Mazraati, 2010) stated that the aviation sector in 412 

2006 was the second major consumer of total oil demand in the transportation sector ( 11.2%) and 413 

accounted for 5.8% of total oil consumed in the world. Given the past and future growth of the 414 

aviation industry, this consumption may rise further: AERO2k emission inventories estimated a 415 

forecast scenario for 2025 in which the fuel demand for aviation will be 327 Tg y‒1 (Eyers et al., 416 
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2004); Chèze et al. (2011) reported that the world jet fuel demand is projected to grow by 38% 417 

between 2008 and 2025, rising to more than 316 Mt in 2025 at a mean growth rate of 1.9% per year. 418 

Owen et al. (2010) estimated the future global aviation emissions under four of the IPCC/SRES 419 

(Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker 420 

scenarios and reported a fuel use of 336 Tg in 2020 and varying from 426 and 766 Tg for 2050. 421 

This study also reported an estimate of 325 Tg for 2050 if the ambitious technology targets of the 422 

Advisory Council for Aeronautical Research in Europe (ACARE, 2002) were to be achieved. Table 423 

2 summarises the yearly global fuel consumption reported in recent studies. However, aviation 424 

traffic growth and jet fuel demand have been shown not to be strictly correlated, since the 425 

efficiencies of aircraft engines and air traffic management are improving and modern airliners are 426 

75% quieter with consequent fuel consumption reduced by 70% with respect to the 1960s 427 

(Baughum et al., 1999; Nygren et al., 2009, and references therein). In particular, the current 428 

average fuel consumption of in-use fleets was estimated to be less than 5 L fuel every 100 RPK, 429 

while in most modern aircraft it drops to approximately 3.5  L / 100 RPK: Nygren et al. (2009) 430 

reported the historical world fleet of aircraft average fuel consumption and found an exponential 431 

trend in fuel consumption reduction from 1987 to the present day. Oil prices have driven investment 432 

in more efficient aircraft models. Fuel costs exceed those of labour costs for airlines. Fuel costs 433 

accounted for ~13% of total costs in 2002, but today they are closer to 34% (Boeing, 2013).  434 

 435 

4.  AIRCRAFT EXHAUST EMISSIONS 436 

Emissions from aircraft engines are generally considered to be the dominant source at airports and 437 

the large majority of studies available in the literature focus on aircraft emissions. Common 438 

airliners burning kerosene-type fuels primarily produce carbon dioxide and water (Wahner et al., 439 

1995; Lewis et al.,1999; Anderson et al., 2006; Lee et al., 2010), which are directly related to the 440 

burned fuel, with minor variations due to the carbon-hydrogen ratio of the fuel. In this context, it is 441 
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reported that the fuel flow of common airliner engines is approximately linearly proportional to 442 

engine thrust setting (e.g., Anderson et al., 2005; Wey et al., 2006).  443 

 444 

The oxidation of atmospheric nitrogen at the very high temperatures in engine combustors drives 445 

the formation of nitrogen oxides, while the presence of trace amounts of sulfur, nitrogen and some 446 

metals (e.g., Fe, Cu, Zn) in fuels (Lewis et al., 1999) and non-ideal combustion conditions within 447 

engines may lead to the production of by-products, including sulfur oxides, additional nitrogen 448 

oxides, unburned hydrocarbons and particulate soot. Furthermore, exhausts can also contain species 449 

from the combustion and release of lubricant oils (Dakhel et al., 2007; Timko et al., 2010b; Yu et 450 

al., 2010; Kinsey et al., 2011; Yu et al., 2012) and from mechanical component wear (Petzold et al., 451 

1998; Demirdjian et al., 2007). Therefore a more realistic, but simplified, combustion scheme in 452 

aircraft engines can be summarised as (Lee et al., 2009): 453 

CnHm+N2+O2+S→CO2+N2+H2O+O2+CO+SOx+NOx+HC+soot 454 

IPCC reported that approximately 99.5-99.9% of the molar content of typical commercial engine 455 

exhaust consists of N2, O2, CO2, and H2O (Lewis et al., 1999). Figure 3 reports a more detailed 456 

breakdown of combustion products for a core engine mass flow: the combustion products in aircraft 457 

exhausts are mainly made up of CO2 (~72%), H2O (~27.6%), while residual products account for 458 

less than 1%. Figure 2 summarises the main exhaust components of aircraft engines and their 459 

potential effects on the environment and human health. It is estimated that roughly 90% of aircraft 460 

emissions, except hydrocarbons and CO (~70%), are produced while cruising at altitude, while the 461 

remainder is emitted during landing, take-off, and ground level operations (e.g., FAA, 2005).  462 

 463 

Aircraft emissions have been studied extensively since the late-1960s and initially the interest was 464 

mainly driven by their direct and indirect effects on climate and the generation of contrails. For this 465 

reason, many early studies focused on emissions at high cruise altitudes (e.g., Reinking, 1968; 466 

Kuhn, 1970; Arnold et al., 1992; Fahey et al., 1995a,b; Wahner et al., 1995; Brasseur et al., 1996; 467 
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Schumann, 1996;1997; Anderson et al., 1998a,b). The interest in aviation emissions at airports also 468 

dates back many years (e.g., Daley and Naugle, 1979; Naugle and Fox, 1981), but only recently was 469 

there an increasing awareness of the effects of aircraft emissions at ground level, or at least within 470 

the planetary boundary layer. The recent interest in aircraft emissions at ground-level was initially 471 

motivated by public concern, given that more and more often airports are held responsible for air 472 

pollution and noise in nearby residential areas (e.g., Mahashabde et al., 2011). Since aircraft 473 

emissions are related to engine thrust (e.g., Anderson et al., 2006; Lobo et al., 2007; Whitefield et 474 

al., 2008; Timko et al., 2010b; Kinsey et al., 2010; Kinsey et al., 2011) and engines are designed for 475 

high performance while cruising at high altitudes, some aircraft operations within airports require 476 

that engines operate outside of their optimal regimes, ranging from maximum thrust during take-off 477 

to low power settings during operations on the ground. This fact was clearly highlighted during the 478 

APEX-1 campaign by Onash et al. (2009), who reported that a CFM56 engine is less efficient at the 479 

low thrust levels usually used at airports. This may result in potentially higher emissions on the 480 

ground than that during cruising for those pollutants mainly emitted at low power, such as CO and 481 

hydrocarbons. 482 

 483 

Early reports of nitrogen oxides, carbon monoxide, hydrocarbons and particulate matter from jet 484 

aircraft turbine engines were made by Spicer et al. (1984). Subsequent studies (Spicer et al., 1992; 485 

1994) added further information and provided detailed information on the organic component of 486 

turbine engine emissions. Following from these pioneering studies, the scientific literature now 487 

comprises a large number of studies and most have concluded that aircraft exhausts are responsible 488 

for significant emissions of a series of gaseous, semi-volatile and non-volatile species. Non-volatile  489 

emissions are produced in the combustor and are made up of refractory material such as soot (e.g., 490 

Agrawal et al., 2008; Kinsey, 2009; Dodson et al., 2009; Lee et al., 2010; Presto et al., 2011), which 491 

is emitted into the atmosphere as particulate matter even at the high engine exit temperatures, but 492 

also contains many organic compounds (e.g., Herndon et al., 2006; Anderson et al., 2006; Webb et 493 
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al., 2008; Wood et al., 2008a; Agrawal et al., 2008; Herndon et al., 2009; Lee et al., 2010; Mazaheri 494 

et al., 2011; Presto et al., 2011; Kinsey et al, 2011; Mazaheri et al., 2013).  495 

 496 

Volatile emissions include compounds that exists as vapour at engine exit temperature and pressure 497 

(Presto et al., 2011) and are made up of gaseous and vapour-phase pollutants, such as CO2, CO, 498 

NOx, SO2, O3 and many organic compounds, including alkanes, alkenes, carbonyls, aromatic 499 

compounds and a number of other volatile organic species. The least volatile fraction has been 500 

shown to range from 10 to 20% of the total organic emissions (Presto et al., 2011) and its presence 501 

is particularly challenging, because it can react in the atmosphere and may undergo condensation in 502 

the exhaust plumes leading to aerosol particles or volatile coating of pre-existing particles (Lee et 503 

al., 2010; Miracolo et al., 2011). This latter component is named volatile PM, however there is 504 

today a considerable controversy about its definition (Kinsey, 2009). Such particles may act as 505 

condensation nuclei or may interact with soot to form condensation nuclei and thus may have 506 

effects on cloud formation, precipitation and climate. In addition, additional compounds may 507 

subsequently originate from the aging of exhausts following a chain of oxidation with atmospheric 508 

oxidants and gases.  509 

 510 

The relative amount of exhaust emissions depends upon combustor temperature and pressure, fuel 511 

to air ratio and the extent to which fuel is atomised and mixed with inlet air (Anderson et al., 2006). 512 

It is well recognised that the amounts of many pollutants may vary considerably with the engine 513 

technology, model and especially with the thrust. For example Slemr et al. (1998, 2001) and Spicer 514 

et al. (1992; 1994) reported that hydrocarbon emissions can be dependent upon engine type, use and 515 

maintenance history as well as fuel composition. 516 

 517 

 518 

 519 
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4.1  Geographical and Vertical Distributions of Flights 520 

Based upon the main air traffic routes, a series of studies have discussed the geographical and 521 

vertical distributions of fuel consumption, which can be used to further assess the  relative 522 

emissions from aviation (e.g., Kim et al., 2007; Wilkerson et al., 2010; DeWitt et al., 2011; Olsen et 523 

al., 2013; Simone et al., 2013). Due to the geographical distribution of civil aviation in the 2000s, 524 

the global fuel burn by domestic flights is dominated by the North America and Caribbean regions, 525 

while fuel consumed by international flights is dominated by Asia, North America and the 526 

Caribbean, and Western Europe and North Atlantic (Kim et al., 2007). Using the Aviation 527 

Emissions Inventory Code (AEIC, Stettler et al., 2011) Simone et al. (2013) estimated the fuel burn 528 

by country of origin/destination in 2005 and reported that the USA was the most important (59.1 529 

Tg), followed by Japan (9.7 Tg), UK (9.4 Tg), China (8.5 Tg, excluding Hong Kong), Germany (6.7 530 

Tg) and France (5.4 Tg). A map showing the column sum of global fuel burn from scheduled civil 531 

aviation in 2005  is provided in Figure 4a. Other studies have been carried out to estimate annual 532 

fuel consumption and pollutant emissions more locally: for example Fan et al. (2012) assessed the 533 

fuel consumption and emissions for each airline in China in 2010. 534 

 535 

Kim et al. (2007) and Lee et al. (2007) used the System for assessing Aviation’s Global Emissions 536 

(SAGE) model to estimate the vertical profiles of commercial aviation and pointed out that the 537 

highest fuel burn and emissions are between 9 and 12 km, which corresponds to typical cruise 538 

altitude. Generally, most studies also reported that about 5−7% of total jet fuel is consumed within 539 

1 km above ground level during airport operations (Kim et al., 2007; Simone et al., 2013), and 540 

Olsen et al. (2013) reported a comparison of the annual global vertical distribution of fuel burn by 541 

the commercial aviation deriving from different estimates (Figure 4b). Although most studies have 542 

concluded that 5-10% of fuel is burned below 1000 m, aircraft operations within airports may 543 

further increase fuel consumption due to the acceleration and deceleration of the engines following 544 
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airport congestion (Anderson et al., 2005; Nikoleris et al., 2011) or due the unaccounted use of fuel 545 

for APUs (Ratliff et al., 2009).  546 

 547 

4.2  Emissions at Ground  548 

4.2.1  Landing and take-off (LTO) cycles 549 

The emissions of all aircraft engine must comply with applicable standards promulgated by the 550 

International Civil Aviation Organization (ICAO, 2008) and measured upon the landing and take-551 

off (LTO) cycles. A LTO cycle refers to all the operations the aircraft carry out below 3000 ft above 552 

field elevation (equivalent to 914 m) over a specific range of certifiable operating conditions and 553 

includes four stages in terms of both engine thrust settings (expressed as a percentage of maximum 554 

rated thrust, or F00) and typical time in each specific mode of operation (time-in-mode, TIM). The 555 

3000 ft height roughly corresponds to the atmospheric mixing height, i.e. the lower part of the 556 

troposphere within which pollutants emitted at ground-level mix rapidly (e.g., Schäfer et al., 2006). 557 

The LTO cycles are designed for aircraft engines manufactured after 1985 whose rated output is 558 

greater than 26.7 kN and aim to guarantee they not exceed certain regulatory environmental limits 559 

for a series of pollutants, namely unburned total hydrocarbons, carbon monoxide, nitrogen oxides 560 

and smoke number (SN). This latter parameter is roughly representative of the amount of soot an 561 

engine generates (e.g., Wayson et al., 2009; Stettler et al., 2013a,b). In the first LTO phase the 562 

aircraft descends from cruising altitude toward the runway and lands at the airport. This phase is 563 

named “approach” and is estimated as lasting for 4 min with engines at 30% F00. After landing, the 564 

aircraft enters in the “idle” phase which include all the ground-based operations: it proceeds at a 565 

low speed to the gate (taxi-in), remains on stand-by for the loading and unloading operations and 566 

again prepares for take-off proceeding towards the runway (taxi-out). Idle lasts 26 min and the 567 

engines are required to be at 7% F00. The subsequent operating modes include the “take-off” with 568 

engines stressed to the full thrust (100% F00) for 0.7 min, and the “climb” (85% F00 for 2.2 min) up 569 

to 3000 ft height. A standardised LTO cycle is shown in Figure 5.  570 
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4.2.2  Engine ground running procedures 571 

In addition to the operations falling within LTO cycles, the ground running procedures (GRPs) may 572 

lead to further emission loads from aircraft engines at airports. GRPs refer to the operation of some 573 

or all engines carried out on the ground for the purpose of functionally checking the operation of 574 

either engines or aircraft systems. GRPs are therefore an essential part of the operation of any 575 

airliner prior to the release to service of an aircraft from maintenance. The main reasons for running 576 

the engines on the ground are (Buttress and Morris, 2005): (i) check starts after minor maintenance 577 

actions; (ii) runs at no more than ground idle to ensure that the engine operates correctly after 578 

maintenance action, these include thrust reverser function checks, etc.; (iii) runs at powers greater 579 

than ground idle to check the correct operation of certain valves, leak checks, etc. To date, only few 580 

studies take into account the emissions from GRPs, but their importance for the atmospheric loads 581 

of some pollutants cannot be neglected. For example, Buttress and Morris (2005) showed that GRPs 582 

at London Heathrow airport release approximately 15.6 Mg y‒1 NOx. Mazaheri et al. (2011) 583 

investigated the annual emissions of particle number, particle mass and NOx throughout the LTO 584 

cycles and GRP at the Brisbane Airport and showed that annual emissions account for less than 3%. 585 

Despite the evidence that GRPs may have a substantial impact on local air quality at airports, up to 586 

now they have received only minor consideration. GRPs are not yet regulated internationally and 587 

must comply only with local regulatory requirements imposing limitations on the locations, times 588 

and engine thrust levels employed during ground running which may differ from one airport to 589 

another. 590 

 591 

4.2.3  Limitations in the use of standard LTO cycles 592 

The use of standard LTO cycles as a surrogate for typical aircraft operations close to the ground 593 

represents an approximation and is not always representative of operations at airports. One 594 

limitation is that the ICAO engine emissions standards are applied through national and multi-595 

national certification processes to turbojet and turbofan engines, but not turboprop, turboshaft and 596 
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piston engines (ICAO, 2011). This limitation may be negligible at large airports, where most traffic 597 

is due to common airliners equipped with TF engines, but may represent a major approximation for 598 

small and medium-sized airports where small, private, business and regional aircraft account for a 599 

large portion of flight traffic. In addition, despite LTO cycles having been designed to model 600 

optimally all the operational procedures of aircraft in the vicinity of airports, sometimes they are not 601 

well adapted to engine settings and actual TIM, which depend upon pilot’ technique, fleets, airport 602 

layouts and flight traffic. In fact, default ICAO TIM are not representative of real operations and are 603 

for certification purposes. Consequently, although some inventories account for the deviations from 604 

the ICAO default TIMs and thrust settings, some deviations from the standardised LTO procedures 605 

may occur during actual LTO cycles. This inevitably leads to some differences between actual 606 

airport operations and emission inventories used in modelling studies. The main 607 

deviations/limitations are:  608 

 609 

• reduced thrust during take-off. This practice is often carried out for performance and cost-610 

efficiency reasons (ICAO, 2011) and  has been widely observed on operational runways 611 

(Carslaw et al., 2008; Herndon et al., 2008);  it may depend on aircraft weight and weather 612 

factors (Morris, 2002) and is often largely unknown (Carslaw et al., 2008). Since the 613 

emissions of some pollutants increase monotonically with the thrust (e.g., NOx), this could 614 

lead to an overestimation of emissions from airports; 615 

• lower thrust at idle/taxi mode. It has been reported that most aircraft use a thrust of 3%‒4% 616 

F00 instead of 7% (Morris, 2005a,b; Nikoleris et al., 2011 and reference therein) during idle 617 

operations. Since most pollutants emitted in exhaust plumes are strongly increased at 618 

decreased power settings (CO and generally all hydrocarbons), this may lead to 619 

underestimation of emissions at airports. In this context, Wood et al. (2008b) suggested that 620 

the thrust used in taxi operations can be split in two modes, i.e. ‘ground idle’ carried out at 621 
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4% F00 and ‘taxiway acceleration’ with thrust settings up to 17%. Moreover, higher thrust 622 

levels are sometimes used for turning; 623 

• acceleration and deceleration of the engines or stop-and-go situations. This is mainly the 624 

result of congestion on taxiways and is known to be responsible for significant increases in 625 

fuel consumption and increased emissions (Anderson et al., 2005; Nikoleris et al., 2011). For 626 

example Morris (2005a) reported that instant accelerations up to 10% F00 and lasting ~10 s 627 

may occur at London Heathrow airport when aircraft cross an active runway or make a sharp 628 

turn. Due to this, the entire taxiway phase of operation using a uniform engine thrust level 629 

have been also recognised as problematic for emission inventory estimates because of the 630 

nonlinear emission rate of many compounds at low power (Herndon et al., 2009);  631 

• use of a reverse thrust phase during landing. Reverse thrust is applied to assist mechanical 632 

brakes in slowing down the landing aircraft and is not generally required for normal 633 

operations onto a dry runway (ICAO, 2011). However, it generally occurs with idle thrust 634 

power as a prudent safety precaution, and under some circumstances it may also occur at 635 

power higher than 10% F00 (Morris and Easey, 2005; Stettler et al., 2011). Generally, reverse 636 

thrust is applied for 10‒20 s (Fanning et al., 2007; Stettler et al., 2011), but may vary as a 637 

function of the landing velocity, runway length and aircraft weight;  638 

• the evident differences between the standard TIM, which is used as part of the ICAO engine 639 

emissions certification processes, and the actual TIM used at airports (e.g., Unique, 2004; 640 

Watterson et al., 2004; Patterson et al., 2009; Stettler et al., 2011; Mazaheri et al., 2011; 641 

Khadilkar and Balakrishnan, 2012). For example, Patterson et al. (2009) and Khadilkar and 642 

Balakrishnan (2012) observed that total fuel burn during departures and arrivals at airports is 643 

generally overestimated by the ICAO method with respect to emissions computed from real-644 

time aircraft flight data. Other studies have also reported measured TIM at airports: Unique 645 

(2004) reported TIM in Zurich airport and detected differences in all the LTO phases: idle (-646 

43%), approach (+10%), climb (-77%) and take-off (+129%) which have been estimated to 647 
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have a strong impact on the calculation of emissions, resulting in reduced fuel flow (‒38%) 648 

and NOx emissions (‒31%); 649 

• the composition of the fleet that serves an airport and the weight of the aircraft. Since the 650 

ICAO certifies the engines and not the full aircraft, some airplane characteristics, mainly the 651 

aircraft weight, may have a key role in determining the emissions. Furthermore, in addition to 652 

the mass of the aircraft, its load of fuel, passengers and goods affect the overall weight: it is 653 

reported that passengers, crew and luggage usually add 6-15% to aircraft weight (Hu et al., 654 

2009). Most of those factors vary from flight to flight, are largely unknown and may have 655 

direct implications for reduced thrust during take-off. In fact, it should be inferred that the 656 

increase of the aircraft weight has direct effects upon the thrust levels needed for carrying out 657 

usual LTO operations. For example, Carslaw et al. (2008) studied the NOx emissions at 658 

London Heathrow and found evidence for statistically significant differences in the emissions 659 

from the same engine type used on the same aircraft frame. Among other factors, they 660 

speculated that the aircraft weight could be a cause. In a study conducted in eight major busy 661 

airports, Turgut and Rosen (2010) detected significant differences in the emissions of some 662 

pollutants and concluded that every airport has LTO cycles carried out by aircraft with 663 

different characteristics and, consequently, emissions. Another recent study by Turgut et al. 664 

(2013) showed a good relationship between aircraft mass and the NOx emission during take-665 

off and climb, which supports the concept of an explicit relationship between the aircraft 666 

weight and emissions. There is a general lack of knowledge about the relationships between 667 

aircraft mass and emissions, although some recent studies have indicated that heavier aircraft 668 

also emit more particles (Zhu et al., 2011).  669 

 670 

Recent studies assessing airport emissions have proposed and used LTO cycles which are much 671 

more complex than those standardised by the ICAO. For example, in a study of the air quality and 672 

public health impacts of UK airports, Stettler et al. (2011) used specific TIMs derived from 673 
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Watterson et al. (2004) and Underwood et al. (2004) composed of 12 phases, namely approach, 674 

landing roll, reverse thrust, taxi-in, taxiway acceleration, APU, taxi-out, taxiway acceleration, hold, 675 

take-off, initial climb and climb-out. Proposed TIMs were developed by analysing the common 676 

procedures of an A320 aircraft at London Heathrow, but may vary by aircraft size category. Other 677 

studies (e.g., Ratliff et al., 2009), used models, such as the Emissions and Dispersion Modelling 678 

System (EDMS), which also requires jet fuel quality data, main engine and APU specifications, 679 

aircraft weight and ground operating time to generate more reliable emission estimates. 680 

 681 

4.2.4  The emission indices (EIs) 682 

The emissions during standardised LTO cycles are then reported as emission indices (EIs) 683 

expressed as mass of pollutant emitted per unit mass of fuel burned. Fuel-based emission indices for 684 

the compound X are calculated according to:            685 

EI(X)=Fc∙(MX/MCO2)∙(ΔX/ΔCO2) 686 

where Fc represents the stoichiometric calculation of CO2 produced per kilogram of fuel consumed 687 

(with units g CO2 kg Fuel‒1) assuming complete combustion and given a particular hydrogen to 688 

carbon ratio (e.g., Herndon et al., 2004). MX and MCO2 are the molecular weights of the compound 689 

X and CO2, respectively, and ΔX and ΔCO2 are the enhancements of compound X and CO2 within 690 

the plume, respectively (e.g., Anderson et al., 2006). Unless specified differently, by convention 691 

EI(NOx) is defined in terms of NO2 and therefore the mass of NOx emissions is:  692 

NOx as NO2 = NO2 emissions + NO emissions · M(NO2)/M(NO) 693 

where M(NO2) and M(NO) are the molecular weights of NO2 and NO, respectively. In a similar 694 

way it should be specified that EI(hydrocarbons) is often referenced to methane (Wahner et al., 695 

1995). ICAO maintains a databank of engine certification data for commercial aviation reporting 696 

EIs for the four selected pollutants (EASA, 2013).  Emissions of a pollutant X from an engine can 697 

be therefore calculated using three parameters: the first two are provided by the ICAO databank and 698 

are the main engine EI(X) and the engine fuel flow, i.e., the burned fuel at a defined power setting 699 
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(expressed as kg s‒1); the third parameter is the time-in-mode (TIM), i.e. the time the engines spend 700 

at an identified power setting (ICAO, 2011): 701 

Emission(X)=EI(X)∙TIM∙fuel flow 702 

Analogous to the EI for the emitted pollutant, emission indices for the number of particles have 703 

been commonly reported in the literature. For convention, they are here reported as EI(#). 704 

Using ICAO EIs and standardised LTO TIMs, Figure 6, 7 and 8 report a reprocessing of the data 705 

included in the ICAO databank. In particular, Figure 6 shows the total burned fuel and the mass of 706 

emitted pollutants (CO, NOx and hydrocarbons) during a complete LTO cycle, i.e. the sum of 707 

standardised time in each mode per fuel flow per average EI at each of the four power settings 708 

(ICAO, 2013); data are organised to show the changes in the ICAO emission data for in-use engines 709 

certified from 1973 to present (five year steps). Since different engines have different 710 

characteristics, including the thrust force, Figure 6 also shows the ratios between the fuel burned 711 

during complete LTO cycles and the engine maximum rated thrust (in kN) to normalise the fuel 712 

consumption of the engine power. Figure 7 summarises the ICAO EI data (all in-use engines 713 

certified from 1976 to today) per each LTO stage, expressed as g pollutant emitted per kg fuel 714 

burned. Figure 8 shows the total burned fuel and emissions per each LTO phase, i.e. the product of 715 

EIs per standardised time in each phase per fuel flow. The reprocessing of ICAO data does not take 716 

into account the number of units produced for each engine model, but only the different models 717 

produced and still in service in April 2013 (and included in the ICAO databank), regardless of 718 

manufacturer, type and technology. Moreover, data refer to single engines, and generally 719 

conventional aircraft are equipped with 1 to 4 engines. Therefore the sole purpose of the 720 

reprocessing of ICAO data is to report qualitatively the trends in fuel consumption and emissions 721 

for in-use TF engines. 722 

 723 

Currently, the scientific literature includes several studies aiming to give EIs for comparison with 724 

reported ICAO databank certification data and for many other components, including particulate 725 
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matter, elements, ions and speciated hydrocarbons. However, such data are often sparse and results 726 

poorly comparable. Most studies were carried out using single or a few engine types, under certain 727 

environmental conditions, without a standardised thrust and/or often using different measurement 728 

techniques and instrumental set-up. Table 3 lists the most recent studies available in the literature 729 

reporting EIs for various engines in aircraft and helicopters. The table also shows some information 730 

(if available) about tested aircraft, engine models, selected thrust, type of fuel, sampling 731 

methodologies and analytical techniques. Table 4 provides a list of recent studies which measured 732 

EIs during real aircraft operations at airports. Most of the data in such studies (both engine tests and 733 

real world operations) are summarised in the Supplemental Information Tables SI1, SI2, SI3 and 734 

SI4, which provide detailed information about the EIs for many gaseous pollutants, speciated 735 

hydrocarbons, particle number, particle mass (including soot) and species/ions in particulate matter, 736 

respectively. Note that specific thrust levels provided in the tables are derived from the literature 737 

and are categorised in five groups, named idle, approach, cruise, climb and take-off, on the basis of 738 

the engine type. The thrust, expressed as F00, is always provided along with the EIs. Additional 739 

tested thrust levels (if available) are also reported, along with fuel and analytical methodologies.  740 

 741 

4.2.5  Considerations about the EIs  742 

As indicated by the large number of studies in Tables 3 and 4, most of the literature provides results 743 

through the calculation of EIs. When applied to the specific testing studies on engines or airplanes, 744 

such methodology has the advantage of giving data easily comparable with EIs reported in the 745 

ICAO databank. This may allow a better evaluation of the differences amongst tested engines and 746 

technologies or, in case of the use of innovative analytical devices, allows a check the agreement 747 

between data obtained and certified values. In contrast, expressing the results as EIs from studies 748 

conducted during real-world operations at airports has both advantages and limitations. An 749 

advantage of the specific studies may be comparison of the results with the ICAO data to detect 750 

changes due to evolution of the exhaust plume, e.g. aging and gas-to-particle partitioning. Carslaw 751 
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et al. (2008) noticed that EIs do not give a clear indication of the absolute contribution of aircraft 752 

emissions to ground-level concentrations, which is important for assessing air quality at airports. 753 

Furthermore, they commented that the value of EIs may be substantially affected by limited  754 

knowledge of some important aircraft operational factors, such as the aircraft weight and thrust 755 

setting at take-off. A list of remaining studies conducted at airports and in their surroundings, which 756 

do not report data expressed as EIs, is provided in Table 5. In summary, Tables 3, 4 and 5 provide 757 

an overview of the most important studies reported in this review for the characterisation of aircraft 758 

emissions in both tests and real operations. 759 

 760 

4.3  Emissions at Cruise Altitudes 761 

Although injected at high altitudes, aircraft cruise emissions have been found to impact surface air 762 

quality through the mean meridional streamlines due to the polar, Ferrel, and Hadley cells (Barrett 763 

et al., 2010; 2012) and they are not currently regulated. Consequently, although this review focuses 764 

on airport emissions, a brief statement upon the aircraft emissions during cruise (8-12 km) is 765 

presented, as the majority of exhaust from aircraft is emitted at high altitudes (e.g., Gardner et al., 766 

1997; FAA, 2005; Wilkerson et al. 2010; Whitt et al., 2011). A more exhaustive summary of the 767 

effects of both civil (subsonic) aviation in the upper troposphere and supersonic aircraft in the 768 

stratosphere is reported in two reviews by Lee and co-authors (Lee et al., 2009; 2010). 769 

 770 

Impacts of aviation during cruising first focused the interest of the scientific community in the late 771 

1960s in relation to contrail generation at high altitudes and the relative effect on climate (Reinking, 772 

1968; Kuhn, 1970). Contrails are formed whenever the requisite conditions of either ice or water 773 

supersaturation exist within aircraft exhaust plumes (DeWitt and Hwang, 2005). Subsequently, in 774 

the early 1970s, concern grew over a possible role in stratospheric ozone depletion while interest in 775 

the impact of nitrogen oxide emissions on the formation of tropospheric ozone began in the late 776 

1980s (Lee et al., 2009, and references therein). Subsequent studies (e.g., Wahner et al., 1995; 777 
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Brasseur et al., 1996; Schumann, 1997) investigated a number of emissions other than CO2, and 778 

effects from aviation with potential effects on climate. To date there are a large number of studies 779 

characterising aircraft emissions during cruising (e.g., Fahey et al., 1995a,b; Busen and Schumann, 780 

1995; Schumann et al., 1996; Schlager et al., 1997; Paladino et al., 1998; Anderson et al., 1998a; 781 

Curtius et al., 1998; Brock et al., 2000; Schröder et al., 2000; Schumann et al., 2000; 2002; Curtius 782 

et al., 2002; Jurkat et al., 2011).  783 

 784 

The RF of civil aviation emissions has been extensively studied (e.g., Prather et al., 1999; Wuebbles 785 

et al., 2007; Lee et al., 2009) and can be summarised in the following emitted compounds and 786 

processes, each having positive (+) or negative (‒) forcing: H2O (+); CO2 (+); the atmospheric 787 

chemistry of NOx causes the formation of tropospheric O3 (+) but also the destruction of methane 788 

(‒);oxidation of SO2 results in sulphate particles (‒); contrails (+); aviation-induced cloudiness 789 

(potentially +); soot, mainly composed of black carbon (+). Lee et al. (2009) estimated that 790 

aviation-induced RF in 2005 was ~55 mW m‒2, which accounted for 3.5% of global anthropogenic 791 

RF. In addition, black carbon emissions generated by aircraft at altitude have been shown to have a 792 

role in the formation of contrails (Schumann, 1996) and contrail-induced cirrus clouds, which affect 793 

the Earth’s radiation balance by reflecting incoming solar radiation and by absorbing and re-794 

emitting long wave radiation. The result is an additional positive RF of a magnitude similar to that 795 

of CO2 (IPCC, 1999; Sausen et al. 2005; Lee et al., 2010). Recently, Azar and Johansson (2012) 796 

also assessed the non-CO2 climate impact of aviation, including NOx and contrails, and calculated 797 

the emissions weighting factors, i.e. the factor by which aviation CO2 emissions should be 798 

multiplied to get the CO2-equivalent emissions for annual fleet average conditions. Recently, 799 

Gettelman and Chen (2013) reported the climate impact of aviation aerosol. Although such studies 800 

highlighted the climate impact of aviation, it should be borne in mind that the magnitude of the total 801 

emissions of pollutants from aviation in terms of mass with direct and/or indirect effects on climate 802 

are one to two orders of magnitude smaller than from road transport or shipping (Balkanski et al., 803 
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2010; Eyring et al., 2010). The study of aircraft emissions at cruise altitudes is very challenging 804 

mainly due to the obvious difficulty of sampling. Thus, measurements are commonly performed 805 

indirectly or extrapolated from data collected on the ground or in the laboratory. For this reason, the 806 

assessment of cruise emissions at altitude offers unique challenges to understanding the impacts of 807 

atmospheric emissions and their processing (Herndon et al., 2008, and reference therein). 808 

Computational models are available to extrapolate the test stand EI data to cruise altitude conditions 809 

(Baughcum et al., 1996b; Sutkus et al., 2001).  810 

 811 

4.4  Military Aircraft Emissions 812 

Despite most attention being given to civil aviation, a number of studies have also addressed 813 

emissions from military aircraft (e.g., Spicer et al., 1984; 1992; 1994; Heland and Schäfer, 814 

1997;1998; Gerstle et al., 1999; 2002; Miller et al., 2003; Anderson et al., 2005; Brundish  et al., 815 

2007; Corporan et al., 2008; Cheng, 2009; Cowen et al., 2009; Spicer et al., 2009; Cheng et al., 816 

2009; Cheng and Corporan, 2010). Despite the relatively high potential impact of military aircraft 817 

emissions under particular circumstances, the task of studying military emissions is very difficult. 818 

Unlike civil aviation, military operations generally do not work to set flight profiles and do not 819 

follow fixed plans (Wahner et al., 1995). In addition, national and military authorities are reluctant 820 

to disclose sensitive information either about operations or in-use technologies. The lack of 821 

comprehensive data about military operations makes realistic assessments of the contribution of 822 

military aircraft in terms of fuel consumption extremely difficult. In addition, some aircraft may 823 

have a dual function, such as the C-130 Hercules, which can be engaged in both military and 824 

civilian operations. Henderson et al. (1999) reported a historical breakdown of aviation fuel burn for 825 

civil and military aviation: in 1976 fuel burned by civil aviation was 64%, while military was 36%. 826 

In 1992 the percentages were 82% and 18%, respectively. Subsequent studies stated that military 827 

aviation fleets used 11% (19.5 Tg) of fuel in 2002 and estimated that the military contribution is in 828 

the range of 10-13% of total aviation emissions (Eyers et al., 2004; Waitz et al., 2005). Table 2 829 
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provides estimates of fuel consumption and exhaust emissions from military aviation by the 830 

AERO2k model (Eyers et al., 2004). Among the large number of military aircraft, Cheng and 831 

Corporan (2010) stated that the three classes of military engines T56, TF33, and T700/ T701C fitted 832 

in the C130 Hercules, B-52 bomber and Apache/Blackhawk helicopters, respectively, consume 833 

70%‒80% of the USA military aviation fuel each year. 834 

 835 

4.5  Water Vapour 836 

Water is a key product of all hydrocarbon combustion and aircraft engines release H2O as vapour 837 

(Lewis et al., 1999). Water vapour is a greenhouse gas and its increase in the stratosphere (Solomon 838 

et al., 2010) and the free troposphere (Sherwood et al., 2010) tend to warm the Earth's surface 839 

(Prather et al., 1999). Water vapour, via latent heat released or absorbed during condensation and 840 

evaporation cycles also play an active role in dynamic processes that shape the global circulation of 841 

the atmosphere (Schneider et al., 2010). Moreover its effect on the formation of contrails and on the 842 

enhanced cirrus generation in the upper troposphere can be relevant for additional global RF with 843 

an indirect consequent potential increase of positive effects on global warming (Lee et al., 2009). 844 

The annual and global-mean RF due to present-day aviation water vapour emissions has been found 845 

to be 0.9 (range 0.3–1.4) mW m−2 (Wilcox et al., 2012). The increased water vapour in the lower 846 

troposphere may have secondary effects on precipitation, fog, visibility and some microphysical 847 

processes.      848 

 849 

An emission index of 1230±20 g H2O kg Fuel‒1 is commonly reported for completely burnt fuel 850 

(Lewis et al., 1999; Lee et al., 2010): this represents a little less than 30% of all combustion 851 

products in aircraft exhaust (Figure 3). No differences in emission indices during idle, take-off and 852 

cruise power settings are reported (Lewis et al., 1999), as emissions of H2O are a simple function of 853 

fuel consumption. The AERO2k inventories (Eyers et al., 2004) estimate a global emission of 217 854 

Tg H2O for 2002, 193 Tg from civil aviation and 24 Tg from military operations. Other more recent 855 
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estimates report 251 Tg H2O in 2005 (Kim et al., 2007) and 233 Tg H2O in 2006 (Wilkerson et al., 856 

2010). However, the emissions of water by the global aircraft fleet into the troposphere are small if 857 

compared with fluxes within the natural hydrological cycle (IPCC, 1999) and thus water vapour 858 

from aircraft exhausts is not considered relevant for local air pollution and human health. An 859 

estimation of H2O produced by aircraft below 1000 m can be assessed by considering the global use 860 

of fuel reported in the literature for LTO cycles: considering the total consumption of 13.9 Tg fuel 861 

in 2005 (Kim et al., 2007), a total emission of ~17 Tg H2O can be estimated (Table 2). Considering 862 

the fuel burn breakdown provided by Simone et al. (2013) for the EU (3.1 Tg in 2005), a total of 3.8 863 

Tg y−1 H2O are emitted within European countries.  864 

 865 

4.6  Carbon Dioxide 866 

Carbon dioxide is recognised as the main greenhouse gas, has a primary role in the Earth’s climate 867 

warming and its behaviour within the atmosphere is simple and well understood (IPCC, 1999). Its 868 

main anthropogenic source is the combustion of fossil fuels: CO2 emissions from fossil fuel 869 

combustion, including small contributions from cement production and gas flaring, were estimated 870 

to be 8.7±0.5 Pg C yr‒1 in 2008 an increase of 2% from 2007, 29% from 2000 and 41% from 1990 871 

(Le Quéré et al., 2009). More recently, Peters et al. (2011) indicated that global CO2 emissions from 872 

fossil-fuel combustion and cement production further grew by 5.9% in 2010, surpassing 9 Pg C yr‒1 873 

principally due to the strong emissions growth in emerging economies. Once emitted, there are no 874 

important processes involving CO2 formation or destruction and sinks occur principally at the Earth 875 

surface by exchange with the biosphere and the oceans (Solomon et al., 2007).  876 

 877 

Carbon dioxide is the most abundant carbon-based effluent from aircraft engines (e.g., IPCC, 1999; 878 

Anderson et al., 2006; Lee et al., 2010) and Lewis et al. (1999) report that it accounts for ~72% of 879 

total combustion products (Figure 3). Typically, the EI(CO2) from modern  aircraft engines is 880 

3160±60 g kg Fuel‒1  for complete combustion (Lewis et al., 1999; Lee et al., 2010) and emissions 881 
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of CO2 are a simple function of fuel consumption (e.g., Owen et al., 2010). However, some studies 882 

reported that EI(CO2) decreases slightly at low thrust because incomplete combustion may result in 883 

a relative increase of CO and hydrocarbons in the exhaust (e.g., Wey et al., 2006; Stettler et al., 884 

2011). The role of aviation in the rise of CO2 emissions on a global scale may not be neglected and 885 

a list of estimates of CO2 emissions is provided in Table 2. In 1992, global aviation emissions of 886 

CO2 were about 2% of total anthropogenic sources and equivalent to about 13% of emissions from 887 

all transportation sources (IPCC, 1999). The AERO2k inventories (Eyers et al., 2004) estimated a 888 

global emission of 553 Tg CO2 for 2002, 492 Tg from civil aviation and 61 Tg from military 889 

operations, while a higher global emission of 733 Tg y‒1 was reported for 2005 (Lee et al., 2009), 890 

accounting for approximately 3% of the total CO2 emissions from the combustion of fossil fuels 891 

(Howitt et al., 2011). Other estimates reported are 641 Tg CO2 in 2005 (Kim et al., 2007) and 595 892 

Tg CO2 in 2006 (Wilkerson et al., 2010). As for H2O, an estimate of CO2 produced by aircraft 893 

below 1000 m was derived by assuming a constant EI(CO2) of 3160 g kg Fuel‒1  and by considering 894 

the global use of fuel reported in the literature during LTO cycles in 2005 (Table 2). Results show a 895 

global emission of 44 Tg CO2 of which about 9.8 Tg y−1 are emitted within Europe.  896 

 897 

4.7  Carbon Monoxide 898 

Carbon monoxide (CO) in the atmosphere is mainly generated by photochemical oxidation of 899 

methane and nonmethane hydrocarbons as well as direct emissions from anthropogenic combustion 900 

processes, such as vehicular exhaust, domestic heating, industrial emissions and biomass burning. 901 

In the troposphere, CO has a chemical lifetime varying from 30 to 90 days and its major sink is 902 

oxidation by hydroxyl radicals (Novelli et al., 1998; Seinfeld and Pandis, 2006). Its ability to form a 903 

strong bond with haemoglobin to form carboxyhaemoglobin can cause adverse effects on human 904 

health due to the reduction of blood oxygen-carrying capacity. At high exposure levels, CO can lead 905 

to asphyxia, whereas at low doses it may cause impaired neuropsychological performance and risk 906 
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for myocardial ischemia and rhythm disturbances in persons with cardiovascular diseases (Samoli et 907 

al., 2007; Bell et al., 2009).  908 

 909 

Carbon monoxide is generally emitted in aircraft exhaust as result of incomplete combustion of jet 910 

fuel. Emissions of CO are regulated by ICAO international standards and engine manufacturers 911 

must provide emission indices for this pollutant during an LTO cycle (ICAO, 2008). In the last 40 912 

years, the improvement of engine technology has led to a significant reduction in CO emissions 913 

during the LTO cycle. Figure 6 shows a decrease in CO emissions at the end of the 1970s and 914 

nowadays most newly certified engines emit less than 10 kg CO per complete LTO cycle.  915 

 916 

Carbon monoxide emissions indices are highest at low power settings where combustor 917 

temperatures and pressures are low and combustion is less efficient (Sutkus et al., 2001). Table SI1 918 

summarises values of EI(CO) certified by ICAO for specific in-use aircraft engines and also lists 919 

EI(CO) for various military engines. Figure 7 reports the ICAO data (all in-use engines certified 920 

from 1976 to today) as a function of LTO stages and shows that CO emission indices are generally 921 

greater at lower thrusts. Generally, average EI(CO) for in-use commercial engines included in the 922 

ICAO databank vary from 0.6 g kg Fuel‒1 at take-off power to 31 g kg Fuel‒1 at idle. Anderson et al. 923 

(2006) observed large decreases in CO emissions with increasing engine power for various FSCs 924 

(by a factor of ~8 from idle to 61% F00) and reported that CO was observed to account for ~1% of 925 

the total carbon emissions at engine idle, but emissions drop off at cruise thrust (61% F00) 926 

contributing <0.1%. Cain et al. (2013) measured emissions from a turbo-shaft engine burning 927 

different types of fuel and observed a decrease of CO with increasing engine power mainly due to 928 

improved combustion efficiency at higher power settings. Because of their predominant emission at 929 

lower power settings, CO emissions from aircraft are of high relevance to air quality in the vicinity 930 

of airports because of idle and taxi phases conducted at low thrust and which take up most of the 931 

time aircraft spend at an airport. Figure 8 reports the total CO emissions for in-use engines during 932 
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the four LTO phases and shows that CO emissions during idle are generally two orders of 933 

magnitude higher than climb and take-off phases. 934 

 935 

After emission, CO may undergo to a series of chemical reactions in the troposphere involving 936 

hydroxyl radical, O2 and NO to form carbon dioxide, nitrogen dioxide, and ozone. 937 

 938 

Some studies have derived EI(CO) directly from measurements during normal operation of idle and 939 

taxi at airports and have revealed some considerable differences compared to ICAO data, with 940 

results  generally higher than those certified. For example, Heland and Schäfer (1998) reported an 941 

EI(CO) of 51.8±4.6 g kg Fuel‒1 at idle for a CFM56-3 engine, which was about 27-48% higher than 942 

the ICAO data. Herndon et al. (2008) reported that EI(CO) observed in ground idle plumes was 943 

greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Since 944 

CO emissions increase with decreasing thrust, these studies seem to confirm that normal idle and 945 

taxi operations at airports occur at lower thrust than the standardised ICAO LTO cycle, resulting in 946 

more CO emitted than certified values (e.g., Schäfer et al., 2003).  947 

 948 

Some studies have measured the carbon monoxide in ambient air at airports (e.g., Schürmann et al., 949 

2007; Heland and Schäfer, 1998; Yu et al., 2004; Herndon et al., 2008 ). In a study carried out at 950 

two different airports, Yu et al. (2004) observed that aircraft are an important contributor to CO in 951 

Hong Kong airport, whereas emissions from ground vehicles going in and out of the airport 952 

dominated emissions at Los Angeles. A study carried out at Zurich airport (Schürmann et al., 2007) 953 

demonstrated that CO concentrations in the vicinity of the terminals are highly dependent on 954 

aircraft movements.  955 

 956 

 957 

 958 
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4.8  Nitrogen Oxides and Nitrogen Acids 959 

Nitrogen oxides (NOx=NO+NO2) in urban environments are principally emitted from fossil fuel 960 

combustion as NO, as described by the extended Zeldovich mechanism (Lavoi et al., 1970): 961 

N2+O→NO+N 962 

N+O2→NO+O 963 

N+ HO∙→NO+H 964 

NO plays an important role in atmospheric chemistry by rapidly reacting with ambient ozone or 965 

radicals to form NO2 on a timescale of minutes (Finlayson Pitts and Pitts, 2000; Seinfeld and 966 

Pandis, 2006): 967 

NO+O3→NO2+O2 968 

Other primary sources of NOx in the troposphere are biomass burning, soil emissions, lightning, 969 

transport from the stratosphere and ammonia oxidation (IPCC, 1999). NO2 is a strong respiratory 970 

irritant gas and its effects on human health have been extensively reviewed (Samoli et al., 2006; 971 

Weinmayr et al., 2010; Chiusolo et al., 2011) indicating a relationship with cardiovascular and 972 

respiratory diseases and mortality. 973 

 974 

Nitrogen oxides are produced in the high temperature regions of the combustor primarily through 975 

the thermal oxidation of atmospheric N2 and therefore NOx formation is sensitive to combustor 976 

pressure, temperature, flow rate, and geometry (Sutkus et al., 2001). Additional NOx may derive 977 

from the combustion of the fuel-bound nitrogen: nitrogen in the fuel is not controlled or typically 978 

measured, but it can range from near zero to perhaps 20 ppm (Chevron Corporation, 2006). Gardner 979 

et al. (1997) estimated that 93% of NOx from aircraft is emitted in the Northern Hemisphere and 980 

~60% at cruise altitudes. More recent estimates indicated that in 2005 the NOx emitted during LTO 981 

was 0.23 Tg (Kim et al., 2007), accounting for ~8% of global emissions from aviation.   982 

 983 
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NOx is included in the parameters certified by ICAO. There is a difference in the molecular mass of 984 

NO and NO2, and in the ICAO methodology data are reported as NO2 equivalent (unless otherwise 985 

specified). Being sensitive to combustor pressure, NOx emissions increase monotonically with 986 

engine thrust (Table SI1, Figure 7). Generally, EI(NOx) for in-use engines included in the ICAO 987 

databank vary from 4±1 g NOx kg-1 burned Fuel‒1 at idle to 29±12 g NOx kg-1 burned Fuel‒1 at take-988 

off power. However, despite the strong relationships to power settings, NOx total emissions per 989 

each standardised LTO phase are pretty constant during idle, approach and take-off operations 990 

(Figure 8). Carslaw et al. (2008) measured individual plumes from aircraft departing Heathrow 991 

Airport and found that engines with higher reported NOx emissions result in proportionately lower 992 

concentrations than engines with lower emissions. This result was hypothesised to be linked to 993 

aircraft operational factors, such as take-off weight and aircraft thrust setting, which therefore may 994 

have an important influence on concentrations of NOx. Furthermore, Carslaw and co-authors 995 

reported that NOx concentrations can differ by up to 41% for aircraft using the same airframe and 996 

engine type, while those due to the same engine type in different airframes can differ by 28%.  997 

 998 

In recent years there has been a growing concern over emissions of primary NO2 as a fraction of 999 

NOx from road traffic mainly because of the failure of NOx emission reductions to deliver an 1000 

improvement in urban NO2 concentrations (e.g., Jenkin, 2004; Carslaw and Beevers, 2004; Carslaw, 1001 

2005; Hueglin et al., 2006; Grice et al., 2009; Mavroidis and Chaloulakou, 2011; Cyrys et al., 1002 

2012). The ratio of NO2 to NOx in aircraft emissions is diagnostic of combustor efficiency and 1003 

several studies reported that, unlike many other forms of combustion, the majority of the NOx 1004 

emitted from modern high bypass TF engines at idle is in the form of NO2. On the contrary, NO is 1005 

dominant at high power regimes. For example, Wormhoudt et al. (2007) performed ground 1006 

measurements and observed that emitted NO2 may represent up to 80% of the total NOx emissions 1007 

for a modern engine at low thrust and 7% at the highest power setting. Other studies (Timko et al., 1008 

2010b,c; Wood et al., 2008b) reported that the NO2/NOx ratio may vary between 75% and 98% at 1009 
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low thrust, while for approach, thrust may range from 12% to 20%. Presto et al. (2011) observed 1010 

that the NO/NOx ratio increases from 0.2-0.3 at 4% F00 to 1 at 30% and 85% F00. Other 1011 

measurements  carried out within 350 m of a taxiway and 550 m of a runway during common 1012 

airport operations indicated that 28–35% of NOx exists in the form of NO2 (Herndon et al., 2004). 1013 

However it was reported that the relative abundance of NO and NO2 are subject to large 1014 

uncertainties due to conversion in the plumes and the contribution of other sources. The results of a 1015 

study performed by Schäfer et al. (2003) using remote sensing methodologies suggested that NO 1016 

was rapidly converted to NO2 in the exhaust plume. The NO2 formation and destruction processes 1017 

of aircraft exhausts were investigated by Wood et al. (2008b), who observed that the NO2/NOx 1018 

fraction is significantly higher in advected measurements than in engine tests. The results suggested 1019 

that a significant portion of the NO in the exhaust can be converted into NO2 by mechanisms that do 1020 

not involve ozone. 1021 

 1022 

Nitrogen oxides may also be oxidised to other reactive nitrogen species and the complete family of 1023 

reactive nitrogen species is denoted as reactive odd nitrogen (NOy), which includes the sum of NOx 1024 

and its oxidation products (HNO3, HONO, NO3∙, N2O5, HNO4, peroxyacyl nitrates, alkyl nitrates 1025 

and others). Nitric acid is the major oxidation product and increasing atmospheric concentrations of 1026 

NOx favour nitric acid formation as a result of the daytime gas phase recombination reaction of 1027 

hydroxyl radical with NO2.  NOx plays a key role in secondary inorganic aerosol formation 1028 

(Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 2006).  1029 

 1030 

High levels of NOx, particularly NO2, are a matter of concern for air quality near major airports. For 1031 

example, current NO2 concentrations breach the UK annual mean air quality objective (40 µg m‒3)  1032 

at some locations around Heathrow, London (UK) (UK Department of Transport, 2006; UK 1033 

Statutory Instrument, 2007; HAL, 2011), while some exceedences of the Swiss annual mean NO2 1034 

limit value (30 µg m‒3) have been observed near Zürich airport (Fleuti and Hofmann, 2005). 1035 
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However, as most airports are located in the vicinity of large cities, the contribution of airport-1036 

related emissions to those exceedences is hard to quantify due to the major influence of other 1037 

sources, such as traffic and industry. For example, Yu et al. (2004) observed that ground vehicles 1038 

were the dominant source of NOx emissions at Los Angeles airport. 1039 

 1040 

Although various studies have attempted to estimate the contribution of airport operations to 1041 

ambient NOx levels, the results are often conflicting. For example, Carslaw et al. (2006) estimated 1042 

that Heathrow operations accounted for ~27% of the annual mean NOx and NO2 at the airfield 1043 

boundary and less than 15% (<10 µg m‒3) at background locations 2-3 km downwind of the airport, 1044 

while Fleuti and Hofmann (2005) estimated the Zürich airport influence upon NO2 to be below 1 μg 1045 

m‒3 at a distance of three or more kilometers. In both case studies concentrations of NOx close to 1046 

the airport were dominated by road traffic sources. A detailed emission inventory of UK airports 1047 

was computed by Stettler et al. (2011), who pointed out that LTO emissions at London Heathrow in 1048 

2005 accounted for about 8.19x106 kg NOx, of which more than 80% is in the form of NO. An 1049 

emission inventory study of NOx emissions at Zurich airport in 2003 (Unique, 2004) reported that 1050 

most nitrogen oxides were released from LTO operations, while minor contributions were 1051 

calculated for landside traffic, handling/airside traffic and airport infrastructure.  1052 

 1053 

4.8.1  Nitrous oxide 1054 

Apart from NOx, other nitrogen species have been detected and analysed in aircraft exhaust plumes 1055 

and at airports. Few data are available for the emissions of  nitrous oxide (N2O) and some are 1056 

contradictory. Wiesen et al.(1994) examined nitrous oxide emissions from different commercial jet 1057 

engines using different fuels and reported average EI(N2O) ranging from 97 to 122 mg kg Fuel‒1. 1058 

Heland and Schäfer (1998) further analysed N2O using FTIR techniques and observed that N2O 1059 

emitted by a CFM56-family engine was under the detection limits at idle thrust and detectable at 1060 

higher power settings, with a related EI(N2O) of 1300 mg kg Fuel‒1. Conversely, Santoni et al. 1061 
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(2011) measured N2O emissions from a CFM56-2C1 engine and concluded that at low thrust EI 1062 

N2O were 110±50 mg kg Fuel‒1  (mean±standard deviation), while a drop of emissions was 1063 

observed at higher thrust levels (32±18 mg kg Fuel‒1). 1064 

 1065 

4.8.2  Nitrous acid 1066 

HONO is generated in the gas turbines via reaction of hydroxyl radical with NO (Wormhoudt et al., 1067 

2007; Brundish et al., 2007) and ~1.1% of the total NOy is in the form of HONO by the engine exit 1068 

(Lukachko et al., 1998). Anderson et al. (2005) measured nitrous acid (HONO) in the exhaust of a 1069 

B757 and observed a clear power dependence, increasing with increasing power;  at high power, 1070 

over 2 ppmv of HONO was detected.  The same authors (Wormhoudt et al., 2007) further reported 1071 

an increasing EI(HONO) at increasing thrust, but also reported that the EI(HONO)/EI(NO2) ratio 1072 

decreases with increasing engine regimes. They found that HONO is a minor constituent (up to 7%) 1073 

compared with NOx.  Herndon et al. (2006) measured NOy at Logan airport in Boston (USA) and 1074 

reported that the emission index for a B737 increased from idle (2±1.9 g(NOy) kg Fuel‒1) to take-off 1075 

(19.5±3.9 g(NOy) kg Fuel‒1). Wood et al. (2008b) reported that HONO accounts for 0.5% to 7% of 1076 

NOy emissions from aircraft exhaust depending on thrust and engine type: 2‒7% for low thrust and 1077 

0.5‒1% for high thrust (65‒100% F00). In conclusion, using data available in the literature, Lee et 1078 

al. (2010) proposed that EI(HONO) should range between 0.08 and 0.8 g kg Fuel‒1. More recently, 1079 

Lee et al. (2011) performed measurements of HONO from a DC-8 aircraft equipped with CFM56-1080 

series engines using both traditional and synthetic fuels and observed that the EI(HONO) increases 1081 

approximately 6-fold from idle to take-off conditions, but plateaus between 65 and 100% of 1082 

maximum rated engine thrust. This study also discussed the kinetics behind the HONO 1083 

formation/destruction. 1084 

 1085 

Jurkat et al. (2011) measured the gaseous nitrogen emissions in young aircraft exhaust plumes 1086 

emitted by 8 different types of modern jet airliners in flight and calculated molar ratios of 1087 
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HONO/NO and HONO/NOy of 0.038±0.010 and 0.027 ± 0.005, respectively. The relative 1088 

EI(HONO) at cruise thrust was reported to be 0.31±0.12 g NO2 kg Fuel−1.   1089 

 1090 

 1091 

4.8.3  Nitric acid 1092 

Most studies of HNO3 emissions were performed using experimental measurements with chemical 1093 

ionisation mass spectrometry (CIMS) in both exhaust plumes at cruising altitudes (e.g., Arnold et 1094 

al., 1992;1998a; Tremmel et al., 1998; Miller et al., 2003) and simulated gas turbines (Katragkou et 1095 

al., 2004) or using plume models (e.g., Garnier et al., 1997; Kraabøl et al., 2002). Generation of 1096 

HNO3 is generally lower than HONO: Lukachko et al. (1998) reported that only ~0.07% of the total 1097 

NOy is oxidised to HNO3 by the engine exit, while Lee et al. (2010, and references therein) reported 1098 

EI(HNO3) of 0.003–0.3 g kg Fuel-1. Because of the very low levels expected in aircraft exhaust, few 1099 

studies have been carried out on the ground. There is consequently a lack of data about nitric acid 1100 

measured in engine exhaust plumes during real working conditions.  1101 

 1102 

4.9 Sulfur Oxides and Sulfuric Acid 1103 

4.9.1  Sulfur oxides 1104 

Sulfur dioxide (SO2) is emitted into the atmosphere from both natural (volcanic activity, grassland 1105 

and forest fires) and anthropogenic sources, including crude oil and coal transformation processes, 1106 

fossil fuel combustion, metal smelting and various industrial processes (e.g., Seinfeld and Pandis, 1107 

2006; Smith et al., 2011). Exposure is associated with increased mortality and morbidity 1108 

(Katsouyanni et al., 1997; Sunyer et al., 2003a) including cardiovascular admissions, particularly 1109 

for ischemic heart disease (Sunyer et al., 2003b). Oxidation of SO2 (S(IV)) is recognised as the 1110 

major channel for the formation of atmospheric sulfuric acid (S(VI)), and sulfur trioxide (SO3) is an 1111 

important intermediate in the oxidation processes (Vahedpour et al., 2011).  Consequently, SO2 has 1112 

an indirect effect on acid deposition and a key role in the aerosol system by acting as sulphate 1113 
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precursor. Since sulphate aerosol is known to modify the direct and indirect RF, SO2 also has an 1114 

indirect influence on climate. 1115 

 1116 

Sulfur dioxide is the overwhelmingly predominant S-containing species in aircraft exhaust 1117 

(Anderson et al., 2005; Lee et al., 2010) and originates mainly from the oxidation of fuel sulfur in 1118 

the engines (Brown et al., 1996a: Schumann et al., 2002). Therefore, SO2 emissions may vary 1119 

greatly as a function of  FSC.  In the past, studies were carried out to analyse and model the sulfur 1120 

emissions of aircraft and to estimate their role in the formation of visible contrails (e.g., Busen and 1121 

Schumann, 1995;  Schumann et al., 1996; Brown et al., 1996b; 1997; Arnold et al., 1998a). 1122 

Generally an emission index of 0.8‒1.3 g of SOx (as SO2) per kg Fuel was reported for complete 1123 

combustion (e.g., Lewis et al., 1999; Kim et al., 2007; Lee et al., 2010; Presto et al., 2011), however 1124 

measurements at flight altitudes have showed that sulfur dioxide varies with the average FSC (e.g., 1125 

Arnold et al., 1998a; Schumann et al., 1998). For example, Hunton et al. (2000) reported that the 1126 

EI(SO2) varied from 2.49 g SO2 kg fuel‒1 for a high-sulfur fuel (~1150 ppmm S) in a test chamber 1127 

to less than 0.01 g SO2 kg fuel‒1 for a low-sulfur fuel (~10 ppmm S). They also reported that there is 1128 

no dependence of emission indices upon engine power.  1129 

 1130 

In this context, it is very important to stress that no S is created or destroyed from the fuel to the 1131 

exhausts, therefore for every fuel S atom there is a molecule of SO2 or SO3 at the exhaust plane (the 1132 

SO3 quickly converts to H2SO4). In this way the emission indices of total emitted S may vary 1133 

according to the FSC, whereas the only uncertainties are in the speciation between S(IV) to S(VI) 1134 

species, i.e. in the conversion efficiency, which is discussed fully later. 1135 

 1136 

The importance of SO2 emissions at local scale, i.e. near the airports, was highlighted by Yu et al. 1137 

(2004), who found that sulfur dioxide was a good tracer of aircraft emissions at both Los Angeles 1138 

and Hong Kong airports. However, on a global scale the aviation source is considered to be 1139 
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secondary with respect to other major sources of SO2: Kjellström et al. (1999) used a atmospheric 1140 

general circulation model including the atmospheric sulfur cycle to investigate the impact of aircraft 1141 

sulfur emissions on the global sulfur budget of the atmosphere and concluded that aviation 1142 

accounted for about 1% of the total sulphate mass north of 40°N, where aircraft emissions are 1143 

largest. In 2004, about 0.18 Tg of SO2 was estimated to be emitted from aviation (Lee et al., 2010) 1144 

using an EI(SO2) of 0.8 g Fuel‒1. An estimation of SO2 produced by aircraft below 1000 m can be 1145 

computed by applying a constant EI(SO2) of 0.8 g kg Fuel‒1 and by considering the global use of 1146 

fuel reported by the literature during LTO cycles in 2005 (Table 2). Results show a global emission 1147 

of 11 Mg SO2 of which about 2.5 Mg y−1 are emitted within Europe.  1148 

 1149 

4.9.2  Conversion of S(IV) to S(VI) 1150 

Despite SO2 being the dominant S-species in aircraft exhaust emissions, a fraction can be further 1151 

oxidised to form S(VI) as SO3 and H2SO4 (Lee et al., 2010). The presence of SO3 has been 1152 

established in gas turbine engine exhaust and as attributed mainly to the oxidation of SO2 by O 1153 

atoms (Arnold et al., 1998a) or by hydroxyl radicals in exhaust plumes (Tremmel and Schumann, 1154 

1999). The further reaction with water vapour rapidly converts SO3 to sulfuric acid, according to 1155 

Stockwell and Calvert (1983); Stockwell (1994); Brown et al., (1996a) and Seinfeld and Pandis, 1156 

(2006): 1157 

SO2+HO∙+M→HOSO2∙+M 1158 

HOSO2∙+O2→SO3+HO2∙ 1159 

SO3+H2O+M→H2SO4+M 1160 

Starik et al. (2002) computed that ~1% of the sulfur is converted into SO3 within the combustor and 1161 

about 10% into SO3 and H2SO4 before the engine exit. Past numerical simulations of H2SO4 1162 

formation from atomic oxygen and hydroxyl radical in aircraft engines indicated that between 2% 1163 

and 10% of the fuel sulfur is emitted as S(VI) (Brown et al., 1996a; Lukachko et al., 1998). 1164 

However, current understanding indicates a more realistic value of 2% (or possibly less). These 1165 
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studies also indicate that S(VI) conversion in the turbine is kinetically limited by the level of atomic 1166 

oxygen, resulting in a higher oxidation efficiency at lower FSCs. Katragkou et al. (2004) report that 1167 

the limiting factor of this series of reactions is the oxidation of SO2 by the hydroxyl radical, which 1168 

is somewhat uncertain at the high temperatures in gas turbine engines. The knowledge of the 1169 

mechanisms involving sulfur species and their interactions with H, O atoms and radicals occurring 1170 

within a combustor is far from complete and are the subject of discussion (e.g., Blitz et al., 2003; 1171 

Somnitz et al., 2005; DeWitt and Hwang, 2005; Yilmaz et al., 2006; Hindiyarti et al., 2007; 1172 

Rasmussen et al., 2007; Wheeler and Schaefer, 2009; Hwang et al., 2010).  1173 

 1174 

Once emitted, the gaseous sulfuric acid may act as an important precursor for aerosol because of its 1175 

low vapour pressure. An understanding of the processes controlling sulphate aerosols is therefore 1176 

essential to the study of the mechanisms of formation of particles generated by aircraft (e.g., Starik 1177 

et al., 2004). For example, Arnold et al (1998a) reported no detectable levels of sulfuric acid in the 1178 

gas phase behind an in-flight commercial aircraft, leading to the inference that  initially formed 1179 

H2SO4 experiences a rapid gas-to-particle conversion at plume ages <1.6 s. Sulfuric acid was 1180 

measured in several other studies at cruising altitudes and for different FSCs (e.g., Fahey et al., 1181 

1995b; Busen and Schumann, 1995; Schumann et al., 1996; Curtius et al., 1998; Arnold et al., 1182 

1998a; Schröder et al., 2000; Schumann et al., 2000; Curtius et al., 2002) as well as in fuel 1183 

combustion experiments at ground-level (Frenzel and Arnold, 1994; Curtius et al., 1998; 2002; 1184 

Kiendler and Arnold, 2002; Sorokin et al., 2004) and during combustor testing (Katragkou et al., 1185 

2004). Curtius et al. (2002) reported H2SO4 concentrations measured in the plume were up to 600 1186 

pptv for a 56 ppmm FSC, while the average concentration of H2SO4 measured in the ambient 1187 

atmosphere outside the aircraft plume was 88 pptv and the maximum ambient atmospheric 1188 

concentration 300 pptv.  1189 

 1190 
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The abundance ratio, sometime named conversion factor  (ε=(SO3+H2SO4) /total sulfur) has been 1191 

widely used to assess the ratio of S(VI) to total sulfur at the exit of engines. The literature offers 1192 

numerous estimates or measures of ε. However, the results are often difficult to compare as they  1193 

are derived by different methods, ranging from direct measurements, indirect computations and 1194 

models. In addition, most studies take in account only particulate sulphate, while only a few studies 1195 

have measured both particulate and gaseous phases. Anyway, Timko et al. (2010b) demonstrated 1196 

that the conversion of S(IV) to S(VI) is independent of engine technology for most modern in-use 1197 

engines. Earlier values of ε are well summarised in DeWitt and Hwang (2005), while most recent 1198 

measurements and modelling studies of aircraft plume chemistry reported other direct, indirect and 1199 

inferred values of ε. Generally, ε values between 1 and 3% are commonly reported. For example, ε 1200 

values between 6 and 31% have been calculated for a B757 aircraft (Miake-Lye et al., 1998), while 1201 

Schumann et al. (2002) observed ε between 0.34 and 4.5% for an old engine (Mk501) and 3.3±1.8% 1202 

for a modern engine (CFM56-3B1). For low FSC, they also reported that ε was considerably 1203 

smaller than implied by the volume of volatile particles in the exhaust, while for FSC≥100 ppm, 1204 

sulfuric acid is the most important precursor of volatile aerosols formed in aircraft exhaust plumes 1205 

of modern engines. Kiendler and Arnold (2002) inferred an ε value of 2±0.8% for a M45H engine 1206 

on the ground, while Curtius et al. (1998; 2002) reported 3.3±1.8% in the plume of a B737-300 1207 

aircraft in flight by measuring  the total H2SO4 content in both gaseous and aerosol phases. The 1208 

sulfur conversion fraction of an RB211 engine was computed by Starik et al. (2002) using a model 1209 

and results showed that increases in FSC cause a minor reduction in ε, reporting values ≈9%, and 1210 

≈8.4% for FSC of 0.04% and 0.3%, respectively. Wilson et al. (2004) and Sorokin et al. (2004) 1211 

observed ε of 2.3±1.2% in an A310 equipped with a CF6-series engine at an exhaust age of about 5 1212 

ms from the combustor exit, while Jurkat et al (2011) derived ε for various in-flight aircraft and 1213 

reported an average value of 2.2 ± 0.5%, varying from a minimum of 1.2% for a Trent-series and a 1214 

maximum of 2.8% for a CMF56-series engines. Wong et al. (2008) modelled the microphysical 1215 

processes involved and suggested conversion efficiency of 1‒2%. Timko et al. (2010b) reported ε 1216 
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ranging from 0.08% to 0.01%, while Kinsey et al. (2011) suggest a median value of 2.4%. Petzold 1217 

et al. (2005b) reported that sulfur partitioning at 150°C was 97 % SO2 ≤ 2.7% gaseous H2SO4 < 1218 

0.3% chemisorbed H2SO4 at soot particle surface. Regarding the relative abundance of the two 1219 

S(VI) species, during the COMS experiments Sorokin et al. (2004) reported that SO3 represented 1220 

the major fraction of S(VI) in the exhaust behind the combustor and that SO3 conversion to H2SO4 1221 

takes place in the sampling line where the exhaust gases spend a sufficiently long time and where 1222 

the temperature is markedly lower than in the hot exhaust. Other experimental measurements made 1223 

during the EXCAVATE experiment by Anderson et al. (2005) led to the conclusion that the fraction 1224 

of total sulfur that existed as SO3 would have to be less than 0.005%. 1225 

 1226 

According to the conversion factors for sulfur species and taking in account the mass conservation 1227 

of S in the exhaust plumes (no S is created or destroyed from the fuel to the exhausts), the 1228 

computation of the EIs can be assessed by applying: 1229 

EI(SO2) = (M(SO2)/M(S)) · FSC · (1-ε) 1230 

and 1231 

EI(SO4
2-) = (M(SO4

2-)/M(S)) · FSC · ε 1232 

where M( ) represents the molecular weights of sulfur species, FSC is the fuel sulfur content  and ε 1233 

is the S(IV) to S(VI) conversion efficiency as a fraction, e.g. 0.02 and a unit conversion may be 1234 

necessary (e.g. if FSC is in expressed ppmm, etc). 1235 

 1236 

Another important consideration concerning the sulphate derived from aircraft engines was pointed 1237 

out during the APEX-1 project, which was primarily developed to investigate the effects of fuel 1238 

composition on emissions at various power settings (e.g., Wey et al., 2006; Knighton et al., 2007; 1239 

Yelvington et al., 2007; Onash et al., 2009). General results from the testing of a CFM56-series 1240 

engine showed a strong linear relationship (r2=0.93) between FSC and emission indices for 1241 



50 

 

sulphate, which can be approximately described by the linear equation EI(sulfur in mg kg 1242 

Fuel‒1)=0.0136∙FSC(in ppm)+4.4952 (Kinsey, 2009). 1243 

 1244 

4.10  Ozone 1245 

Ozone (O3) is a reactive oxidant gas playing a key role in photochemical air pollution and in 1246 

atmospheric oxidation processes. Ozone is associated with decrements in respiratory function and 1247 

death from respiratory causes (Jerrett et al., 2009; Yang and Omaye, 2009). Although in the upper 1248 

atmosphere it acts as a barrier for ultraviolet radiation, in the lower troposphere is a secondary air 1249 

pollutant generated through a series of complex photochemical reactions involving reactive 1250 

hydrocarbons, solar radiation and NO2 (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 2006). 1251 

 1252 

Ozone is not primarily produced by aircraft engines, however some ozone precursor such as CO, 1253 

NOx and VOCs are emitted from the exhaust and may subsequently increase the boundary layer O3 1254 

pollution. Note that, amongst the ozone precursors, both CO and many VOCs are mainly emitted at 1255 

low power settings during airport taxi and idle operations, while NOx is mainly released during 1256 

take-off and climb phases, when engines reach higher thrusts. It is reported that NO emissions, 1257 

which are dominant at highest thrusts, initially cause local ozone reductions in aircraft plumes  1258 

(Kraabøl et al., 2000a,b) following: 1259 

O3+NO→NO2+O2 1260 

but subsequently the photolysis of  NO2 may form atomic oxygen which reacts with molecular O2 to 1261 

form O3: 1262 

NO2+hν→NO+O 1263 

O+O2+M→O3+M 1264 

where M is N2, O2 or another molecule absorbing the excess energy to stabilise the ozone formed 1265 

(Seinfeld and Pandis, 2006). A contrary effect, i.e. a decrease in O3 concentrations, may also occur 1266 

due to the reaction of ozone with other compounds emitted from aircraft. For example, it is 1267 
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recognised that alkenes, which are emitted in the exhaust plumes, are susceptible to reaction with 1268 

ozone forming primary carbonyls and bi-radicals (e.g., Grosjean et al., 1994; Seinfeld and Pandis, 1269 

2006) and consuming O3.  1270 

 1271 

Although the effects of aircraft emissions on ozone depletion in the upper troposphere and 1272 

stratosphere have been addressed by IPCC (1999) and  the European 6th Framework ‘ATTICA’ 1273 

(Assessment of Transport Impacts on Climate Change and Ozone Depletion) project (Lee et al., 1274 

2010), less attention has been given to the effects within the boundary layer due to emissions during 1275 

LTO operations.  1276 

 1277 

4.11  Hydrocarbons 1278 

Unburned hydrocarbons (UHC) are emitted as a result of the inefficiency of jet turbine engines to 1279 

completely convert fuel to CO2 and H2O (Knighton et al., 2009). Although the levels of UHC 1280 

emitted by aviation are considered negligible relative to emissions from surface transportation 1281 

systems such road traffic, they may cause adverse health effects on exposed people, including 1282 

workers and travellers at airports, and residents who live near large hubs. Therefore, UHC are 1283 

included as parameter to be monitored during the LTO cycles by ICAO (ICAO, 2008). Analyzing 1284 

the data provided by the ICAO databank (EASA, 2013), a large range in the magnitude of UHC 1285 

emissions between different engine models can be observed. Moreover, ICAO data clearly show 1286 

that the emission of UHC during complete LTO cycles have fallen considerably since  the 1970s 1287 

(Figure 6), mainly due to the development of more efficient technologies.  1288 

Unfortunately, the UHC parameter used by ICAO only refers to the lump sum of all hydrocarbons, 1289 

including contributions from methane, and no corrections are made for background levels within the 1290 

engine intake air (Anderson et al., 2006; Lee et al., 2010). Consequently, UHC data give no 1291 

information on the large number of specific non-methane hydrocarbons (NMHCs) nowadays 1292 

identified, and in some cases quantified, in aircraft exhaust plumes (Wilson et al., 2004; Anderson 1293 
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et al., 2006; Lobo et al., 2007; Agrawal et al., 2008; Herndon et al., 2009). This fact clearly 1294 

represents a significant gap in the knowledge of impacts of aircraft on both environmental and 1295 

human health endpoints, because of the very different physicochemical and toxicological properties 1296 

of each class of organic compounds. Most emitted VOC are known ozone precursors, many are 1297 

particle precursors and can impact visibility after particle formation. Some compounds are known 1298 

or are suspected to have adverse effects on human health and the environment. Among the 1299 

hydrocarbons emitted in aircraft exhaust, 14 species (12  compounds and two groups of complex 1300 

organic compounds) are present in the Hazardous Air Pollutants (HAP) list compiled by the 1301 

USEPA (Federal Aviation Administration, 2003). These compounds are 1,3-butadiene,  n-hexane, 1302 

acetaldehyde, xylene, acrolein, propionaldehyde, benzene, styrene, ethylbenzene, toluene, 1303 

formaldehyde, lead compounds and polycyclic organic matter as 7 and 16 PAH groups.  1304 

 1305 

In the last 20 years, various research programmes and experiments have been carried out to give 1306 

more detailed data on the speciated hydrocarbon emissions of aircraft engines. Among others, some 1307 

milestones are listed hereafter. Spicer et al. (1984;1994) measured detailed organic emissions for 1308 

the CFM56- class engines burning various JP-grade fuels; Gerstle et al. (1999; 2002) reported UHC 1309 

emission rates for several military engines not included in the ICAO databank; the EXCAVATE 1310 

campaign (Anderson et al., 2005; 2006) investigated the speciated-hydrocarbon emissions from an 1311 

RB211-535-E4 engine at two different fuel sulfur levels; Herndon et al. (2006) investigated a set of 1312 

hydrocarbons from in-use aircraft at Boston Logan International Airport; the APEX-1 campaign 1313 

(Wey et al., 2006) reported the hydrocarbon speciation for a CFM56-2C1 engine using fuels with 1314 

differing FSC (Knighton et al., 2007; Yelvington et al., 2007); Schürmann et al. (2007) sampled 1315 

volatile organic compounds in diluted exhausts; the JETS/APEX-2 and APEX-3 campaigns (Lobo 1316 

et al., 2007; Kinsey, 2009) reported data for speciated hydrocarbons in both a staged aircraft test 1317 

(Yelvington et al., 2007; Wey et al., 2007; Agrawal et al., 2008; Timko et al., 2010c) and at airports 1318 

(Wood et al., 2008b; Herndon et al., 2009); Knighton et al. (2009) consolidated earlier data from 1319 
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Spicer et al. (1984;1994), EXCAVATE and APEX studies; Cain et al. (2013) measured speciated 1320 

hydrocarbon emissions from a TS engine burning various (conventional, alternative and surrogate) 1321 

fuels. 1322 

 1323 

Although those studies have yielded much useful information for characterizing the emissions of 1324 

hydrocarbons, to date there is still a great deal of work to be done, many chemical and physical 1325 

characteristics remain unclear, and some conflicting results need to the further investigated. Firstly, 1326 

Spicer et al. (1984) reported that a significant percentage (30%–40%) of the total hydrocarbon 1327 

emissions at idle are made up of a large number of exhaust compounds with aliphatic, 1328 

cycloaliphatic and aromatic structures, predominantly ethylene, propylene, acetylene, 1-butene, 1329 

methane, and formaldehyde. This latter carbonyl was found to be the predominant aldehyde present 1330 

in the exhaust. In addition to byproducts of combustion, some studies (Spicer et al., 1992;1994; 1331 

Slemr et al., 2001) also observed that unburned/unreacted fuel compounds are emitted in the engine 1332 

exhaust from fuel cracking and incomplete combustion. Spicer et al. (1984) reported that 1333 

compounds from unburned fuel may represent a major component of exhausts and that they are 1334 

mainly composed of normal C10 -C16 paraffins with smaller amounts of alkyl substituted aromatics, 1335 

cycloparaffins, and branched alkanes. The unburned fuel component was also observed to be 1336 

virtually eliminated at the 30% and 80% F00 conditions, when concentrations of all of the individual 1337 

hydrocarbons are very low. Similar results were reported by Slemr et al. (2001) in both modern 1338 

commercial high bypass TF engines (CFM56-2C1) and older technology engines (Rolls Royce 1339 

M45H Mk501) with emissions dominated by alkenes and alkynes due to fuel cracking and aromatic 1340 

compounds arising from unburned fuel. 1341 

 1342 

These pioneering results were largely confirmed by more recent studies, which generally reported 1343 

that emitted hydrocarbons are composed of relatively light weight (C2–C6) species, including 1344 

alkanes and alkenes, formaldehyde, methanol, ethylene, acetaldehyde, acetic acid, benzene, toluene, 1345 



54 

 

phenol, styrene, naphthalene and methylnaphthalenes (Slemr et al., 2001; Anderson et al., 2006; 1346 

Knighton et al., 2007; Yelvington et al., 2007; Schürmann et al., 2007; Kinsey, 2009). The results 1347 

of the whole APEX study (Kinsey, 2009) partially confirmed previous data, indicating that 1348 

generally the gaseous hydrocarbon emissions of various engines primarily consist of formaldehyde 1349 

(16-28% of total gaseous emissions), ethylene (8-23%), acetaldehyde (5-13%), acetylene (5-15%), 1350 

propene (2-8%) and glyoxal (3-8%), with significant quantities of acrolein (<4%), benzene (<3%), 1351 

1,3-butadiene (<3%), and toluene (<1%), while 16-42% of total non-methane volatile compounds 1352 

remained unresolved. The sum of HCHO, ethylene, acetaldehyde, and propene may account for 1353 

roughly 75% of the volatile organic compounds, while benzene, toluene, xylenes, and other 1354 

substituted  benzene compounds, oxygenates (acetone, glyoxal, and propanal), olefins (butene, 1355 

pentene, hexane), and naphthalenes constitute the remaining 20% (Timko et al., 2010c). In addition 1356 

to the numerous papers published, US Environmental Protection Agency (US EPA, 2009) also 1357 

created a companion spreadsheet including data on speciated hydrocarbon from APEX projects. 1358 

Figure 9 summarises the data from APEX campaigns in terms of profile (mass fraction) of the 1359 

emitted hydrocarbons. 1360 

 1361 

The total hydrocarbon EIs are highest at low power settings, where combustor temperatures and 1362 

pressures are low and combustion is less efficient (Sutkus et al., 2001; Yelvington et al., 2007). 1363 

UHC data provided by ICAO also confirm this behaviour for in-use TF engines (Figure 7). 1364 

Similarly, many studies have reported the same behaviour for individual hydrocarbon species. 1365 

Spicer et al. (1992; 1994) and Slemr et al. (2001) first reported that the emissions of many 1366 

hydrocarbon species dropped at higher engine power by a factor of 20–50 and unburned fuel 1367 

components disappeared. The EXCAVATE campaign (Anderson et al., 2006) also highlighted that 1368 

most hydrocarbon species are strongly power dependent, with EIs at high thrusts dramatically lower 1369 

than at idle. During APEX-1,2,3 campaigns, Knighton et al. (2007) observed  that at engine power 1370 

conditions significantly higher than 15% F00, the engine combustion efficiency is close to 100%, 1371 
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resulting in hydrocarbon emissions often below the detection levels for many individual 1372 

compounds. The inverse dependence of UHC upon thrust has a high relevance for air quality at 1373 

airports, where idle and taxi phases are conducted at low thrusts and take up most of the time. 1374 

Figure 8 shows that the cumulative UHC emission spans over two order of magnitude for in-use 1375 

engines passing from idle to take-off during standardised LTO cycles.  1376 

 1377 

Despite these interesting studies, the scientific literature still offers poor information on the 1378 

hydrocarbon speciation and the few available data are often conflicting. For example, the potential 1379 

changes in the hydrocarbon profiles at varying power are still unclear and deserve further 1380 

investigation. Despite the large dependence of the magnitude of total UHC emitted from different 1381 

engines, Knighton et al. (2009) observed that the ratios between the formaldehyde versus other 1382 

hydrocarbon species were constant and independent of power settings. Although this result 1383 

indicates constant hydrocarbon profiles with varying thrust, these results are inconsistent with other 1384 

studies showing clear shifts of the hydrocarbon speciation with power. For example, during the 1385 

EXCAVATE campaign, Anderson et al. (2006) observed that alkenes (mainly ethene) constituted 1386 

more than 70% of the observed total NMHC emissions at idle, while at 61% F00 aromatic species 1387 

(mostly toluene) accounted for over 50% of the total. There is currently a lack of information about 1388 

the emitted hydrocarbons and this gap is mainly evident for emissions at power settings below the 1389 

ICAO 7% idle. The behaviour and data for the most important classes of organics are discussed 1390 

hereafter in separate sub-subsections. 1391 

 1392 

4.11.1 Methane 1393 

Methane (CH4) is a radiatively active gas and is estimated to be 25 times more effective on a per-1394 

molecule level than CO2 in terms of greenhouse effect at hundred-year time scales (Lelieveld et al, 1395 

1998). Moreover, its roles in atmospheric chemistry to produce tropospheric ozone and 1396 

stratospheric water vapour indirectly enhance its climate forcing effects. Although natural emissions 1397 
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from wetlands are largely recognised as dominant sources of methane at global scales, 1398 

anthropogenic sources, such as energy, agriculture, waste and biomass burning can further 1399 

contribute to its load in the atmosphere (Dlugokencky et al., 2011 and references therein). Most 1400 

studies report that that turbine engines are not a significant source of CH4 and have concluded that 1401 

most engines tend to produce minor amounts of methane at idle and may consume it at higher 1402 

engine power (Spicer et al., 1992, 1994; Vay et al., 1998; Slemr et al., 2001; Anderson et al., 2006; 1403 

Santoni et al., 2011). Wiesen et al.(1994) examined methane emissions from different commercial 1404 

jet engines (PW 305 and RB 211) under various flight conditions using different fuels and 1405 

concluded that air traffic does not contribute significantly to the global budget of methane. Santoni 1406 

et al. (2011) measured methane emissions from a CFM56-2C1 engine aboard a NASA DC-8 1407 

aircraft and reported that the EI for CH4 was (mean±standard deviation) 170±160 mg kg Fuel‒1 at 1408 

4% and 7% F00, while negative values (54±33 mg kg Fuel‒1) were reported for higher thrust 1409 

settings,  indicating consumption of methane by the engine. 1410 

 1411 

4.11.2  Alkanes, alkenes and alkynes  1412 

During the EXCAVATE campaign, Anderson et al. (2006) reported that the alkene species 1413 

constituted over 90% of the observed total NMHC at idle but less than 20% at higher engine power 1414 

settings. They also observed large decreases in alkane and alkene emissions with increasing engine 1415 

power for various FSCs. In particular, EXCAVATE results showed that propylene underwent the 1416 

most dramatic decrease, exhibiting a drop of  mixing ratios by a factor ~280 from 7 to 61% F00. In 1417 

the same manner, isoprene dropped from ~2.5 ppbv to less than ~5 pptv (i.e., below the detection 1418 

limit). On the other hand, these results reported decreases in alkane compounds which were much 1419 

more modest, typically under a factor of 10. Schürmann et al. (2007) revealed that though isoprene 1420 

was not directly found in emissions from kerosene refuelling, it was detected in considerable 1421 

amounts in the aircraft exhaust which indicates that isoprene is most likely formed in the 1422 

combustion process of a jet engine.  1423 
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4.11.3  Carbonyls 1424 

Due to their known adverse effects on human health, some carbonyls (formaldehyde, acetaldehyde, 1425 

propionaldehyde and acrolein) have been included in the HAP list (Federal Aviation 1426 

Administration, 2003). However, nowadays there is a gap in the current state of knowledge 1427 

regarding the toxicity of many other aldehydes (including glyoxal, methylglyoxal and 1428 

crotonaldehyde) which are detected in sizeable quantities in aircraft exhaust plumes and have  1429 

potential toxic effects (Wood et al., 2008). APEX results (Kinsey, 2009) clearly showed that 1430 

carbonyls generally account for most of the gaseous hydrocarbons emitted by common aircraft 1431 

engines. Agrawal et al. (2008) reported that the major three contributors to carbonyl emissions are 1432 

formaldehyde, acetaldehyde and acetone, and showed that carbonyl emissions are significantly 1433 

higher during the idle mode than at higher thrusts. However, measurements of carbonyl EIs were 1434 

also found to be very variable since they are sensitive to changes in ambient temperature 1435 

(Yelvington et al., 2007; Knighton et al., 2007; Agrawal et al., 2008). Similar results were obtained 1436 

for TS engines: Cain et al. (2013) observed that the EIs for the most prevalent aldehydes emitted at 1437 

various engine power combinations were formaldehyde, acetaldehyde, and propionaldehyde and 1438 

also reported a decrease with increasing engine power. The results of such engine tests seem to be 1439 

confirmed by ambient measurements. For example, Fanning et al. (2007) and Zhu et al. (2011) 1440 

reported that the time averaged concentrations of formaldehyde and acrolein were elevated at the 1441 

Los Angeles International airport relative to a background reference site.  1442 

 1443 

4.11.4  Aromatic compounds 1444 

Benzene, toluene, ethylbenzene, and ortho-, meta-, and para-xylenes are an important group of 1445 

VOCs collectively known as BTEX. In urban environments BTEX are principally emitted by 1446 

vehicle exhaust gases because of their presence in fuels, lubricating and heating oil, while minor 1447 

sources include gasoline evaporation, use of solvents and paint, leakage from natural gas and 1448 

liquefied petroleum gas. The adverse health effects of benzene are well known (e.g., WHO, 2000; 1449 
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Saillenfait et al., 2003; Pariselli et al., 2009, and reference therein) and it is included as a known 1450 

human carcinogen by the IARC classification system. BTEX are highly reactive in the troposphere 1451 

playing a key role in atmospheric chemistry as important photochemical precursors for tropospheric 1452 

ozone and secondary organic aerosol generation (Atkinson, 2000; Atkinson and Arey, 2003).  1453 

 1454 

Aromatic compounds are present in jet fuels, and can therefore be emitted as both unburned 1455 

material and byproducts of incomplete hydrocarbon combustion, but also from fuel evaporation and 1456 

refueling (Anderson et al., 2005; 2006). In this context, the benzene to toluene ratio (B/T) was often 1457 

proposed to identify the fuel vs combustion origin of hydrocarbon mixtures. For example, 1458 

Schürmann et al. (2007) observed that the B/T ratio at an airport is well below 1 for refuelling 1459 

emissions and engine ignition while in the exhaust this value reaches up to 1.7. The US EPA (2009) 1460 

mass fraction profiles (Figure 9) clearly show that BTEX account for ~4% of identified compounds, 1461 

while other relevant aromatics (in order of decreasing mass fraction) are phenol, 1,2,4-1462 

trimethylbenzene, styrene, m-ethyltoluene and 1,2,3-trimethylbenzene. Generally, the literature 1463 

shows large decreases in benzene and toluene emissions with increasing engine power, both for TF 1464 

(Anderson et al., 2006) and TS engines (Cain et al., 2013). In particular, by studying the 1465 

hydrocarbon emissions from a TS engine operating with conventional (JP-8), alternative and 1466 

surrogate fuels, Cain et al. (2013) hypothesised that fuel composition and structure may play a 1467 

significant role in the aromatic emissions of aircraft. They speculated that the propensity of the 1468 

molecular structure of paraffins in fuels to produce benzene or toluene was observed to follow 1469 

cycloparaffin > iso-paraffin > n-paraffin. This study also attempted to depict the chemical processes 1470 

at the basis of their observations and hypothesised that iso- and n-paraffins must first undergo either 1471 

ring closure or decomposition to combustion/pyrolytic intermediates prone to ring formation (e.g., 1472 

propargyl radicals and propylene) to ultimately form cyclic and aromatic compounds. In addition, 1473 

Cain et al. (2013) reported that an increased branching ratio of iso-paraffins resulted in higher 1474 
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production rates of the C3-intermediates, which further contribute to ring/aromatic formation and 1475 

growth.  1476 

 1477 

4.11.5  Polycyclic aromatic hydrocarbons 1478 

Among the large number of hydrocarbon species emitted by aircraft engines, the polycyclic 1479 

aromatic hydrocarbons (PAHs) deserve particular attention because most congeners are  known, 1480 

probable or possible human carcinogens  (WHO, 2000; Armstrong et al., 2004; IARC, 2010) and 1481 

because of their ubiquitous presence in the urban atmosphere (Ravindra et al., 2008; Zhang and 1482 

Tao, 2009). PAH are semi-volatile and partition between the gaseous and particulate phases;  lighter 1483 

PAHs (2 to 3 aromatic rings) are present almost exclusively in the vapour-phase, whereas PAHs 1484 

with higher molecular weights (>4 rings) are almost totally adsorbed on particles. Although PAHs 1485 

may undergo oxidation by several atmospheric oxidants, their potential for long range transport 1486 

cannot be disregarded (e.g., Keyte et al., 2013). 1487 

 1488 

Agrawal et al. (2008) showed that lighter congeners such naphthalene and its 1-methyl and 2-1489 

methyl derivatives contribute strongly to the total PAH mass in various aircraft (TF) emissions at 1490 

differing thrust modes. Moreover, they also reported that the EI(naphthalene) increased as power 1491 

increased from idle mode falling off as the engine operated at the highest power. Chen et al. (2006) 1492 

characterised the PAH emissions of the TS engine of a helicopter at five power settings and 1493 

reported a mean total PAH concentration in the exhaust of 843 µg m−3, with a maximum of 1653 µg 1494 

m−3 emitted during ground idle. The emission level of total PAHs during a complete LTO cycle was 1495 

estimated to be 1.15 g PAHs LTO−1. Even if the results provide evidence for high mass 1496 

concentrations of total emitted PAH, the speciation revealed that lighter congeners, which have 1497 

generally lower carcinogenic potencies, were dominant: 59.7% of total PAHs emissions were made 1498 

up of naphthalene, 37.8% of three-ring congeners, while the remaining 2.5% of PAHs had four- to 1499 
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seven-rings. The emission factor revealed U-shaped behaviour: maximum at idle (50%), minimum 1500 

at fly idle (67%) and increasing until max thrust (100% F00).  1501 

 1502 

Although the PAH pollution at airports can be overwhelmed by external sources, such as vehicular 1503 

traffic and industrial emissions, a number of studies have indicated airport emissions cannot be 1504 

neglected. Cavallo et al. (2006) measured the concentrations of 23 PAH in three areas (airport 1505 

apron, building and terminal/office) of a major Italian airport (Fiumicino, Rome). The airport apron 1506 

was found to be suffering the highest levels of total PAHs (27.7 μg m‒3) with a prevalence of 2–3 1507 

ring PAH such as methylnaphthalenes and acenaphthene presumably associated with jet fuel 1508 

combustion. However, they also showed that PAH levels were lower than the threshold limit value 1509 

proposed for occupational exposure by ACGIH (0.2 mg m‒3). Similar results were obtained by Zhu 1510 

et al. (2011), who observed that the semi-volatile PAHs (from phenanthrene to chrysene) were 1511 

consistently higher at both blast fence and downwind sites from the take-off runway of Los Angeles 1512 

airport than at a background site. This study also indicated naphthalene as the most abundant gas-1513 

phase PAH (80-85% of the total PAHs).  1514 

 1515 

4.11.6  Organic sulfur, nitrogen and chlorinated species 1516 

Since jet fuels contain variable FSC, some organic sulfur species may form during combustion. 1517 

Anderson et al. (2006) measured the emissions of OCS, CS2 and dimethyl sulphide (DMS) from a 1518 

RB211-series TF engine at varying engine power and burning two different FSC fuels. Results 1519 

showed no consistent trends for OCS and CS2 with varying thrust settings and suggested that the 1520 

sources of those gases are insensitive to the FSC. In contrast, this study revealed that levels of DMS 1521 

are dramatically reduced from approximately ambient levels at idle to near the instrument detection 1522 

limit as engine power is increased and speculated that ambient DMS is essentially burned (oxidised) 1523 

out of the exhaust stream at combustor temperatures associated with high engine power. 1524 

 1525 
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The presence of organic nitrogen species in aircraft exhaust may derive from the presence of 1526 

nitrogen in fuels and from the potential reaction between alkanes and NOx within the exhaust 1527 

plume. During the EXCAVATE campaign, alkylnitrate species were observed in exhaust plumes 1528 

with methyl nitrate, iso-propyl nitrate, and 2-butyl nitrate accounting for 80–90% of the total N-1529 

containing organic species (Anderson et al., 2006). In particular, methyl nitrate was observed to 1530 

follow U-shaped curves of EI vs. fuel flow, with minimum emissions at mid-range thrust, slightly 1531 

increased emissions at low thrust and strongly increased at higher powers.  1532 

 1533 

Chlorinated organic compounds can form in aircraft exhaust as by-products of fossil fuel 1534 

combustion in the presence of chlorine. Chlorine can be present in fuels because refineries can use 1535 

salt driers to remove water from fuels (Anderson et al., 2006), and in certain circumstances may be 1536 

present in ambient air as sea salt, such as in coastal environments. Despite the lack of available data 1537 

in the literature, there is no evidence to date that chlorinated compounds are produced by aircraft 1538 

engines. For example, Agrawal et al. (2008) observed that the emissions of dioxins from various 1539 

aircraft engines are below the detection limit. 1540 

 1541 

4.12  Chemi-ions 1542 

Aircraft exhausts also contain gaseous ions, the so called chemi-ions (CIs), have been measured in 1543 

several studies (e.g., Reiner and Arnold, 1993;1994; Arnold et al., 1998b; Yu and Turco, 1997; 1544 

Kiendler and Arnold, 2002; Eichkorn et al., 2002; Haverkamp et al., 2004; Sorokin et al., 2004; 1545 

Miller et al., 2005; Anderson et al., 2005). Their formation was also found in various mobile 1546 

sources (e.g., Seigneur, 2009) and is attributed to the radical–radical reactions during combustion 1547 

processes. Once emitted, CIs may evolve chemically via ion-ion recombination and ion-molecule 1548 

reactions involving trace gas molecules present in the exhaust (Kiendler and Arnold, 2002) and may 1549 

act as aerosol precursors (Sorokin and Mirabel, 2001; Eichkorn et al., 2002). Starik (2008) provides 1550 

a scheme of ion formation in hydrocarbon flames and inside the combustor. 1551 
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Relatively high number concentrations of CIs have been measured: in the SULFUR experiments 1552 

(Schumann et al., 2002 and reference therein) 109 ions cm‒3 were reported at ground level, i.e., of 1553 

the order of 1017 CIs kg Fuel‒1, but it was also reported that CIs decrease rapidly with increasing 1554 

plume age (Arnold et al., 2000; Sorokin and Mirabel, 2001). Haverkamp et al. (2004) measured EI 1555 

for the total (positive and negative) ions of 1.2x1016 - 2x1016 CIs kg Fuel‒1 and observed number 1556 

concentrations of the same order of magnitude for both negative and positive ions: negative CIs 1557 

varied from 6x107  and 2.1x108 molecules cm‒3, while positive ions ranged from 4x107 to 1.7x108 1558 

molecules cm‒3. About 50% of the measured ions have masses heavier than 100 amu and the most 1559 

massive ions show masses up to 1500-3000 amu, depending on the fuel flow (thrust) and FSC 1560 

(Haverkamp et al., 2004). Schumann et al. (2002) reported masses also exceeding 8500 amu. 1561 

Identified negative CIs include many organic ions and cluster ions containing sulfuric acid, e.g., 1562 

HSO4
‒(H2SO4)n, HSO4

‒(H2SO4)n(SO3)m (n<3, m =0,1), NO3
‒ (HNO3)m  and HSO4

‒(HNO3)m 1563 

(m=1,2). Kiendler and Arnold (2002) further reported a low stability of HSO4
‒(H2SO4)n (n≥3) 1564 

against thermal detachment of H2SO4 at high temperatures, indicating the presence of gaseous 1565 

H2SO4 in exhaust plumes. Positive CIs are mostly oxygen-containing organic compounds 1566 

(Schumann et al., 2002) and considering the heavy masses of most CI, Haverkamp et al. (2004) also 1567 

hypothesized the presence of large organic molecules, such as PAHs. 1568 

 1569 

The generation of CIs in the combustor, their physico-chemical characteristics and the changes 1570 

occurring along with plume aging are not yet well understood and merit further investigation as 1571 

these ions may play a key role in the formation of numerous volatile aerosol particles (e.g., Yu and 1572 

Turco, 1997; Arnold et al., 2000; Sorokin and Mirabel, 2001; Haverkamp et al., 2004; Miller et al., 1573 

2005).  1574 

 1575 

 1576 

 1577 
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4.13  Particulate Matter 1578 

Particulate matter (PM) is emitted by a great variety of both natural and anthropogenic sources. The 1579 

latter include a large variety of anthropogenic processes, which emit particles with very different 1580 

chemical composition and physical properties. Nowadays, PM composition and sources have been 1581 

extensively investigated in a large number of different environments (e.g., Viana et al., 2008; 1582 

Harrison et al., 2012; Amato et al., 2013). However, few data on PM emissions are historically 1583 

available for aircraft engines (Wayson et al., 2009, Kinsey et al., 2011). In addition, ICAO has not 1584 

yet defined any emission standard for PM to be applied during LTO cycles and is therefore 1585 

interested in setting a certification limit for this pollutant to address related air quality and climate 1586 

issues (Kinsey, 2009). In this context, there are some current programmes aiming to describe the 1587 

PM emissions from aircraft engines, e.g., the Society of Automotive Engineers (SAE) E-31 1588 

Committee is developing a standard PM test method for aircraft engine certification (SAE, 2009).  1589 

 1590 

Despite a number of studies which have been published recently on PM emissions from gas turbine 1591 

engines from both a physical and a chemical point of view (e.g., Corporan et al., 2008; Whitefield et 1592 

al., 2008; Herndon et al., 2008; Agrawal et al., 2008; Westerdahl et al., 2008; Kinsey et al., 2010; 1593 

2011), current data on aircraft-generated PM are still wholly inadequate and many open questions 1594 

wait to be addressed. This gap appears to be a pressing issue because many epidemiological studies 1595 

have found a strong correlation between the exposure to PM and some significant adverse human 1596 

health effects (e.g., Pope and Dockery, 2006; Valavanidis et al., 2008; Polichetti et al., 2009; 1597 

Karakatsani et al., 2012; Anderson et al., 2012; Heal et al., 2012; Martinelli et al., 2013). PM 1598 

inhalation can affect morbidity and can lead to an increase in hospital admissions, and is 1599 

significantly associated with mortality and to a substantial reduction in life expectancy (Pope et al., 1600 

2009; Hoek et al., 2010; Sapkota et al., 2012; Raaschou-Nielsen et al., 2013). 1601 

 1602 

 1603 
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4.13.1  Volatile and non-volatile PM 1604 

PM generated from aircraft engines can be classified into two major fractions: non-volatile and 1605 

volatile PM (e.g., Kinsey et al., 2009; Presto et al., 2011), while the combination of both volatile 1606 

and non-volatile PM is commonly referred as total PM. Non-volatile PM is directly emitted by 1607 

engines and is mainly composed of graphitic/elemental/black carbon with traces of metals, which 1608 

are stable at the high temperatures and pressures normally reached in the exhaust plumes. Volatile 1609 

PM is instead formed through the gas-to-particle partitioning and conversion processes of sulfur and 1610 

various organic gases (Robinson et al., 2010; Timko et al., 2010b), which occur after the emission 1611 

in the near-field plume downstream of the engine (Kinsey et al., 2011). Since the most volatile PM 1612 

components are partitioned into the gas-  and particulate-phases, their behaviour is sensitive on  the 1613 

changes in the environmental conditions with respect to the near-plume and in any case many 1614 

compounds can remain in equilibrium between the two phases. This component is therefore very 1615 

sensitive to the sampling conditions (Wey et al., 2006; Wong et al., 2011; Presto et al., 2011). In 1616 

particular, the organic component of the volatile PM undergoing partitioning between the two 1617 

phases is named organic aerosol (OA) and can be composed of a large number of different 1618 

hydrocarbon classes. Moreover, as the reactive compounds can be affected by oxidation by a 1619 

number of atmospheric oxidant species (mainly hydroxyl, nitrate radicals and ozone), it can be 1620 

expected that the composition and the quantity of volatile PM changes progressively away from the 1621 

plume, after natural cooling, dilution and chemical processes occur in the atmosphere. Many 1622 

hydrocarbons of high volatility, such as BTEX, low molecular weight PAHs, alkanes and many 1623 

others, may be easily oxidised to species with substantially lower volatilities (Kroll and Seinfeld, 1624 

2008) and, thus, may act as precursors for the formation of the secondary organic aerosol (SOA). 1625 

The formation and the properties of the SOA, including their gas/particle partitioning, are an intense 1626 

area of research (e.g., Pandis et al., 1992; Pankov, 1994; Odum et al., 1996; Kroll and Seinfeld, 1627 

2008; Hallquist et al., 2009) and the common way to describe the partitioning of a constituent i 1628 
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between the gas- and the condensed- phases with mass concentration COA can be described by a 1629 

partitioning coefficient, ξi: 1630 

ξi=1/[1+(C*
i/COA)] 1631 

where C*
i is the effective saturation concentration of the compound, i.e. a semi-empirical property 1632 

describing the partitioning of complex mixtures. Donahue et al. (2009) proposed three different 1633 

classes of compounds on the basis of their C* values: (i) the low volatility organic compounds, 1634 

showing C* from 10‒2 to 10‒1 μg m‒3 and mostly remaining in the condensed phase under common 1635 

atmospheric conditions; (ii) the SVOCs, exhibiting C* between 100 and 102 μg m‒3 and undergoing 1636 

significant partitioning and (iii) the intermediate volatility organic compounds (IVOCs), having C* 1637 

in the order of magnitude of 103—106 μg m‒3, which are almost entirely in the gas-phase. Recently, 1638 

some studies have pointed out that most hydrocarbons emitted by aircraft engines are thought to be 1639 

important SOA precursors (Miracolo et al., 2011; Presto et al., 2011), being in the IVOC and SVOC 1640 

classes. However, the potential of hydrocarbons emitted by aircraft exhaust to form secondary 1641 

components is currently poorly understood. 1642 

 1643 

4.13.2  Particulate mass 1644 

Generally, the emission indices of PM mass range from approximately 10 to 550 mg PM kg Fuel‒1 1645 

(Kinsey, 2009). U-shaped curves of PM emissions versus thrust are commonly reported in the 1646 

literature, showing elevated emissions at low power settings, a decrease to a minimum at midrange 1647 

power, and then an increase at high or full power (Whitefield et al., 2008; Kinsey, 2009; Kinsey et 1648 

al., 2010; 2011). Agrawal et al. (2008) noted a 10 to 40-fold increase in the EI(PM) as the engine 1649 

power increased from idle to climb thrust. However, there are deviations from this behaviour: the 1650 

PM mass emission indices at varying thrusts have been shown to depend on various factors, 1651 

including engine families, technology, FSC, operating power, cold and warm engine conditions and 1652 

environmental conditions (e.g., Kinsey, 2009) and real-time emission rates for PM for a typical TF 1653 

engine have revealed significant PM spikes during changes in power settings (Agrawal et al., 2008).  1654 
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The measurements of PM from aircraft exhaust are heavily dependent on the adopted methodology 1655 

(e.g., Presto et al., 2011). Since the volatile PM may undergo rapid changes in time and space, the 1656 

sampling protocol, such as the distance from the engine exit, and other parameters having 1657 

implications on the aging of plumes play a key role in the mass of sampled particles. In addition, the 1658 

environmental conditions (e.g., temperature, humidity, sunlight, wind, etc.) can also affect PM 1659 

mass, particularly through the potential for particle formation, coagulation, and growth (e.g., 1660 

Herndon et al., 2005). Timko et al. (2010b) reported that soot is the only type of particle detected at 1661 

the engine exit plane, while volatile particles are only detected downwind (15–50 m) due to the 1662 

nucleation of sulphate and organic materials in the cooling exhaust plume. Kinsey et al. (2010) 1663 

indicated that a variable amount  (40% to 80%) of the total PM can be composed of volatile matter, 1664 

mainly in the form of sulfur and organics. Lobo et al. (2012) measured the specific PM emissions 1665 

during normal LTO operations at a distance of 100-300 m downwind of an active taxi-/runway at 1666 

the Oakland International Airport and reported EI(PM) between 100 and 700 mg PM kg Fuel‒1 1667 

under both the idle/taxi and take-off conditions for various aircraft/engine combinations. 1668 

 1669 

4.13.3  Particle number concentration  1670 

During the APEX campaigns, the observed EI(#) varied from approximately 1∙1015 to 1∙1017 1671 

particles kg Fuel‒1 (Kinsey, 2009; Kinsey et al., 2010) and are therefore comparable on a per unit 1672 

fuel burn basis to the number of particles generated from other combustion sources, such as ship 1673 

emissions, biomass burning and forest fires (Kumar et al., 2013). Generally most TF engines tested 1674 

during APEX projects exhibited EI(#) strongly correlated with fuel flow (Kinsey et al., 2010), with 1675 

higher EI at low power settings following a logarithmic relationship of EI(#) to thrust: 1676 

EI(#)=m∙[ln(fuel flow)]+b 1677 

where m represents the slope of the regression line with values ranging from -2∙1015 to -3∙1016 and b 1678 

is the intercept of the regression line varying from 2∙1016 to 2∙1017 (Kinsey, 2009). Similarly to 1679 

EI(PM) the particle number indices were however observed to be sensitive to engine technology, 1680 
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FSC, operating power and environmental conditions: Kinsey (2009) also reported a completely 1681 

different behaviour for a TJ engine (CJ610-8ATJ), with EI(#) lower at idle and relatively constant at 1682 

higher F00.  1683 

 1684 

It was shown that EI(#) tends to increase moving away from the engine exit plane. EXCAVATE 1685 

results (Anderson et al., 2005) reported increases by a factor of 10 at 25 to 35 m than at 1 m 1686 

downstream of the exhaust plane. Timko et al. (2010b) further observed differences in particle 1687 

number emissions sampled at engine exit plane and downwind (15-50 m) of the engine. They 1688 

reported that soot is the main species detected at the engine exit plane, while the nucleation of 1689 

volatile particles in the cooling exhaust gases measured downwind further led to increases in the 1690 

particle number of 1-2 orders of magnitude. 1691 

 1692 

Cheng and Corporan (2010) reported particle number emissions from military engines operated 1693 

with JP-8 fuel in various thrust settings. They observed that a common TF engine emits increasing 1694 

number of particles at increasing thrust with particle number emission indices of 5.5∙1015, 5.3∙1015, 1695 

9.6∙1015, and 8.9∙1015 particles kg Fuel‒1 for the idle, 80%, 90% and 95% power setting, 1696 

respectively. A inverse pattern with decreasing emissions at increased power settings was instead 1697 

reported for a common TP engine equipping the widespread used military cargo C-130 Hercules: 1698 

averaged EI were 1.8∙1016,1.4∙1016,1.4∙1016,1.0∙1016, and 1.2∙1016 particles kg-fuel‒1 for 4%, 7%, 1699 

20%, 41% and max thrusts, respectively. This study also examined two common TS engines used in 1700 

most helicopters and aircraft and reported increasing emissions of particles with increasing thrust: 1701 

3.1∙1015 (idle), 3.3∙1015 (75%) and 5.5∙1015 (max thrust) particles kg-fuel‒1 and 1.1∙1014 (idle) 1702 

1.8∙1015 (75%) and 3.0∙1015 (max thrust), respectively. Similar results were observed by Cain et al. 1703 

(2013) in a TS engine burning various types of fuel: JP-8 fuel emissions were between 1015 and 1016 1704 

particles kg-fuel‒1, while emissions from other alternative and surrogate fuels were 1 to 2 order of 1705 

magnitude lower. 1706 
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Measurements of EI(#) at airports indicated similar results. Lobo et al. (2012) measured the specific 1707 

PM emissions during normal LTO operations at a distance 100-300 m downwind of an active taxi-1708 

/runway at the Oakland International Airport and associated the data with various aircraft/engine 1709 

combinations. They observed similar EI(#) for both idle/taxi (7∙1015-3∙1017 particles kg Fuel‒1) and 1710 

take-off (4∙1015-2∙1017 particles kg Fuel‒1) phases. Klapmeyer and Marr (2012) reported that the 1711 

EI(#) for in-use aircraft at a regional airport varied from 1.4∙1016 to 7.1∙1016 particles kg Fuel−1 and 1712 

observed slightly higher concentrations during taxi phases than during take-offs. 1713 

 1714 

The beneficial effects of alternative fuels upon particle emissions are nowadays under discussion. 1715 

Although this review does not focus on such effects, it is interesting to note that some studies have 1716 

highlighted potential positive effects on the EI(#) and EI(PM). For example, Lobo et al. (2011) 1717 

reported reduced emissions of PM number emissions of about one third using 50% FT/50% Jet-A1 1718 

blend instead of Jet-A1.  1719 

 1720 

4.13.4  Size distributions 1721 

Size distributions of airborne particles influence their residence time and dispersion (Allen et al., 1722 

2001). In addition, the dimensions of particles are directly related to their emission sources, as 1723 

mechanically generated particles (e.g., wind-blown dust, sea spray) are generally largest than 1 µm, 1724 

while combustion-generated (high-temperature processes, traffic, many industrial activities) are 1725 

typically smaller than 1 µm (e.g., Lewis and Schwartz, 2004; Seinfeld and Pandis, 2006; Ning and 1726 

Sioutas, 2010). Ultrafine particles (UFPs, diameter <100 nm) typically constitute ∼90% or more of 1727 

particle number count in areas influenced by vehicle emissions (Morawska et al., 2008). UFPs have 1728 

larger surface area per unit mass with respect to larger particles and can potentially contain high 1729 

proportions of organic material such as polycyclic aromatic hydrocarbons. Moreover, UFPs can 1730 

penetrate deeper into the respiratory tract and into cells possibly posing an elevated risk for human 1731 
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health (Oberdorster et al., 2004; Delfino et al., 2005; Bräuner et al., 2007; Belleudi et al., 2010; 1732 

Knibbs et al., 2011).  1733 

 1734 

A large number of studies (e.g., Herndon et al., 2005; Wey et al., 2007; Westerdahl et al., 2008; 1735 

Cheng et al., 2008; Mazaheri et al., 2009; Dodson et al., 2009; Kinsey, 2009; Kinsey et al., 2011; 1736 

Zhu et al., 2011; Presto et al., 2011; Hsu et al., 2013) have provided evidence that AEs may lead to 1737 

increased concentrations of UFPs. However, the nature of semi-volatile compounds emitted by 1738 

aircraft, the possible mechanisms of secondary aerosol formation and the dilution effect, make it 1739 

difficult to associate a measured size distribution with a specific source.  Studies performed at the 1740 

exhaust exit-plane or directly downstream of the engine cannot usefully be compared with data 1741 

obtained in ambient air sampled at airports. However, even if differences and limitations exist, 1742 

some trends and recurring modes have been identified in most studies. 1743 

 1744 

A study by Schumway (2002) used scanning electron microscopy to analyse individual particles 1745 

emitted from military engines and reported predominant particles with dimensions ranging from 22 1746 

to 120 nm. It was observed that emitted particles were discrete at low thrust (approach and idle), 1747 

while they tended to agglomerate at higher power (intermediate and military modes). Similar results 1748 

have recently been reported by Mazaheri et al. (2013), who analyzed the aircraft emissions  during 1749 

normal takeoff and landing operations at an international airport by using the transmission electron 1750 

microscopy technique. They reported particles in the range of 5−100 nm in diameter with a 1751 

dominant nucleation mode (18−20 nm) and semisolid spherical shapes. Nowadays most studies 1752 

measure particle size distributions using automatic instruments, such as scanning mobility particle 1753 

sizers (SMPS), electrical low pressure impactors (ELPI), and differential mobility spectrometers 1754 

(DMS). A comprehensive review of these devices is provided elsewhere (Kumar et al., 2010). 1755 

Anderson et al. (2005) reported that exhaust exit-plane measurements on engines mounted in test 1756 

cells and B757 aircraft in run-up facilities produce of the order of 1015 soot particles per kg of fuel 1757 
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burned with a mean mass diameter of 40 to 60 nm. Using an improved version of the nanometre 1758 

aerosol size analyser (nASA), they also reported that the aerosol size distribution at 1 m from a 1759 

B757 engine is a combination of volatile and non-volatile particles with a bimodal distribution. The 1760 

first (non-volatile) mode was measured by heating the aerosol to 300°C before analysis with the 1761 

nASA and was found to be around 20 nm; this mode was thought to be primarily composed of soot 1762 

and other components including zinc, aluminium, and titanium which are from the abrasion of 1763 

engine components or the trace metal impurities in the fuel. The second (volatile) mode was 1764 

observed at 7 nm and comprised particles that vaporise below 300°C. 1765 

 1766 

During the APEX campaigns (e.g., Wey et al., 2007; Kinsey, 2009; Kinsey et al., 2010), the particle 1767 

size distributions of the emissions were generally found to be unimodal and log-normally 1768 

distributed, with electrical mobility diameters ranging from ~3 nm to >100 nm and a geometric 1769 

number mean diameter (GMD) of ~10‒35 nm. A slightly dependence of  GMD on thrust was 1770 

detected, with GMD of 10‒20 nm at low fuel flow rates, a decrease at mid-power and then an 1771 

increase at higher thrust. These studies also reported the presence of a prominent nucleation mode 1772 

mainly on samples collected farther from the engine exit (30 m) with respect to gases sampled at 1 1773 

or 10 m. This second mode was attributed to the secondary aerosol generation caused by the 1774 

expansion and cooling of the exhaust plume and is composed of sulfuric acid and low-volatility 1775 

hydrocarbons (Wey et al., 2007). APEX results detected changes in both the GMD and related 1776 

geometric standard deviation (GSD) of the particle size distributions at varying engine and fuel 1777 

type, thrust, and environmental conditions.  1778 

 1779 

While APEX reported size distributions for commercial in-use airliner engines, we report data from 1780 

other studies on differing engine types and technologies. Rogers et al. (2005) showed that the 1781 

particles measured in the exhaust of two military engines (a FT with afterburner and a TS) were 1782 

unimodally distributed with peaks at 20–40 nm. Cheng et al. (2008) observed that the particle 1783 
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number size distributions downstream of a C-130 Hercules showed peaks between 50 and 80 nm for 1784 

engine power settings ranging from idle to maximum thrust. They also observed a clear trend of 1785 

increasing particle diameter with increasing engine power setting and distance from the engine exit. 1786 

Cheng et al. (2008) detected the presence of another peak corresponding to the lower instrumental 1787 

limit, presumed to be an additional mode below 20 nm. Cheng and Corporan (2010) reported 1788 

unimodal size distributions for military turbofan, turboprop and turboshaft emissions sampled at the 1789 

engine exhaust plane. They observed that both the total particle number concentration and  GMD 1790 

increased as the engine power increased for all tested engines. In particular, the observed GMD 1791 

ranged from 55 nm (at idle) to 85 nm (at 95% F00) in turbofan, from 51 nm (at idle) to 67 nm (at 1792 

max thrust) in turboprop and from 20 nm (at idle) to 42 nm (at max thrust) in a turboshaft engine. 1793 

 1794 

4.13.5  Changes of particle number and size after the dilution of plumes 1795 

The effects of the aircraft-related emissions of UFP at airports have received increasing attention in 1796 

recent years and some studies have demonstrated a clear dependence of UFP concentrations and 1797 

size distributions upon aircraft operations. In addition, UFP measurements upwind and downwind 1798 

of airports are of particular importance because they are performed under ambient conditions, i.e. 1799 

after the plume has been diluted by air and the particle coagulation and gas-to-particle condensation 1800 

processes have occurred.   1801 

 1802 

Hu et al. (2009) studied the effect of aircraft movements in a neighbourhood adjacent to the 1803 

regional airport of Santa Monica and observed that spikes in the particle number concentration 1804 

related to the take-off phase were 440 times elevated above background  and reached 2.2x106 1805 

particles cm‒3. At a site located at the blast fence of Los Angeles International Airport, Zhu et al. 1806 

(2011) reported that total UFPs counts exceeded 107 particles cm‒3 during take-offs. This study 1807 

further investigated temporal profiles in particle concentration of 30 nm mobility diameter 1808 

(corresponding to the mean geometric mode of emitted particles) due to isolated aircraft take-off 1809 
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events: dramatic increases of particle concentrations (from 1.6∙103 to 1.7∙104 particles cm‒3) were 1810 

reported when aircraft engines are accelerated to the 100% thrust power for take-off, followed by 1811 

decreases of number concentrations showing an exponential decay. Similar findings have been 1812 

reported by Hsu et al. (2012), who observed that departures of jet engine aircraft on a runway may 1813 

contribute to 1∙103 to 7∙104 particles cm‒3. The same authors further revealed significant higher 1814 

increases of UFP at Los Angeles International airport (Hsu et al., 2013) due to the LTO activity: 1815 

2∙106‒7∙106  particles cm‒3 increase at a monitor at the end of the departure runway, 1816 

8∙104‒1.4∙105 particles cm‒3  at a site 250 m downwind from the runway. 1817 

 1818 

Changes in the particle size distributions can also occur after plumes are diluted in ambient air due 1819 

to coagulation. However, most studies have shown that particle size distributions at airports are 1820 

comparable with those measured during engine tests. Air monitoring carried out in the surroundings 1821 

of the Los Angeles International Airport found that the upwind site was dominated by particles of 1822 

approximately 90 nm diameter whereas downwind sites were dominated by finer particles, peaking 1823 

at approximately 10‒15 nm (Westerdahl et al., 2008), which corresponds to the size reported during 1824 

APEX campaigns for many in-use engines (Kinsey et al., 2010). Similarly, Fanning et al. (2007) 1825 

and Zhu et al. (2011) reported very high number concentrations of UFPs collected at the blast fence 1826 

site, with the highest numbers found at a particle size of approximately 14 nm. The same study 1827 

further observed that the UFP number concentrations measured in a residential community 1828 

approximately 2-3 km downwind of the airport were intermediate in concentration between the 1829 

airport runway and the background reference site. This finding was associated with aircraft take-off 1830 

activities and the authors noted the significant exposure and possible health implications for people 1831 

living near the airport. Mazaheri et al. (2009) revealed that size distributions exhibit similar 1832 

modality during all phases of the LTO cycles with particles predominantly in the range of 4‒100 nm 1833 

in diameter. This latter study also reported two distinct modes: a nucleation mode at diameters <30 1834 

nm observed in all LTO modes and an accumulation mode between 40 and 100 nm more 1835 
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pronounced during take-offs. While the nucleation mode exhibited the highest number 1836 

concentration of all modes, the accumulation mode dominated the particle mass size distributions. 1837 

Lobo et al. (2012) measured the specific PM emissions during normal LTO operations at a distance 1838 

of 100-300 m downwind of an active taxi-/runway at the Oakland International Airport and 1839 

associated the data with various aircraft/engine combinations. The size distributions were typically 1840 

bimodal with a nucleation mode composed of freshly nucleated PM and an accumulation mode 1841 

mostly made up of soot with some condensed volatile material.  These observations closely parallel 1842 

the mechanisms and size distribution of particles in diesel exhaust (Harrison et al., 2011).  1843 

 1844 

4.14 Chemical Composition of PM 1845 

Although the chemical composition of PM may include most of the periodic table of the elements 1846 

and many thousands of different organic compounds, it is principally composed of few major 1847 

components, which usually represent several percent of the total mass of particles, and some of 1848 

those may remain in thermodynamic equilibrium between gaseous and particle phases. The 1849 

particulate matter emitted directly by aircraft is mostly composed of soot (e.g., Anderson et al., 1850 

2005; Timko et al., 2010b), while sulphate and semi-volatile hydrocarbons may further coat the 1851 

particles after the plume dilution. However, aircraft PM may also contain traces of metals and ions, 1852 

which are mainly the result of: (i) fuel impurities; (ii) corrosion and wear of mechanical 1853 

components of engines; (iii) pre-existing PM drawn in the combustor. The following sub-1854 

subsections discuss the various components separately. 1855 

 1856 

4.14.1  Carbonaceous PM 1857 

Carbonaceous PM consists of a complex mixture of elemental carbon (EC) and organic carbon 1858 

(OC) (jointly referred to as soot) and commonly accounts for a large fraction of ambient fine 1859 

particle mass in both rural and urban environments. Soot is primarily generated by incomplete 1860 

combustion processes through the pyrolysis of organic fuels used in combustion processes.  Many 1861 
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studies have discussed the various types of such particles; however there are still controversies and 1862 

open discussion about the terminology to adopt. The terms used to identify the various fractions of 1863 

carbonaceous aerosols, such as soot, black carbon (BC), elemental carbon (EC), equivalent black 1864 

carbon and refractory black carbon are mainly associated with the corresponding measurement 1865 

methods (e.g., Pöschl, 2003; Andreae and Gelencésr, 2006; Bond and Bergstrom, 2006; Kondo et 1866 

al., 2011; Buseck et al., 2012; Long et al., 2013; Novakov and Rosen, 2013) and more generally 1867 

refer to the most refractory and light-absorbing component of carbonaceous combustion particles, 1868 

even if the underlying definitions and measurement methods are different (Petzold et al., 2013). 1869 

Without going into the merits of this discussion, this section provides an overview of the data 1870 

concerning the carbonaceous fraction and the terms used (soot, BC and EC) are the same as 1871 

reported by the original authors. In any case, Lee et al. (2010) indicated that BC is often used 1872 

interchangeably with soot in the literature relating to aircraft emissions, although in the strictest 1873 

sense they are different. 1874 

 1875 

The airliners of 1960s and 1970s emitted visible and dark exhaust plumes, especially during take-1876 

off. In recent decades, a great effort has been made by most engine manufacturers to reduce such 1877 

emissions, which consisted mainly of soot and organics, and nowadays most modern airliners do 1878 

not emit visible plumes. However, soot is still the primary form of non-volatile PM emitted by jet 1879 

engines (e.g., Timko et al., 2010b), even if its contribution represents only few percent of the global 1880 

atmospheric BC emission (Hendricks et al., 2004). 1881 

 1882 

From a morphological point of view, soot particles emitted by aircraft engines have nearly spherical 1883 

shapes with lognormal size distributions peaking at 30–60 nm (Petzold et al., 2003, 2005a; 1884 

Popovicheva et al., 2004). However, once emitted soot particles quickly build complex 1885 

agglomerates causing a second mode of larger particles between 100 and 500 nm, which are totally 1886 

amorphous (Petzold et al., 1998; Popovitcheva et al., 2000; 2004; Demirdjian et al., 2007). Despite 1887 
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the structural characteristics of soot being of primary importance in relation to its atmospheric 1888 

properties, there is a lack of experimental data on microstructure, composition and hygroscopicity 1889 

of original soot emitted from aircraft engines. Some studies conducted at cruise height (Kärcher et 1890 

al., 1996; Gleitsmann and Zellner, 1998) have assumed that all the soot particles in exhausts are 1891 

hydrophobic. Demirdjian et al. (2007) used a combination of several analytical methods to study the 1892 

microstructure and the composition of soot agglomerates sampled in an aircraft engine combustor 1893 

and reported that soot was in two main fractions having quite different physicochemical properties. 1894 

A major fraction of particles was found to be made up of amorphous carbon with small amounts of 1895 

oxygen, sulfur and iron and was rather hydrophobic, while a second fraction was characterised by 1896 

various structures and a large amount of impurities and was highly hydrophilic. Vander Wal et al. 1897 

(2010) compared the physical structure and the chemical composition of soot produced by different 1898 

sources, including a modern TF engine, using high resolution transmission electron microscopy and 1899 

X-ray photoelectron spectroscopy. The results showed that some physical characteristics of jet 1900 

engine soot, such as the lamella length distributions, are intermediate between soot produced by 1901 

other sources such as wildfires and diesel, while other characteristics are singular. Jet soot was 1902 

reported to have the highest sp3 carbon content, in fact higher than the sp2 (graphitic) content, the 1903 

greatest oxygen content in the form of phenolic and carbonyl groups and the widest range of hetero-1904 

elements, including S, Na, N, Zn, Ba.  1905 

 1906 

From a chemical point of view, soot is mainly made up of graphitic BC (Petzold et al., 1999; 1907 

Popovicheva et al., 2004), but some particles can be also coated with organic materials and sulfur 1908 

species (e.g., Petzold et al., 2003). For example, the hygroscopic properties of jet engine 1909 

combustion particles have been investigated in several rig-tests and results have confirmed that the 1910 

water uptake by combustion particles is generally independent of combustor operating conditions, 1911 

but increases significantly with increasing FSC level, which is attributed to an increasing amount of 1912 

sulfuric acid adsorbed on the particles (Gysel et al., 2003). The uptake of sulfuric acid and organics 1913 



76 

 

seems to be enhanced by the surface irregularities in the soot. The typical fractal agglomerate 1914 

structure of soot may offer a large specific surface area for adsorption and chemical reactions 1915 

(Popovitcheva et al., 2000). Recently, Loukhovitskaya et al. (2013) also investigated the uptake of 1916 

HNO3 on aviation soot. 1917 

 1918 

The EIs of elemental and organic carbon were investigated during APEX campaigns (Kinsey, 2009; 1919 

Onasch et al., 2009): results showed that EC ranged from 21 to 98 mg kg Fuel‒1 and OC between 37 1920 

and 83 mg kg Fuel‒1. Most studies indicated that BC emissions are a function of engine thrust 1921 

settings (Anderson et al., 2005; Wey et al., 2007; Kinsey, 2009; Kinsey et al., 2011), but are nearly 1922 

independent of FSC (e.g., Wilson et al., 2004; Kinsey, 2009). During the EXCAVATE campaign, 1923 

Anderson et al. (2005) concluded that black carbon emission indices increase significantly from idle 1924 

to cruise power. These findings are also consistent with the results of the APEX campaigns: Wey et 1925 

al. (2007) and Kinsey et al. (2011) reported that BC emissions are minimum at low power and 1926 

increase with thrust settings, reaching values more than 0.3 g kg Fuel ‒1 at power levels higher than 1927 

85% F00 and dominating the total mass emissions. Agrawal et al. (2008) reported that the 1928 

carbonaceous PM composition (EC+OC mass) significantly increases with power and shifts from 1929 

OC-rich at idle to EC-rich with rising thrust regimes. Similar findings were observed by Petzold 1930 

and Schröder (1998), who indicated that the ratio of BC to total carbon ranged from 11% at idle to 1931 

>80% at take-off thrust. This result is predictable when considering that the highest emissions of 1932 

hydrocarbons occurs at low power. Presto et al. (2011) recently investigated both the elemental 1933 

carbon and the organic aerosol emitted by a CFM56-series engine at varying thrust settings after the 1934 

exhaust using a smog chamber. Their findings confirmed the U-shaped curves of PM emissions 1935 

versus thrust commonly reported in the literature, but also added new important knowledge on the 1936 

relative contributes of EC and OA. At low power (4%‒7% F00), most PM is composed of OA, while 1937 

at 30% thrust very low emissions of both elemental and organic components were observed. At 1938 
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climb power (85%), an abrupt increase of EI(PM) occurred, mainly driven by EC, which accounted 1939 

for about two thirds of the total PM.  1940 

 1941 

The chemical characterisation of the organic component of the PM indicated that over 70% of the 1942 

particle-phase organic compounds are made up of SVOC compounds in the n-alkane (mainly C23 to 1943 

C33), PAH, and sterane/hopane compound classes (Kinsey et al., 2011). Besides the lighter PAHs, 1944 

which mainly partition in the gaseous phase, the heavier congeners are principally in the particulate 1945 

phase and generally also have the highest carcinogenic and mutagenic potencies (Delgado-Saborit 1946 

et al., 2011). Hu et al. (2009) studied the effect of aircraft movements at a site located 100 m 1947 

downwind of the regional airport of Santa Monica and reported spikes in concentration of particle-1948 

bound PAHs occurring during jet take-offs (440 ng m‒3, i.e. 90 times the local background levels), 1949 

however they did not detect significantly higher average levels of  PAHs at airports. It is interesting 1950 

to note that PAH emissions at airports may also undergo local deposition. In a study carried out at 1951 

Delhi International Airport, Ray et al. (2008) observed that PAH contamination in the <2 mm 1952 

surface soil layer reached maximum levels at a site near the landing area. The presence of PM-1953 

bound hopanes and steranes is also intriguing because these compounds are present in crude oil and 1954 

are also largely used as molecular markers of vehicle emissions (e.g., Zielinska et al., 2004; Kam et 1955 

al., 2012). Additional insights are therefore necessary for the characterisation of these organic 1956 

compounds, which can derive either from the unburned fuel or from the emission of lubricating oils, 1957 

which was hypothesised to have an important role in the mass of organic PM (Yu et al., 2010).  1958 

 1959 

The emission of carbonaceous PM was also reported in further studies conducted at airports. For 1960 

example, Dodson et al. (2009) performed continuous BC measurements at five monitoring sites in 1961 

close proximity to a small regional airport in Warwick, Rhode Island. By coupling BC data with 1962 

real-time flight activities (departures and arrivals) and meteorological data, they reported that 1963 

aircraft departures and arrivals (and other sources coincident in space and time) contribute 1964 
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approximately 24-28% of the total BC concentrations. Further, they also indicated that aircraft take-1965 

off makes a greater contribution to BC levels than landing. Hu et al. (2009) studied the effect of 1966 

aircraft movements in a neighbourhood adjacent to the regional airport of Santa Monica and 1967 

generally did not observe elevated average levels of  BC, although spikes in concentration of this 1968 

pollutant were observed associated with jet take-offs. At a site located 100 m downwind of the take-1969 

off area, jet departures resulted in short time (60 s) peaks with average concentrations of up to 30 1970 

μg m-3, i.e. 100 times elevated above the local background.  1971 

 1972 

4.14.2  The smoke number (SN) 1973 

Despite soot corresponding to the majority of the non-volatile mass of PM emitted by aircraft, this 1974 

component is not directly certified by ICAO. However, the ICAO databank requires that an exhaust 1975 

opacity metric called the smoke number (SN) is measured for TF engines. SN was defined as a 1976 

“dimensionless term quantifying smoke emission level based upon the staining of a filter by the 1977 

reference mass of exhaust gas sample and rated on a scale of 0 to 100” (ICAO, 2008). SN was 1978 

firstly collected on a filter by flowing a defined volume of the exhaust gas (12 to 21 kg of exhaust 1979 

gas per square meter of filter) by a sample probe positioned directly behind the engine nozzle and 1980 

inside the exhaust jet. The degree of attenuation of the filter before and after the sampling was thus 1981 

measured using a reflectometer, and the SN was computed as: 1982 

SN=100∙(1-Rf/R0) 1983 

where R0 and Rf are the absolute reflectance of the filter before and after the sampling, respectively. 1984 

Unfortunately, SN gives only a qualitative estimate of particle emission and was recognised to be 1985 

dependent on sampling conditions, soot characteristics and morphology, and therefore was assumed 1986 

to have little value for estimating atmospheric impacts (Anderson et al., 2005). Moreover, it was 1987 

reported that particles with a diameter less than 300 nm passed through the filter and therefore only 1988 

the larger particles are collected resulting in a relative weak accuracy of measurement (Kugele et 1989 

al., 2005).  1990 
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Several studies have attempted to correlate SN to BC mass concentration (e.g., Champagne, 1971; 1991 

Whyte, 1982; Girling et al., 1990; Petzold and Döpelheuer, 1998; Wayson et al., 2009; Peck et al., 1992 

2013; Stettler et al., 2013a,b) and today an interim methodology named first-order approximation 1993 

3.0 (FOA3) was developed and used to estimate BC mass emissions normalised by fuel burn 1994 

EI(BC) from SN (Wayson et al., 2009). Although this calculation was reported to be dependent 1995 

upon the mode-specific SN recorded in the engine databank (e.g., Stettler et al., 2011), recently 1996 

Stettler et al. (2013b) observed that the correlation between BC and SN depends on the particle size 1997 

distribution and that the methods suggested to convert SN to BC could lead to heavy 1998 

underestimations of BC concentrations. An alternative method independent of the SN (FOX) was 1999 

also recently developed and first studies reported an improved estimation of BC (Stettler et al., 2000 

2013a), but it needs to be further tested. To fill this gap, recently an group of experts was called to 2001 

define new standard procedures for BC measurement at ground level for regulatory purposes (SAE, 2002 

2009). In the absence of defined standards,  the scientific literature offers a number of studies on the 2003 

emission of soot, BC and EC. 2004 

 2005 

4.14.3  Inorganic ions 2006 

The analysis of the major inorganic ions in aircraft exhaust has a clear dependence on the adopted 2007 

sampling methodology and can be affected by many artefacts. As for most hydrocarbons, ions may 2008 

undergo gas-to-particle partitioning and some species may further derive from chemical reactions in 2009 

the atmosphere or on the filter surface. For example, the concentrations of aerosol nitrate can be 2010 

affected by the adsorption of nitric acid gas on pre-existing particles, while evaporative losses occur 2011 

at temperatures >20 °C and the exhaust plumes largely exceed this temperature. In addition, 2012 

sulphate may form quickly due to the oxidation of SO2, coating soot particles. In view of this, 2013 

Anderson et al. (2005) firstly reported that the concentration of sulphate aerosol rose considerably 2014 

as sampling was performed progressively downstream of the engine, suggesting that sulphate 2015 

particles may originate or undergo rapid growth within aircraft exhaust plumes. These findings were 2016 
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further confirmed by APEX campaigns. Agrawal et al. (2008) noted that the mass of the ions 2017 

collected at 1 m from the engine exit plane were below the detection limit for most ions, while only 2018 

sulphate was detectable. On the contrary, APEX samplings at 30 m reported EI(ions) in the range of 2019 

30-40 mg kg Fuel‒1 dominated by sulphate (53%‒72% of the total ion EIs) and ammonium (Kinsey 2020 

et al., 2011). In summary, there is a lack of data on the ionic component of exhaust emissions of 2021 

aircraft and this merits further investigation. 2022 

 2023 

4.14.10  Elemental composition 2024 

There is a severe shortage of data on the elemental composition of PM emitted by aircraft. 2025 

Kinsey et al. (2011) reported that PM2.5 emissions are composed of various trace elements mainly 2026 

originating from fuels, lubricating oils, engine wear and corrosion, although release from the 2027 

sampling line and fugitive dust may contribute to the total load. During the APEX campaigns, the 2028 

elemental composition of PM emitted from aircraft engines was analyzed for a number of different 2029 

aircraft engines. The total elemental emissions (sum of Mg, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, 2030 

Cu, Zn, Br, Ag, In, Sb, Te, I, Tl) were in the range of 6.3—27.5 mg elements kg Fuel‒1, 2031 

corresponding to 2‒7% of the total emitted PM and were dominated by sulfur (54%-80% of total 2032 

element mass) (Kinsey, 2009; Kinsey et al., 2011). As expected, sulfur was well correlated with 2033 

sulphate and most of the sulfur on the filter exists as sulphate (Agrawal et al., 2008).  Moreover, the 2034 

variability in the metal emissions was observed to be much greater between different engines than 2035 

between engine thrust settings (Agrawal et al., 2008). 2036 

 2037 

Recently, Mazaheri et al. (2013) investigated the physical and chemical characteristics of individual 2038 

particles collected in the exhausts of in-use aircraft during landing and takeoff by using 2039 

transmission microscopy and energy dispersive X-ray spectroscopy. They reported that most of the 2040 

measured particles have a spherical shape in the nucleation mode (18−20 nm) and only contain C, 2041 

O, S, Cl, and in some cases K. They also reported fewer particles having a more irregular shape 2042 
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resulting in a larger average aspect ratio and a much greater and diverse range of elements. While 2043 

the small spherical particles have been linked to the combustion processes of engines, the latter 2044 

irregular particles have been linked to a diverse range of sources, including tyre wear, fine dusts, 2045 

vehicular traffic, and possibly engine wear. 2046 

 2047 

4.14.12  Secondary aerosol 2048 

Despite the potential role of aircraft emissions in forming SIA and SOA,  there is a lack of 2049 

information on the chain of processes affecting aircraft emissions once emitted in ambient air. A 2050 

recent study by Miracolo et al. (2011) used a smog chamber to simulate the aging of the particulate 2051 

matter emitted from a TF engine under typical (summertime) atmospheric conditions. Their 2052 

findings pointed out the key role of the photo-oxidation processes in forming both SIA and SOA. 2053 

They reported that after several hours of photo-oxidation, the ratio of secondary-to primary PM 2054 

mass was on average 35±4.1, 17±2.5, 60±2.2 and 2.7±1.1 for increasing thrusts settings (4%, 7%, 2055 

30% and 85% F00, respectively). Miracolo et al. (2011) also observed that SOA dominates the 2056 

secondary PM at low thrust, while secondary sulphate becomes the main secondary component at 2057 

higher power.  2058 

 2059 

It is not clear if aircraft emissions can influence the amount of secondary aerosol on a large scale. In 2060 

this regard, a recent study by Woody and Arunchalam (2013) used the Community Multiscale Air 2061 

Quality (CMAQ) model to investigate the impacts of aircraft emissions on SOA at the Hartsfield-2062 

Jackson Atlanta International Airport. By applying the model at various spatial resolutions, they 2063 

reported that  aircraft emissions reduced SOA by ~6% at 36 and 12-km due to the chemistry of the 2064 

free radicals with aircraft NOx, while at smaller resolution the interaction between the aircraft 2065 

emissions and external biogenic SOA precursors enhanced SOA (~12%). 2066 

 2067 

 2068 
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5.  AIRCRAFT NON-EXHAUST EMISSIONS 2069 

Although the vast majority of studies have focussed upon the exhaust emissions from engines, there 2070 

are other aircraft-related emissions that may influence the air quality within an airport. These 2071 

include emissions from the power units, i.e. APUs and GPUs, primary particles from tyre erosion 2072 

and brake wear, oil leaks and corrosion of aluminium alloys, all of which have been recognised to 2073 

impact air quality near airports but at date have received only limited consideration. 2074 

 2075 

5.1  Tyre, Brake and Runway Surface Wear 2076 

Tyre and brake wear during landing and runway dust re-suspension have been estimated to be major 2077 

sources of particulate matter. This is expected as smoke is clearly visible to the naked eye when 2078 

aircraft wheels contact the ground and spin up to the landing velocity. Despite that, the proportion 2079 

of the mass lost from aircraft tyres and brakes that becomes suspended as fine PM has not been 2080 

extensively studied;  the few available data indicate that the rubber lost from tyre wear can vary 2081 

from few grams to ∼0.8 kg per landing (Morris, 2006; Bennett et al., 2011 and references therein). 2082 

Particulate emissions from tyres have been suggested to be dependent upon the maximum take-off 2083 

weight, but other factors may have a role in the rubber wear, e.g., number of wheels, weather 2084 

conditions, engine type, airport runway length and taxiway layout and operating procedures 2085 

(Morris, 2006). The subsequent activation of brakes to bring the aircraft to a stop may further 2086 

abrade brake lining material from discs and pads and may release fine particles as for road vehicles 2087 

(e.g., Pant and Harrison, 2013). From a physicochemical point of view, it is plausible that brake 2088 

wear includes both the emission of material from the abrasion of discs and the volatilisation and 2089 

condensation of brake pad materials, while soot may arise from the thermal degradation of tyre 2090 

polymers. This was confirmed by experimental data collected at a major European airport: Amato et 2091 

al. (2010) reported unusually high levels of both organic carbon and metals possibly sourced from 2092 

tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM10 (Cu, Sb).  In 2093 
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addition to tyre and brake wear, landing field wear and re-suspension can also occur, as usually 2094 

aircraft land on a runway generally constructed of asphalt, concrete, gravel or grass.  2095 

  2096 

For example, studies at Gatwick airport estimated that tyre and brake wear are dominant sources of 2097 

PM10, accounting about 22 and 4.5 tonnes y‒1, respectively, i.e. about 60% and 12% of all aircraft-2098 

related emissions, respectively (British Airports Authority, 2006). However, these emissions are 2099 

subject to large uncertainties as they are dependent on many factors, including speed at landing, 2100 

some aircraft characteristics (weight, number of wheels, brake material if carbon or steel) and 2101 

runway characteristics (length, weather conditions) (Underwood et al., 2004). 2102 

 2103 

Bennett et al. (2011) collected landing and braking dust samples from the undercarriage (oleo legs) 2104 

and wheel hubs of aircraft and reported that they have bimodal distributions, with peaks at 2105 

aerodynamic diameters of about 10 and 50 μm. A further SEM-EDS analysis has revealed that 2106 

particles may contain various materials embedded in a carbonaceous substrate: (i) soot arising from 2107 

the burning of the tyre rubber, from the asphalt tar or from brake abrasion; (ii) runway dust mainly 2108 

composed of typical crustal materials (quartz and feldspar particles) which are lifted mechanically 2109 

from the ground surface; (iii) small droplet (35 μm) of Fe, associated with Co and other transition 2110 

metals (Mn, Ni, V, Zn) which are commonly found in asphalt concrete and (iv) irregular Fe 2111 

particles (<10 μm). This study also reported that aluminium, which is typically used as tracer for 2112 

crustal materials from runway wear, can also derive from Al hydroxide included in some tyre 2113 

formulations. 2114 

 2115 

5.2  Other Mechanical Components 2116 

High-strength aluminium alloys are commonly used as the aircraft fuselage materials in the body 2117 

and wings, while minor amounts of other elements (Cu, Zn, Mg) may be also present in various 2118 

airframe components (Wei et al., 1998). Aluminium alloys have a microstructure that can be highly 2119 
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susceptible to intergranular and pitting corrosion, and weathering is recognised as a major cause of 2120 

structural damage to aircraft structure and coatings (Usmani and Donley, 2002; Russo et al., 2009: 2121 

Knight et al., 2011), along with long term operations (Ostash et al., 2006), runway de-icing 2122 

chemicals (Huttunen-Saarivirta et al., 2011) and atmospheric pollution and salts (Cole and Paterson, 2123 

2009). The degradation of aircraft mechanical components is also connected with mechanical, and 2124 

corrosion-mechanical (macrocracks) defects, which lead to a decrease in its load-bearing capacity 2125 

(Ostash et al., 2006). Corrosion has many forms and affects most structural alloys found in 2126 

airframes: of particular importance is pitting and intergranular corrosion, which can develop into 2127 

fatigue cracks, stress corrosion cracks or exfoliation (Liao et al., 2008). In this light, it is plausible 2128 

that corrosion and mechanical stress of some aircraft components may release metallic particles into 2129 

the environment. For example, using scanning electron microscopy techniques, Amato et al. (2010) 2130 

founded the relatively common presence of platy aluminous particles derived from airframe 2131 

corrosion in the ambient PM10 samples collected near the El Prat airport in Barcelona.  2132 

 2133 

5.3  Oil Leaks 2134 

In addition to exhaust from jet fuel combustion, oil escaping or burning from lubricated parts may 2135 

be vented overboard from aircraft engines and therefore may further contribute to the total 2136 

emissions of aircraft (Onash et al., 2009; Timko et al., 2010b; Yu et al., 2010; 2012). Aircraft 2137 

lubricating oils are usually composed of a mixture of synthetic C5-C10 fatty acid esters of 2138 

pentaerythritol and dipentaerythritol with specialised additives (Yu et al., 2010; 2012). Some of 2139 

these, such as tricresyl phosphate, are recognised as toxic to humans (Craig and Barth, 1999; Van 2140 

Netten, 1999; Winder and Balouet, 2002: Marsillach et al., 2011) and have been detected in ambient 2141 

air and aircraft cabins, posing a risk for aviation technicians, loaders, crew and passengers in case of 2142 

release into the environment (e.g., Solbu et al., 2010; Liyasova et al., 2011; Denola et al., 2011; 2143 

Schindler et al., 2013). Yu et al. (2010) reported that the degree of degradation of lubrication oil 2144 

during aircraft engine operations as a result of friction and/or pyrolysis might be negligible, 2145 
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suggesting that most emitted oil is unburned. Because of its low volatility, unburned lubricating oil 2146 

may exit from engines as vapour or submicrometre droplets and may further condense and add mass 2147 

to the organic PM in the wake of the aircraft. Results of exhaust characterisation measurements 2148 

suggest that the contribution of lubrication system releases to the organic PM may be greater than 2149 

the engine exhaust (Timko et al., 2010b): they estimated that the contribution of oil leaks to the total 2150 

mass of organics generally lies within the range 10-20% for low thrust and 50% for high thrust 2151 

settings. A recent study (Yu et al., 2012) has identified and quantified the lubricating oil in the 2152 

particulate matter emissions from various engines of in-service commercial aircraft at two airports. 2153 

This study used the characteristic mass marker of lubricating oil (ion fragment intensity between 2154 

m/z = 85 and 71) to distinguish lubricating oil from jet engine combustion products. Results 2155 

revealed that lubricating oil is commonly present in organic PM emissions in association with 2156 

emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent.  The 2157 

contribution from lubricating oil in aircraft plumes was observed to vary from 5% to 100% in 2158 

mesured aircraft plumes.   2159 

 2160 

Yu et al. (2010) measured the size distributions of submicrometre unburned lubricant oil released 2161 

from engines with C-TOF-AMS and UHSAS and reported a shift to larger sizes with increasing 2162 

power. At idle thrust they observed a C-TOF-AMS vacuum aerodynamic diameter (Dva) of 260±3 2163 

nm, while the UHSAS volume equivalent diameter (Dve) was 281±9 nm. At higher engine power, 2164 

they observed modes at 272±4 nm and 350±8 nm for C-TOF-AMS and UHSAS, respectively.  2165 

 2166 

6.  OTHER AIRPORT-RELATED EMISSIONS 2167 

Apart from aircraft exhaust and non-exhaust emissions, other sources can be present within an 2168 

airport and can contribute to the total pollutant load in the atmosphere. Among others, the emissions 2169 

of the power units providing power to the aircraft (APUs and GPUs), the GSEs, additional sources 2170 
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on the modern terminals, intermodal transportation systems and road traffic are further considered 2171 

as impacting upon the air quality and must be taken in account in airport emission measurements.  2172 

 2173 

6.1  Auxiliary and Ground Power Units 2174 

The APUs are small on-board gas-turbine engines burning jet fuel coupled with an electrical 2175 

generator capable of supplying electrical power to aircraft systems when required on the ground or 2176 

providing pneumatic or hydraulic power to start the main engines. Despite APUs being installed in 2177 

all modern airliners so as to be energetically independent, their use is becoming less significant over 2178 

time due to the increasing trend toward mains supplied Ground Power Units (GPU) (Mazaheri et 2179 

al., 2011). This ground equipment is supplied by the airports and includes diesel powered tugs of 2180 

various types, ground carts, and also APUs installed on ground carts (e.g., Kinsey et al., 2012b). 2181 

Some airports also provide electrical power to the aircraft by connecting directly to the ground 2182 

network and by using fixed ground electrical power (FGEP) units. This system avoids the use of 2183 

fuelled power units, with a subsequent reduction in local emissions and is thus very useful in 2184 

airports not complying with air quality standards. 2185 

 2186 

The role of the APUs on the air quality at airports is nowadays widely discussed and an increasing 2187 

number of studies have estimated their contribution. However, the results are often conflicting. 2188 

Schäfer et al. (2003) indicated that APU emissions at airport service buildings cannot be neglected 2189 

in comparison to the main engine emissions. The emission inventory of the airport of Zurich in 2190 

2004 (Fleuti and Hofmann, 2005) reported that although the aircraft exhaust accounted for most of 2191 

CO, hydrocarbons and NOx (89%, 45%, 82%, respectively of total emissions), a significant percent 2192 

was from APUs, GPUs, start-up-idle, handling/GSE, airside traffic and stationary sources, with 2193 

APUs accounting for about half of the total non-aircraft engine emissions. HAL (2011) reported 2194 

that 19% of the total NOx emissions of London Heathrow airport are due to the use of APUs. A 2195 

survey over 325 airports in the USA (Ratliff et al., 2009) estimated the emissions from APUs and 2196 
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LTO cycles and stated that the greatest percentage that APUs contributed to total aircraft emissions 2197 

was 10-15% for CO and between 15 and 30% for NOx and SOx. However, this study also reported 2198 

that the airports used by a higher percentage of small and business jets tend to be affected by higher 2199 

emissions from the APUs. Stettler et al. (2011) estimated that APUs contribute 6% to total PM2.5 2200 

emissions at major UK airports. The effect of the APUs upon public health was recently estimated 2201 

by Yim et al. (2013), who calculated the emissions from aircraft LTO activity, aircraft APUs and 2202 

GSE at the top 20 UK airports, ranked by passenger numbers. Their findings concluded that the ban 2203 

on the use of APUs would prevent about 11 averted early deaths per year (90% confidence interval 2204 

7-16). 2205 

 2206 

Unlike aircraft engines, APU emissions are not certificated by ICAO, and the manufacturers 2207 

generally consider information on APU emissions rates as proprietary (ICAO, 2011), therefore there 2208 

are today few data available on APU emissions. Emissions from APU depend on many factors and 2209 

are subject to change through  provision of GPU facilities from the airport. Some airports have 2210 

implemented policies to encourage the use of the GPU instead of APUs (Mazaheri et al., 2011 and 2211 

reference therein), however in the absence of GPU availability, the use of APUs is still the only 2212 

alternative to provide the energy for aircraft operations with engines off and for the ignition of the 2213 

engines. The first studies of APU emissions started in the 1970s by the US Army (Kinsey et al., 2214 

2012b and references therein) and our literature search has found very few data in comparison to 2215 

those on the jet engine emissions. However, the main studies reporting (or reprocessing) data on the 2216 

APU emissions are increasing nowadays (Slogar and Holder, 1976; Williams and Lee, 1985; 2217 

Gerstle et al., 1999; 2002; Wade, 2002; O’Brien and Wade, 2003; Schäfer et al., 2003; Watterson et 2218 

al., 2004; EASA, 2011; Anderson et al., 2011; Blakey et al., 2011; Kinsey et al., 2012b; Williams et 2219 

al., 2012). 2220 

 2221 

 2222 
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6.2  Ground Service Equipment Emissions, Vehicular Traffic and Other Sources 2223 

As they are strictly linked to the airport operations, the amount of GSE vehicles clearly reflects the 2224 

airport layout and traffic in terms of both cargo and passengers. Moreover, the operation duration is 2225 

expected to increase with increasing aircraft size. Other factors include the type of engines installed 2226 

and the quality of fuels used and the status of the vehicle fleet (age, wear and tear). Therefore, it  is 2227 

not possible to identify the unique characteristics common to all the airports and ICAO databanks 2228 

not include any information about GSE emissions. Similarly, the amount of road traffic in the form 2229 

of private cars, taxis, shuttle bus and trucks for transporting people and goods in and out to the 2230 

airport depends on the airport layout, on the quality of the road links and intermodal transport 2231 

systems and, finally, is directly related to the number of passengers and goods that the airport 2232 

handles. As both the airport-induced vehicular traffic and most of the GSEs have gasoline or diesel 2233 

engines, it is reasonable to consider them as common traffic. The traffic source is recognised to be 2234 

dominant in many urban environments. Its chemical and physical characteristics are reported 2235 

elsewhere, in a large number of studies and reviews (e.g., Hueglin et al., 2006; Thorpe and 2236 

Harrison, 2008; Johansson et al., 2009; Gietl et al., 2010; Kumar et al., 2011; Harrison et al., 2012; 2237 

Pant and Harrison, 2013; Amato et al., 2013). 2238 

 2239 

Some studies have indicated that GSE may contribute a major fraction of the total AEs. For 2240 

example, a study carried out at the McCarran airport in Las Vegas reported that approximately 60% 2241 

of the total airport emissions are related to GSE (Nambisan et al., 2000). Schürmann et al. (2007) 2242 

calculated that NO concentrations at Zurich airport were dominated by emissions from ground 2243 

support vehicles, while Unal et al, (2005) estimated that the impacts on ozone and PM2.5 of GSE at 2244 

the Hartsfield–Jackson Atlanta International airport are small compared to the aircraft impacts. In 2245 

addition, other miscellaneous sources may be also present at airports and may further increase the 2246 

total pollutant load, including maintenance work, heating facilities, fugitive vapours from refuelling 2247 

operations, kitchens and restaurants for passengers and operators, etc. Despite being intermittent 2248 
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and depending on the airport layout, these emissions may be dominant in certain circumstances. For 2249 

example, Amato et al. (2010) reported that the local construction work for a new airport terminal in 2250 

a major European airport (El Prat, Barcelona) was an important contributor to PM10 crustal dust 2251 

levels along with road dust and aircraft re-suspension, with a clear drop during the weekends. 2252 

 2253 

7.  AIRPORT EMISSIONS AND PUBLIC HEALTH 2254 

While aircraft emissions at cruising altitudes are an air pollution issue at global scale (Barrett et al., 2255 

2010; Koo et al., 2013), the emissions within the planetary boundary layer due to the LTO 2256 

operations are certainly more local and it is plausible to believe they may have a more direct effect 2257 

on human health. Nevertheless, the potential subsidence of air masses due to the Ferrell and Hadley 2258 

circulations, which may displace high altitude emissions toward the ground cannot be disregarded 2259 

(Barrett et al., 2010).  2260 

 2261 

Air quality degradation in the locality of airports is considered by some to pose a real public health 2262 

hazard (Barrett et al., 2013) and some recent estimates of the aviation contribution to premature 2263 

mortality have been reported (e.g., Ratliff et al., 2009; Levy et al., 2012; Ashok et al., 2013, Yim et 2264 

al., 2013). Although at the current time, no specific target toxic compound has been identified to be 2265 

used as a marker or indicator for human exposure to jet engine fuels and their combustion products 2266 

(Tesseraux, 2004), it has been estimated that over 2 million civilian and military personnel per year 2267 

are occupationally exposed to jet fuels and exhaust gases (Pleil et al., 2000; Ritchie, 2003; Cavallo 2268 

et al., 2006). Kerosene-based fuels have the potential to cause acute or persistent neurotoxic effects 2269 

from acute, sub-chronic, or chronic exposure of humans or animals (Ritchie et al., 2001), although 2270 

evidence is lacking that current levels of exposure are harmful. Occupational exposure can occur by 2271 

dermal, respiratory or oral ingestion routes of raw fuel, vapour, aerosol or exhausts. It has been 2272 

postulated that chronic exposure to vapours and exhaust fumes could affect the operators inside the 2273 

airport (Cavallo et al., 2006) and aircraft crew (Denola et al., 2011; Schindler et al., 2013), while 2274 
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occasional exposure can affect all passengers in transit (Liyasova et al., 2011). In addition, also the 2275 

population living in the vicinity of airports can be exposed (Jung et al., 2011).  2276 

 2277 

However, the impact of LTO emissions on surface air quality and human health is poorly quantified 2278 

(Barrett et al., 2010) even though most governments have recently focused attention on 2279 

management and reduction the environmental impacts of aviation. Some studies have attempted to 2280 

estimate the direct and indirect effects of aviation to support environmental policy assessments and 2281 

to evaluate many possible future scenarios. A global-scale study by Barrett et al. (2010) estimated 2282 

that ∼8000 premature deaths per year can be attributed to aircraft emissions at cruising altitudes, 2283 

representing ∼80% of the total impact of aviation (including LTO emissions) and ∼1% of air 2284 

quality-related premature mortalities from all sources.  2285 

 2286 

A series of more local studies have been conducted to assess the impact of AEs on human health. 2287 

Generally the results have highlighted the potential adverse effects of AEs on public health and also 2288 

revealed the need for more extensive information about this source. Three estimates were given for 2289 

US airports in 2005: Ratliff et al. (2009) analysed aircraft LTO emissions at 325 US airports with 2290 

commercial activity and estimated that 160 (90% confidence interval 64-270) premature deaths 2291 

occurred due to ambient particulate matter exposure attributable to the aircraft emissions; Levy et 2292 

al. (2012) estimated about 75 early deaths using activity data from 99 US airports; Ashok et al. 2293 

(2013) estimated that aviation LTO emissions caused about 195 (90% confidence interval 80-340) 2294 

early deaths, while the same emissions were forecast to cause ~350 (90% confidence interval 145-2295 

610) deaths in 2018. Arunachalam et al., (2011) used the Community Multiscale Air Quality model 2296 

(CMAQ) to estimate the incremental contribution to PM2.5 due to commercial aviation emissions 2297 

during LTO cycles in two major and one mid-sized US airport and reported that 8-9, 11-15 and 5 2298 

(depending on model resolution) premature deaths per year can be estimated for Atlanta, Chicago 2299 

and Providence airports, respectively. In Europe, Yim et al. (2013) estimated that 110 (90% CI:72-2300 
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160) early deaths occur in the UK each year (based on 2005 data) due to airport emissions. The 2301 

same study also assessed that up to 65% of the health impacts of UK airports could be mitigated by 2302 

replacing current fuel with low FSC fuel, by electrifying GSE, avoiding use of APUs and use of a 2303 

single engine during the taxi phase. Lin et al. (2008) estimated that residents living within five miles 2304 

of Rochester and La Guardia airports are affected by an increased relative risk of hospital admission 2305 

of 1.47 and 1.38 respectively compared to resident living  >5 miles distant.  Jung et al. (2011)  2306 

characterised the levels of BTEX in the vicinity of the Teterboro airport, New York/New Jersey 2307 

metropolitan area, by exposing passive samplers for 48 h at the end of airport runways, in 2308 

households close to the airport and out-of-neighbourhood locations. Results indicated that the 2309 

average concentrations of benzene, toluene, ethylbenzene, m-/p-xylenes and o-xylene in 2310 

neighbourhood concentrations (0.8, 3.8, 0.4, 1.2 and 0.4 μg m−3, each BTEX respectively) were not 2311 

significantly different to those measured at the airport runways (0.8, 3.2, 0.3, 1, and 0.3 μg m−3, 2312 

respectively) and higher than the out-of-neighbourhood locations (0.5, 1.1, 0.2, 0.8, and 0.4 μg m−3, 2313 

respectively). Cavallo et al. (2006) characterised the exposure to PAHs in airport personnel and 2314 

evaluated the genotoxic and oxidative effects in comparison with a selected control group. They 2315 

analysed 23 PAHs collected from various areas over five working days and urinary 1-2316 

hydroxypyrene (1-OHP) following five working days as a biomarker of exposure. They reported an 2317 

induction of sister chromatid exchange due to PAH exposure, although its health significance was 2318 

not quantified. 2319 

 2320 

8.  CONCLUSIONS 2321 

The main goal of this review is to give an overview on the current state of knowledge of airport-2322 

related emissions and to summarise the key characteristics of pollution and the impacts on local and 2323 

global air quality. After thoroughly reviewing the latest available scientific literature, it can be 2324 

concluded that the currently available information on the impact of AEs upon air quality is 2325 

inadequate and the consequences of future growth in the volume of air traffic are very hard to 2326 
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predict. Most work has focussed upon aircraft engine exhaust during LTO cycles which accounts 2327 

for a large proportion of the total emitted pollutants.  However other sources such as the auxiliary 2328 

power units, vehicular traffic and ground service equipment are known sources that may seriously 2329 

affect air quality near to airports. In this way, it is apparent from the literature that while aircraft 2330 

exhaust may account for most of the pollution at some airports, there are other sources that need to 2331 

be addressed in more detail in the future, such as: 2332 

 2333 

• tyre, brake, asphalt wear and the re-suspension of particles due to the turbulence created by 2334 

aircraft movements; 2335 

• the emissions from the units providing power to the aircraft when required on the ground 2336 

(APUs and GPUs); 2337 

• the ground support equipment that an airport offers as a service for flights and passengers, 2338 

including passenger buses, baggage and food carts, container loaders, refilling trucks, 2339 

cleaning, lavatory servicing and de/anti-icing vehicles, and tugs;  2340 

• the effects of the intermodal transportation systems, and road traffic for transporting people 2341 

and goods in and out to the airport. 2342 

 2343 

Most studies report that airport operations are responsible for significant emissions of a series of 2344 

non-volatile, gaseous and semi-volatile species. Non-volatile emissions are made up of refractory 2345 

material such as soot, which is emitted as PM even at high temperatures, but is also comprised of 2346 

many organics and sulfur compounds, the latter mainly in the form of sulphate. Volatile emissions 2347 

include compounds that exist as vapour at the engine exit plane and are made up of gaseous and 2348 

vapour-phase pollutants, such as CO, NOx, SO2 and many organics (i.e. aromatics, alkanes, alkenes 2349 

and a number of other VOCs). The less volatile fraction is of especial interest as it can react in the 2350 

atmosphere and undergo gas-to-particle conversion by forming new particles or condensing on pre-2351 

existing ones.  2352 
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 2353 

The volatile emissions have mostly been fairly well characterised, but a comprehensive chemical 2354 

speciation of the hydrocarbons and complete knowledge of their chemical processing in the 2355 

atmosphere is still lacking. Detailed information on the non-volatile and semi-volatile compounds is 2356 

also scarce. In spite of the increasing attention given to AEs, many issues remain unaddressed and 2357 

represent a serious gap on which scientific research should focus.  A list of  the key characteristics 2358 

of AEs that need to be carefully addressed should include: 2359 

 2360 

• a careful quantification of sulfuric acid, HONO and HNO3 directly emitted by aircraft for a 2361 

large variety of engines. Currently available data refer only to few engine types and the 2362 

changes of EI at varying thrusts are not completely clear. This should also include seeking a 2363 

better knowledge of the characteristics and the evolution of emitted chemi-ions and a better 2364 

understanding of their role as a source of sulfur and nitrogen species in plumes; 2365 

• a more realistic quantification of emission inventories for nitrogen oxides and organic 2366 

compounds, which includes the variability induced by the common practices of take-off and 2367 

taxi phases at reduced thrust; 2368 

• quantification of the effects of ozone-precursors emitted from aircraft and other AEs on the 2369 

levels of ground-level ozone at airports, which to date have not been thoroughly investigated. 2370 

In particular, since well established atmospheric photochemical reactions of many VOCs are 2371 

known as potential sources of elevated ozone concentrations in the troposphere, improved 2372 

chemical speciation of organic compounds is much needed. Better apportionment of ozone 2373 

formation potential from aircraft emissions during LTO cycles and from other AEs should be 2374 

also estimated; 2375 

• standardization of procedures for measurement of engine exhaust at ground level for 2376 

regulatory purposes, which appear to be lacking mainly for PM and speciated hydrocarbon 2377 

emissions. Such methodologies should take into account the semi-volatile components, which 2378 



94 

 

have been recognised to make a major contribution to the total mass of emitted PM. 2379 

Achievement of this objective is vital to be able to obtain data that are comparable across 2380 

different studies; 2381 

• further quantitative knowledge of the chemical and physical modifications affecting many 2382 

compounds and particulate matter in the atmosphere, including the oxidation of hydrocarbons 2383 

to less volatile species and the formation of sulphate on the surface of pre-existing particles; 2384 

• chemical and physical characterization of PM. Far fewer data exist for PM than for the main 2385 

gaseous pollutants. The chemical speciation of PM is not fully understood  and the role of 2386 

plumes aging on PM mass and composition is largely unknown. The role of lubrication oils, 2387 

fuel type and engine technology, age and maintenance upon aircraft PM emissions also needs 2388 

to be investigated; 2389 

• a more detailed assessment of the health effects of the AEs within and in the surroundings of 2390 

major airports; 2391 

• the identification of particular chemical species to be used as a tracers for most of the AE 2392 

sources; 2393 

• the significance of airport operations for emission reduction and management should be 2394 

investigated in more depth. There is a lack of information on the effects of time-in-modes, 2395 

aircraft waiting/idling durations, aircraft weight, and use of APU/GPU/FGEP on the actual 2396 

emission of pollutants. A more detailed knowledge of such operations will lead to a more 2397 

reliable assessment of the quantities of exhaust pollutants emitted into the air; 2398 

• the relative importance of near-airport, regional, and global scale air quality impacts of airport 2399 

and aircraft emissions need to be further investigated. Most studies focus on local or global 2400 

effects of the AEs, but there is no comprehensive view of air pollution over a full range of 2401 

scales.  2402 

 2403 
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Quantification of the impact of airport emissions on local air quality is very difficult due to the 2404 

complexity of airport emissions and the presence of substantial levels of pollution from other 2405 

sources, with many airports being located near to urban settlements, major highways and roads or 2406 

industrial installations. This makes the signal of the AEs and, in particular, of aircraft emissions 2407 

very hard to distinguish. This is a serious gap because development of cost-effective strategies to 2408 

improve air quality to meet regulatory requirements demands a clear quantification of the 2409 

contribution of AEs to the total air pollution.  2410 
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TABLE LEGENDS 3993 

Table 1: Engine-family mounted in the most popular aircraft. The number of engines for each 3994 
aircraft in given within brackets. This list represents ~75% of total in-use turbofan 3995 
engines provided by the ICAO databank  at August 2013 and does not report data for 3996 
regional jets. Average data (mean±standard deviation) for fuel consumption and 3997 
emissions per LTO cycle are also reported per each engine family. 3998 

 3999 
Table 2: Total annual fuel burned by aviation and emissions of  H2O, CO2, NOx, CO, HC, SOx 4000 

and soot (when available) provided by recent studies. Forecasts for 2020 and 2025 are 4001 
also provided. Global emission data for 2008 and forecasts for 2025 were calculated 4002 
starting from fuel data of Chèze et al. (2011) and emission indices of Lee et al. (2010). 4003 
Kim et al. (2007) provided fuel burn and NOx emission during LTO for the 2000-2005 4004 
period; LTO emissions of H2O, CO2 and SO2 were calculated starting from fuel data of 4005 
Kim et al. (2007) and emission indices of Lee et al. (2010). Note that all emissions 4006 
calculated in this review are in italics. 4007 

 4008 
Table 3: List of recent studies in the literature that measure EIs directly from engine or airplane 4009 

tests. The table also reports studies on hydrocarbon profiles. Some information about 4010 
tested aircraft and engine models, selected thrust and sampling methodologies and 4011 
analytical techniques, type of fuel, date and location of experiments is also given. 4012 

 4013 
Table 4: List of recent studies available in the literature reporting EIs during real aircraft 4014 

operation. The table also reports supplementary information (if available) about the 4015 
target of the study, period and location of experiments, tested aircraft or engine models, 4016 
measured pollutants, analysed LTO phases and sampling methodologies. The list of 4017 
acronyms is provided in Table 3. 4018 

 4019 
Table 5: List of recent studies available in the literature conducted at airports or in their 4020 

surroundings. The table also reports supplementary information (if available) about the 4021 
target of the study, period and location of experiments, tested aircraft or engine models, 4022 
measured pollutants, analysed LTO phases and sampling methodologies. The list of 4023 
acronyms is provided in Table 3. 4024 

 4025 
 4026 
FIGURE LEGENDS 4027 
 4028 
Figure 1: Absolute growth of aviation (1930‒2012) recorded by ICAO in terms of RPK, RTK and 4029 

aircraft kilometres. Data refers to ICAO (2013) and were taken from Airlines for 4030 
America (2013). 4031 

 4032 
Figure 2: Simplified diagram of a turbofan engine (upper left); products of ideal and actual 4033 

combustion in an aircraft engine (upper right); and related atmospheric processes, 4034 
products, environmental effects, human health effects and sinks of emitted compounds 4035 
(bottom). Adapted from Prather et al. (1999), Wuebbles et al. (2007) and Lee et al. 4036 
(2009). 4037 

 4038 
Figure 3: Division of the combustion products from an aircraft engine, adapted from Lewis et al. 4039 

(1999). 4040 
 4041 
Figure 4: Geographical and vertical distributions of aviation: a) column sum of global fuel burn 4042 

from scheduled civil aviation in 2005, as reported by Simone et al. (2013) using AEIC 4043 
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model (Stettler et al., 2011); b) annual global vertical distribution of commercial 4044 
aviation fuel burn for the NASA-Boeing 1992 and 1999 (Baughcum et al., 1996a,b; 4045 
Sutkus et al., 2001), QUANTIFY 2000 (Owen et al., 2010), AERO2k (Eyers et al., 4046 
2004) and AEDT 2006 (Roof et al., 2007) datasets, taken from Olsen et al. (2013). 4047 

 4048 
Figure 5: Standard ICAO LTO cycle. Adapted from ICAO (2011). 4049 
 4050 
Figure 6: Burned fuel and emissions for complete standardised LTO cycle. Data from ICAO 4051 

databank at April 2013 (EASA, 2013). All engines certified in each period were 4052 
included in the statistics, without distinction of type, manufacturer, model or 4053 
technology.  4054 

 4055 
Figure 7: EIs provided by the ICAO databank (EASA, 2013). All in-use engines certified from 4056 

1976 to today (April 2013) are included. 4057 
 4058 
Figure 8: Fuel burned and emissions of CO, NOx and total unburned hydrocarbons during the four 4059 

LTO phases. Data were calculated from the EIs and fuel consumption provided by the 4060 
ICAO databank (EASA, 2013). All in-use engines certified from 1976 to today (April 4061 
2013) were included and reprocessed as a function of LTO stages and standard times 4062 
(i.e., 0.7 min for take-off, 2.2 min for climb-out, 4 min for approach and 26 min for 4063 
idle). 4064 

 4065 
Figure 9: Results of the APEX campaigns. Profile (mass fractions) of individual hydrocarbon 4066 

species. The single compounds are ordered to show decreasing fractions. 4067 
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Table 1. Engine-family mounted in the most popular aircraft. The number of engines for each aircraft in given within brackets. This list represents ~75% of 4068 
total in-use turbofan engines provided by the ICAO databank  at August 2013 and does not report data for regional jets. Average data (mean±standard 4069 
deviation) for fuel consumption and emissions per LTO cycle are also reported per each engine family. 4070 

Manufacturer Engine family Main aircraft and number of engines Fuel and emissions per LTO cycle (kg) 
      Fuel CO NOx HC 
General Electric CF6 series A300 (2); A310 (2); A330 (2); B747 (4); B767 (2); MD DC-10 (3); MD-11 (3) 811±76 11±5 12±2 2.3±2.2 

 
GE90 series B777 (2) 1159±141 14±7 25±5 1.1±0.8 

 
GEnx series B747 (4); B787 (2); replacing CF6 series 827±74 7±1 10±3 0.2±0.1 

CMF International CFM56 series A318 (2); A319 (2); A320 (2); A321 (2); A340 (4); B737 (2): MD DC-8 (4) 419±46 6±2 5±1 0.6±0.4 
Pratt & Whitney JT8D series B707 (4); B727 (3); B737 (2); MD DC-9 (2); MD80 (2) 477±35 5±2 4±1 1±0.9 

 
JT9D series A300 (2); A310 (2); B747 (4); B767 (2); MD DC-10 (3) 842±45 19±10 13±1 7±4.8 

 
PW 4000 series A300 (2); A310 (2); B747 (4); B767 (2); B777 (2); MD DC-11 (3) 966±150 8±3 17±6 1±0.8 

Rolls-Royce RB211 series B747 (4); B757 (2); B767 (2); L1011 (3); Tu-204 (2) 852±128 15±15 15±5 7.1±11.1 

 
Trent series A330 (2); A340 (4); A380 (4); B777 (2); B787 (2) 817±370 5±2 19±4 0.2±0.3 

BMW Rolls-Royce BR700 series B717 (2) 332±32 4±1 4±1 0.1±0.1 
International Aero Engines V2500 series A319 (2); A320 (2); A321 (2); MD-90 (2) 452±35 3±0.4 6±1 0.04±0.01 
Aviadvigatel' Solov'ëv D30 series Tu-154 (3) 622±110 21±6 5±1 5.5±2.4 

B (Boeing); A (Airbus); MD (McDonnell Douglas); L (Lockheed); Tu (Tupolev). 4071 

 4072 

 4073 

 4074 

 4075 

 4076 

 4077 

4078 
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Table 2. Total annual fuel burned by aviation and emissions of  H2O, CO2, NOx, CO, HC, SOx and soot (when available) provided by recent studies. 4079 
Forecasts for 2020 and 2025 are also provided. Global emission data for 2008 and forecasts for 2025 were calculated starting from fuel data of Chèze et al. 4080 
(2011) and emission indices of Lee et al. (2010). Kim et al. (2007) provided fuel burn and NOx emission during LTO for the 2000-2005 period; LTO 4081 
emissions of H2O, CO2 and SO2 were calculated starting from fuel data of Kim et al. (2007) and emission indices of Lee et al. (2010). Note that all emissions 4082 
calculated in this review are in italics. 4083 

Global                   

Year Fleeta Fuel H2O CO2 NOx
b CO HC SOx

c Soot Reference 

    Tg Mg   

1999 Scheduled air traffic which includes 
turboprops, passenger jets, and jet cargo 
aircraft 

128 — — 1.7 0.685 0.189 — — Sutkus et al. (2001) 

2000 Scheduled and non-scheduled commercial 
aviation 

214d — 677 2.9 — — — — Owen et al. (2010) 
 

2000 Civil and military aircraft 
Civil aircraft 
Military (difference) 

169 
152 

44 

— 
— 
— 

— 
— 
— 

2.15 
1.95 
0.2 

— 
— 
— 

— 
— 
— 

— 
— 
— 

— 
— 
— 

Gauss et al. (2006) 
Gauss et al. (2006) 
Gauss et al. (2006) 

 Commercial aviation 181 224 572 2.51 0.541 0.076 0.145 — Kim et al. (2007) 

2001 Commercial aviation 170 210 536 2.35 0.464 0.063 0.136 — Kim et al. (2007) 

2002 Commercial aviation 171 211 539 2.41 0.480 0.064 0.137 — Kim et al. (2007) 

 Civil aviation 156 193 492 2.06 0.507 0.063 — 3.9 Eyers et al. (2004) 

 Military aviation 19.5 24.1 61 0.178 0.647 0.066 — — Eyers et al. (2004) 

 Civil + Military aviation 176 217 553 2.24 1.150 0.129 — >3.9 Eyers et al. (2004) 

2003 Commercial aviation 176 218 557 2.49 0.486 0.062 0.141 — Kim et al. (2007) 

2004 Commercial aviation 188 233 594 2.69 0.511 0.063 0.151 — Kim et al. (2007) 

 Commercial aviation e 174 215 550 2.456 0.628 0.090f 0.102g 6.1 Wilkerson et al. (2010) 

2005 Commercial aviation 203 251 641 2.9 0.554 0.065 0.163 — Kim et al. (2007) 

2006 Commercial aviation 188 233 595 2.656 0.679 0.098f 0.111h 6.8 Wilkerson et al. (2010) 

2008 From ICAO commercial air carriers—traffic 
database 

229 282 725 3.21 0.688 0.092 0.183 5.7 Fuel demand by Chèze et al. (2011) 

Forecasted trend                   
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2020 Scheduled and non-scheduled commercial 
aviation 

336 — 1062 4 — — — — Owen et al. (2010) 

2025 — 317 390 1001 4 0.951 0.127 0.253 7.9 Fuel demand forecast by Chèze et al. 
(2011) 

Emission indices                   

EI Mean emission indices — 1230 3160 14 3 0.4 0.8 0.025 Lee et al. (2010) 

LTO cycles                   

2000 Commercial aviation 12.9 15.9 40.8 0.197 — — 0.010 — Kim et al. (2007) 

2001 Commercial aviation 12.3 15.1 38.9 0.191 — — 0.010 — Kim et al. (2007) 

2002 Commercial aviation 12.2 15.0 38.6 0.194 — — 0.010 — Kim et al. (2007) 

2003 Commercial aviation 12.4 15.3 39.2 0.199 — — 0.010 — Kim et al. (2007) 

2004 Commercial aviation 12.9 15.9 40.8 0.21 — — 0.010 — Kim et al. (2007) 

2005 Commercial aviation 13.9 17.1 43.9 0.227 — — 0.011 — Kim et al. (2007) 
a) Type of fleet, as specified in different estimates; b) NOx is expressed as NO2 in Sutkus et al. (2001), Gauss et al. (2006) and Wilkerson et al. (2010); c) SOx expressed as 
SO2; d) normalized to the IEA total aviation fuel sales figure (see Owen et al. (2010)); e) corrected global fuel burn results (see Wilkerson et al. (2010); f) HC expressed as 
CH4; g) expressed as S-SOx, assuming that 96.3% of the SOx-S was partitioned to SO2-S and 3.7% to S(VI)-S (particle); h) expressed as S-SOx, assuming that 98% of the SOx-
S was partitioned to SO2-S. 

 4084 
4085 
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Table 3. List of recent studies in the literature that measure EIs directly from engine or airplane tests. The table also reports studies on hydrocarbon profiles. 4086 
Some information about tested aircraft and engine models, selected thrust and sampling methodologies and analytical techniques, type of fuel, date and 4087 
location of experiments is also given. 4088 
Airframe/Engine Analyzed compounds Sampling and experimental  

(sampling system [analytical methods]) 
Tested regimes and 
[fuels] References 

F101 (Military TF with reheat used on the 
B-1B aircraft); F110 (Military TF with 
reheat used on the F-16C and F-16D 
aircraft) 

CO2, CO, NOx, total 
hydrocarbons, individual 
organic species  

Samples collected from each engine using a probe positioned 
just behind the exhaust nozzle 

Four power settings from 
idle to intermediate 
power 

Spicer et al. (1992) 

TF-39 (Military TF of Lockheed C-5) and 
CFM-56 (TF) 

CO, NO, NOx, total 
hydrocarbons, C2 to C17 
organics, PAHs, aldehydes 

Sampling: sampling rake behind the engine. Experimental: 
non-dispersive infrared instruments, chemiluminescence, FID, 
polymeric adsorbent (XAD) and DNPH cartridges[GC/MS, 
GC/FID], On-Line Cryogenic Trap/GC, canister[GC/MS], 
Total Hydrocarbon Analyzer 

Idle, 30%, 80%; [JP-4; 
JP-5; JP-8] 

Spicer et al. (1984;1994) 

PW 305 (TF in small business jets) N2O, CH4 Sampling: gas samples collected in the core of the engine 
without any bypass air. Experimental: infrared absorption 
spectroscopy 

5.5%; 23.5%; 33.4%; 
71.4%; 95.6% 

Wiese et al. (1994) 

Various military aircraft: T56-A-7; TF39-
GE-1C ; GTCP85-180; GTCP-165-1 ; 
T700-GE-700; J69-T-25; J85-GE-5A; 
F110-GE-100; F108-CF-100 ; TF33-P-
7/7A; F101-GE-102 ; TF33-P-102; F117-
PW-100; AFB F118-GE-100; F404-GE-
F102/400; F110-GE-129; F100-PW-100; 
F100-PW-229; T64-GE-100; TF34-GE-
100A (All Military) 

CO2; CO; NOx; NMHCs; 
Aldehydes and ketones; 
VOCs; filterable and 
condensable particulate 

Sampling: various test cells, hush house exhaust rate 
determined using three methods: carbon balance, tracer gas 
and F-factor. Experimental: various US-EPA' methods, 
including continuous emissions monitoring system; canister 
[GC/MS; GC/FID]; HI-VOL [lab analysis] 

Idle; Approach; 
Intermediate; Military; 
Afterburner; [JP-8] 

Gerstle et al. (1999) 

Research aircraft: VFW-Fokker 614 
ATTAS. Engine: Rolls-Royce/SNECMA 
M45H Mk501 (TF) 

Aerosol size distribution and 
chemical composition (total 
carbon, BC) 

Sampling: ground-based measurements (also report in-flight 
measurements). Experimental: filter substrates[thermal 
technique], PCASP-100X 

Different engine thrust 
levels: idle run and take-
off 

Petzold and Schröder 
(1998); Petzold et al. 
(1999) 

Fighter aircraft: F-22 Raptor (Military); 
Engine: F119-PW-100 (TF with reheat) 

CO2; CO; NOx; NMHCs; 
Filterable and condensable 
particulate; Aldehydes and 
ketones; VOCs 

Sampling: engine exhaust sampling rake system; augmentor 
tube slipstream sampling system. Experimental: various US-
EPA' methods: continuous emissions monitoring system; 
canister [GC/MS; GC/FID]; HI-VOL [lab analysis] 

Idle (10%); approach 
(20%); Intermediate 
(70%); Military (100%); 
Afterburner (150%); [JP-
8] 

Gerstle et al. (2002) 

NASA Boeing 757; Engine: RB-211-
535E4 (TF) 

CO2, H2O, HONO, HNO3, 
SO2, SO3, H2SO4, 
nonmethane hydrocarbons, 
aerosol size, BC 

Sampling: 1 m down steam of the turbine exhaust, aerosol-
sampling probe was also affixed to the blast fence 25 m 
downstream of the engine exhaust plane. Experimental: IR 
spectrometer, DMA, OPC, aethalometer, grab samples, 
tunable diode laser, AMS 

A range of power 
settings from idle to near 
take-off thrust; [JP-5, 
low and high S (810 and 
1820 ppm S)] 

EXCAVATE: 
 Anderson et al. 
(2005;2006)  
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Jet trainer: T-38A Talon; Engine: 85-GE-
5A (TJ) 

CO2, aerosol size, BC, 
nonmethane hydrocarbons, 
SO2, CO2, SO3, H2O, 
HONO, H2SO4, HONO, 
HNO3 

Sampling: 1 m down steam of the turbine exhaust. 
Experimental: IR spectrometer, DMA and OPC, aethalometer, 
grab samples, tunable diode laser, AMS 

A range of power 
settings from idle to near 
take-off thrust; [JP-5 
(810 ppm S)] 

EXCAVATE:  
Anderson et al. (2005)  

Fighter: F-18 (Military). Engine: F404-GE-
400 in twin-engine (TF with reheat) 

Particle mass concentration, 
PAHs, BC 

Sampling: Navy jet engine exhaust emissions from tethered 
aircraft, measurements at a site on the active flightline tarmac, 
directly from the exhausts of tethered aircraft. Experimental: 
DustTrak particle mass monitor, PAS, photoacoustic analyzer, 
Gundel denuder sampler (with PUF/XAD/PUF “sandwich” 
cartridges), SMPS, MOUDI cascade impactor 

Power-setting increases 
from 65% to 70%, and 
from 70% to 80% 

Rogers et al. (2005) 

Engine: dismounted T700-GE-401 (TS), 
which is fitted in Seahawk, Super Cobra, 
and Jayhawk helicopters (Military) 

Particle mass concentration, 
PAHs, BC 

Sampling: Navy jet engine exhaust emissions from engine 
maintenance test cells, measurements at Aircraft Intermediate 
Maintenance Department facility. Experimental: DustTrak 
particle mass monitor, PAS, photoacoustic analyzer, Gundel 
denuder sampler (with PUF/XAD/PUF “sandwich” 
cartridges), SMPS, MOUDI cascade impactor 

Power-setting increases 
from idle to 98% 

Rogers et al. (2005) 

NASA Boeing 757; Engine: RB211-535-
E4 (TF) 

Gaseous carbon species Sampling: 10 m behind the engine exit plane. Experimental: 
Canister, analyses of whole air samples [GC/FID, GC/ECD, 
GC/MS] 

4–7%; 26%; 47%; 61%; 
[JP-5 low and high S] 

EXCAVATE 
 Anderson et al. (2006)  

Bell helicopter; UH-1H (TS) 22 PAHs Sampling: engine placed in a testing chamber, exhaust 
samples collected from the stack of the chamber using an 
isokinetic sampling system. Experimental: GC/MS 

Five power settings: idle 
(50%), fly idle (67%), 
beed band check (79%), 
inlet guide vane (95%), 
and take off (100%); [JP-
4] 

Chen et al. (2006) 

Military jet fighters: F-15 Eagle and the F-
16 Falcon aircraft. Engines: PW F-100-
PW-100 (TF with reheat) 

Automatic measurements: 
CO2, CO, NO, NO2, total 
hydrocarbons 

Sampling: extractive sampling at 23 m behind the exhaust exit 
plane for tests at idle through military power, and at 38 m for 
afterburner tests; optical remote sensing measurements 23 m 
behind the engine exit plane. Experimental: automatic 
measurements; canisters [GC/MS]; DNPH-coated cartridges 
[HPLC/UV detector]; OP-FTIR; UV-DOAS 

Ground idle (65–70%), 
low intermediate (80%), 
high intermediate (85%), 
military (91–93%) and 
afterburner (reheat); [JP-
8+100] 

Cowen et al. (2009) 

Aircraft: Boeing DC-8. Engine: CFM-56-
2C1 (TF) 

CO, CO2, NO, NO2, HONO, 
total VOCs, gas-phase 
speciated hydrocarbons, 
particle number 
concentration, particle size 
distribution, PM2.5[mass, 
EC/OC, SVOCs, inorganic 
ions, elemental composition] 

Sampling: the exhaust plume was sampled at 1, 10 and 30 m 
downstream of the engines. Experimental: continuous and 
time-integrated instruments: IR absorption, TILDAS, PTR-
MS, AMS, canister[GC/MS, GC/FID], DNPH 
cartridges[HPLC], TEOM, CPC, SMPS, DMA, PM-2.5 
cyclones [47mm PTFE filter],  PM-2.5 cyclones [47mm 
QFF+PUF], ELPI, aethalometer, PAH analyzer; lab analyses 
on filters and PUF [GC/MS, TOA@NIOSH, ion 
chromatography, XRF] 

“EPA test matrix” 
(typical LTO); “NASA 
test matrix” including 11 
power settings); [3 fuels: 
base fuel, high sulfur 
(1639 ppm), high 
aromatic] 

APEX-1:  
Wey et al (2006); 
Knighton et al. (2007); 
Wormhoudt et al. (2007); 
Yelvington et al. (2007); 
Wong et al. (2008); Onash 
et al. (2009); Kinsey 
(2009)  
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Aircraft: B737-700; B737-300. Engines: 
CFM56-7B24, CFM56-3B1, CFM56-3B2 
(all TF) 

CO2, gas-phase speciated 
hydrocarbons, particle 
number concentration, 
particle size distribution, 
PM2.5[mass, EC/OC, 
SVOCs, inorganic ions, 
elemental composition, 
PAHs] 

Sampling: on-wing at the ground run-up enclosure; 1, 30 and 
54 m from the exhaust nozzle exit. Experimental: continuous 
and time-integrated instruments: IR absorption, 
canister[GC/MS, GC/FID], DNPH cartridges[HPLC], TEOM, 
CPC, SMPS, EEPS, DMA, PM-2.5 cyclones [47mm PTFE 
filter, 47mm QFF+PUF], ELPI, aethalometer, PAH analyzer; 
lab analyses on filters and PUF [GC/MS, TOA@NIOSH, ion 
chromatography, XRF], AMS 

4%, 7%, 30%, 40%, 
65%, 85%; [Jet-A] 

APEX-2: Agrawal et al. 
(2008); Kinsey (2009); 
Timko et al. (2010b;c) 

Aircraft: B737-300, Embraer ERJ-145, 
A300, B775, plus Learjet Model 25. 
Engines: CFM56-3B1, AE3007A1E, 
AE3007A1/1, PW4158, RB211-535E4-B 
(all TF), plus CJ610-8ATJ (TJ) 

CO2, gas-phase speciated 
hydrocarbons, particle 
number concentration, 
particle size distribution, 
PM2.5[mass, EC/OC, 
SVOCs, inorganic ions, 
elemental composition] 

Sampling: the exhaust plume was sampled at a location 1, and 
30 m downstream of the engines (sometimes at 15 and 43 m); 
Sampling was done at the centre-line using a single probe. 
Experimental: continuous and time-integrated instruments: IR 
absorption, TILDAS, quantum cascade-TILDAS, 
canister[GC/MS, GC/FID], DNPH cartridges[HPLC], TEOM, 
CPC, SMPS, EEPS, DMA, PM-2.5 cyclones [47mm PTFE 
filter, 47mm QFF+PUF], ELPI, aethalometer, PAH analyzer; 
lab analyses on filters and PUF [GC/MS, TOA@NIOSH, ion 
chromatography, XRF], AMS 

4%, 7%, 15%, 30%, 
45%, 65%, 85%, 100% 
[slightly varying for 
some engines, see 
Kinsey (2009)]; [Jet-A] 

APEX-3: Knighton et al. 
(2007); Kinsey (2009); 
Timko et al. (2010b;c) 

Military helicopters: Blackhawk, Apache: 
T700-GE-700 and T700-GE-701C (TS) 

CO2, H2O, CO, NO, and N2O 
(FTIR); particle number, 
mass and size distributions, 
smoke number (automatic); 
elements, ions, EC, OC (on 
PM filters) 

Sampling: extractive sampling at the engine nozzle, plus 
extractive sampling (4.14 m) and remote-sensing at a 
predetermined distance downstream of the engine exhaust 
plane. Experimental: FTIR, TDLAS, UV DOAS, OP-FTIR; 
CPC, DMA, SMPS, TEOM, smoke machine, sandwiched PM1 
impaction-style sampler [XRF, ion chromatography, 
TOA@NIOSH] 

Idle, 75%, max; [JP-8, 
FT] 

Cheng (2009); Cheng et 
al. (2009); Cheng and 
Corporan (2010) 

Military transport (cargo) aircraft: 
Lockheed C-130 Hercules. Engine: T56-A-
15 (TP) 

CO2, H2O, CO, NO, and N2O 
(FTIR); particle number, 
mass and size distributions, 
smoke number (automatic); 
elements, ions, EC, OC (on 
PM filters) 

Sampling: at the engine exit plane and at 5 and 15 m 
downstream of the engine exit. Experimental: remote sensing: 
FTIR, TDLAS, UV DOAS, OP-FTIR; Extractive 
measurements: on-line gas analyzer, cross-filter correlation 
spectroscopy,  chemiluminescence, CPC,SMPS, TEOM, 
smoke machine, PM1 sampler [XRF, ion chromatography, 
carbon analyzer] 

Low speed ground idle 
(4%); high speed ground 
idle (7%); flight idle 
(20%); cruise (41%); 
max (100%); [JP-8, FT] 

Cheng et al. (2008); 
Corporan et al. (2008); 
Cheng (2009); Cheng and 
Corporan (2010) 

Military bomber: B-52. Engine: TF33-P-
3/103 (TF) 

CO2, H2O, CO, NO, and N2O 
(FTIR); particle number, 
mass and size distributions, 
smoke number (automatic); 
elements, ions, EC, OC (on 
PM filters) 

Sampling: extractive sampling at the engine nozzle, plus 
extractive sampling and remote-sensing at a predetermined 
distance downstream of the engine exhaust plane. 
Experimental: FTIR, TDLAS, UV DOAS, OP-FTIR; 
CPC,SMPS, TEOM, smoke machine, PM1 sampler [XRF, ion 
chromatography, carbon analyzer] 

TF33 (idle, 80%, 90%, 
95%); [JP-8, FT] 

Cheng (2009); Cheng and 
Corporan (2010) 

Update and consolidation of the existing 
HAPs profile using data from Spicer et al. 
(1994), EXCAVATE and APEXs 
campaigns 

Hydrocarbons, EIs and 
profiles (mass fraction) 

Data analysis Various Knighton et al. (2009) 
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Military transport (cargo) aircraft: 
Lockheed C-130 Hercules. Engine: Allison 
T56  (TP) 
 

CO2, CO, NOx, total 
hydrocarbons, organic gases 
including carbonyls 

Experimental: non-dispersive IR, cross–filter correlation 
spectroscopy, chemiluminescence, FID, PTR-MS, 
canister[GC/MS], DNPH cartridges[HPLC] 

Low speed ground idle, 
High speed ground idle, 
Flight idle Cruise, 
Maximum power; 
[JP-8] 

Spicer et al. (2009) 

Jet fighter: F-15. Engine: PW F100-PE-
100 (TF with reheat) 

CO2, CO, NOx, total 
hydrocarbons, organic gases 
including carbonyls 

Experimental: non-dispersive IR, cross–filter correlation 
spectroscopy, chemiluminescence, FID, PTR-MS, 
canister[GC/MS], DNPH cartridges[HPLC] 

Idle, Low intermediate, 
High intermediate,  
Military, Afterburner; 
[ JP8+100] 

Spicer et al. (2009) 

Summary of the APEX1‒3 campaigns: 
CFM56-2C1, CFM56-7B24, CFM56-3B1, 
CFM56-3B2, AE3007A1E, AE3007A1/1, 
P&W 4158, RB211-535E4-B (all TF), and 
CJ610-8ATJ (TJ) 

Physical and chemical 
characterization of PM; PM 
mass, particle number 
concentrations and size, BC, 
surface-bound PAHs; 
inorganic ions,  EC, OC, 
SVOCs, elements  

As for APEX1‒3 campaigns LTO and others Kinsey et al. (2010; 2011) 

Pratt & Whitney; PW three high-bypass 
TF, representing two different distinct 
engine model types 

Total particulate mass, 
chemical composition and 
size distributions of the 
emitted oil 

Sampling: Particulate matter emitted from the lubrication 
system overboard breather vent with a self-designed collecting 
and diluting apparatus. Experimental: C-TOFAMS, TEOM, 
engine exhaust particle sizer, CPC and ultra high sensitivity 
aerosol spectrometer 

Cycles from idle to 65-
70% thrust 

Yu et al. (2010) 

NASA DC-8; CFM56-2C1 (TF) CO2, CO, NOx, SO2, CH4, 
N2O, HONO, total and 
speciated hydrocarbons, 
hazardous air pollutants; 
particle measurements 
included number density, 
size distribution, mass, 
aerosol chemical 
composition, and black 
carbon composition 

Sampling: from inlet probes positioned 1 and 30 m 
downstream of the aircraft’s engines; aged plumes at 145 m 
away from the engine output in the direction of the 
predominant wind, 1.3 m above the ground. Experimental: 
NDIR, CPC, SMPS, EEPS, DMS, MAAP, PAS 2000, AMS, 
CCN, TILDAS, PTR-MS, conventional gas analyzers, TEOM 

7 thrusts:  LTO + 
4%(idle); 
45%(approach); 
65%(cruise); [JP-8, FT 
(Shell), FT (Sasol)] 

AAFEX: Anderson et al. 
(2011), Santoni et al. 
(2011) 

KC-135T Stratotanker (Military); CFM56-
2B1 (TF) 

CO2, CO,O2, NOx, total 
hydrocarbon; PM, particle 
number concentration and 
size (after exhausts dilution 
in smog chamber) 

Sampling: exhaust sampled using a rake inlet installed 1 m 
downstream of the engine exit plane; a dilution sampler and 
portable smog chamber were also used. Experimental: five-gas 
exhaust gas analyzer; canister[GC/MS], PM2.5 cyclone[QFF 
and PTFE filters, Tenax TA sorbent, GC/MS, OC/EC 
analyzer], SMPS, AMS 

4%, 7%, 30%, 85%; [JP-
8] 

Presto et al. (2011); 
Miracolo et al. (2011) 
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Helicopters; Allison T63-A-700 (TS) CO2, CO, NOx, CH4, and 
C2H4, unburned 
hydrocarbons, number and 
size of particles, BC 

Samples were extracted from the engine exit plane via 
temperature-controlled probes, charcoal tubes, DNPH tubes; 
NDIR, FTIR, FID, CPC, SMPS, MAAP, GC/MS 

3% (low-speed idle), 7% 
(high-speed idle), 15% 
(intermediate), 85% 
(cruise); [JP-8, a 
synthetic paraffinic 
kerosene, and four two-
component surrogate 
mixtures] 

Cain et al. (2013) 

Used acronyms: AMS=aerosol mass spectrometer; BAM=beta-attenuation mass monitor; CPC=condensation particle counter; C-TOF AMS=time-of-flight aerosol mass spectrometer; DMA=differential 4089 
mobility analyser; EEPS=engine exhaust particle sizer; ELPI=electrical low pressure impactor; FTIR=Fourier transform infrared spectroscopy; GC/ECD=gas chromatography/electron capture detector; 4090 
GC/FID=gas chromatography/flame ionization detector; GC/MS=gas chromatography/mass spectrometry; HI-VOL=high volume PM sampler; LIDAR=laser interferometry detection and ranging; 4091 
MAAP=multi-angle absorption photometer ; NDIR=non-dispersive infrared spectroscopy; OPC=optical particle counting and photometry; OP-FTIR=open-path Fourier transform infrared spectroscopy; 4092 
PAS=photoelectric aerosol sensor; PTFE=Teflon; PTR-MS=proton-transfer reaction mass spectrometry; QFF=quartz fibre filter; SEM/EDX=scanning electron microscopy/energy-dispersive X-ray 4093 
spectroscopy; SMPS=scanning mobility particle sizer spectrometer; TDLAS=tunable diode laser absorption spectroscopy; TEOM=tapered element oscillating microbalance; TF=turbofan; TILDAS=tunable 4094 
infrared differential absorption spectroscopy; TJ=turbojet; TOA=thermo-optical OC-EC analyzer (@used method); TP=turpoprop; TS=turboshaft; UV-DOAS=UV differential optical absorption spectroscopy; 4095 
VOC=volatile organic compounds; XRF=X-ray fluorescence spectroscopy. 4096 
 4097 
 4098 
 4099 
 4100 

 4101 

4102 
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Table 4. List of recent studies available in the literature reporting EIs during real aircraft operation. The table also reports supplementary information (if 4103 
available) about the target of the study, period and location of experiments, tested aircraft or engine models, measured pollutants, analysed LTO phases and 4104 
sampling methodologies. The list of acronyms is provided in Table 3. 4105 

Target; Period; Airport Analyzed compounds Sampling; Analytical Engine thrusts (if know) or LTO 
phases 

References 

In service military and civil aircraft at 
various airports 

CO2, H2O, CO, NO, N2O Measurements performed at distances of 20-40 
m to the nozzle exit perpendicular to the exhaust 
flow via ground-based FTIR analysis 

Various thrusts Heland and Schafer 
(1997;1998) 

Various (90) in service aircraft: from 
gulfstream executive jets to Boeing 747-
400s at London Heathrow Airport (UK) 

CO2, CO, NO, hydrocarbons The remote sensor positioned at ground level. 
Experimental: non-dispersive IR spectroscopy, 
dispersive UV spectrometer 

Mix of idle, taxi-out and take-off 
modes 

Popp et al. (1999) 

Emission indices of different aircraft 
engines using non-intrusive 
measurements at Frankfurt/Main (GER), 
London-Heathrow (UK), Vienna (AT) 
airports 

CO2, CO, NO, NO2, ethene, 
ethine, formaldehyde 

Open paths of 80 up to 150 m length were 
installed in parallel directly behind the aircraft. 
Experimental: FTIR with MIDAC spectrometer, 
FTIR with K300 spectrometer, DOAS 

Aircraft operating conditions, 
idling aircraft 

Schäfer et al. (2003) 

30 individual planes, ranging from TP to 
jumbo jets; August 2001; J.F. Kennedy 
Airport (USA) 

CO2, NO, NO2 Measurements within 350 m of a taxiway and 
550 m of a runway. Experimental: automatic 
(IR), TILDAS  

Taxiway thrust and take-offs Herndon et al. (2004) 

In-use commercial aircraft; period: 2001-
2003; Airports: J.F. Kennedy airport in 
New York City and Logan airport in 
Boston (USA) 

Particulate matter, number 
concentration and size 
distributions 

Extractive sampling of the advected plumes of 
aircraft using a novel approach, 200 m of an 
active taxiway and runway. Experimental: 
ELPI, CPC 

Several different types of plumes 
were sampled, including approach 
(landing) and engine start-up in 
addition to idle, taxi, and take-off 

Herndon et al. (2005) 

45 intercepted plumes identified as being 
associated with specific aircraft: regional 
jets, B737s, MD88s, and B757s; Period: 
May 2003; Logan airport in Boston 
(USA) 

CO2; Formaldehyde, 
acetaldehyde, benzene, and 
toluene, as well as other 
hydrocarbon species; NOy 

Ambient air is continuously analyzed through a 
sample port located near the roof on the front of 
the truck. Experimental: IR, PTR-MS; TILDAS; 
total reactive nitrogen instrument 

Idle, taxi, approach (or landing), 
and take-off, as well as engine-start 
modes 

Herndon et al. (2006) 

Real time data at Los Angeles 
International Airport (USA); Period: 
September 23-29, 2005 

UFPs (diameter <100 nm), 
black carbon, PM2.5 mass, and 
chemical species (PAHs, 
butadiene, benzene, acrolein, 
formaldehyde) 

At blast fence (140 m from the take-off) and 
five downwind sites up to 600 m from the take-
off runway. Experimental: SMPS (DMA/CPC), 
aethalometers, E-BAM, automatic PAHs 
analyzer, canister, cartridge 

— Fanning et al. (2007); Zhu et 
al. (2011) 

Impact of airport emissions at Zurich–
Kloten airport (Switzerland); Period: June 
2004 to July 2004 

NO, NO2, CO, CO2, VOCs Measurements with in-situ and open-path 
devices; COV samples taken directly within the 
plume of the engine, about 50–100m behind an 
aircraft, at a height of 1m. Experimental: FTIR; 
DOAS; canister [GC/FID] 

— Schürmann et al. (2007) 
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Emissions from in-use commercial 
aircraft engines analyzed using 
continuous extractive sampling and 
associated with specific engine using tail 
numbers; Period: September 2004; 
Location: Hartsfield-Jackson Atlanta 
International Airport (USA) 

CO2, CO, NO, NO2, 
formaldehyde, particle 
number, BC, particle size, 
mass-based composition 

Two mobile laboratories located downwind of 
active runways. Experimental: Automatic (IR); 
TILDAS; CPC; MAAP; SMPS; DMS; AMS 

Various JETS/APEX-2 campaign: 
Herndon et al. (2008) 

Plume characterization from commercial 
aircraft at Brisbane Airport (AUS) 

CO2, SO2, NOx, particle mass, 
number concentration and 
size 

Plume capture and analysis system mounted 
in a four-wheel drive vehicle positioned in the 
airfield 60 to 180 m downwind of aircraft 
operations. Experimental: CPC, SMPS, NOx 
analyzer, aerosol photometer fitted with a PM2.5 
impactor 

Normal airport operations, taxiing 
phase 

Johnson et al. (2008) 

In-use commercial airfreight and general 
aviation at Oakland International Airport 
(USA); Period: August 20-29, 2005;  

Formaldehyde, acetaldehyde, 
ethene, propene, and benzene 

At the end of an active taxiway next to the main 
runway. Data collected on an ambient sampling 
manifold consisting of a 3.8 cm diameter tube, 
∼7 m long drawing ∼150 slpm. Experimental: 
TILDAS; proton transfer reaction mass 
spectrometer measurements 

Idle (taxiway/runway) JETS/APEX-2 campaign: 
Herndon et al. (2009) 

Real world conditions, 280 individual 
aircraft at Brisbane Airport (AUS) 

Particle number 
concentration, size and mass 
(PM2.5), CO2, NOx 

80 m from the aircraft using a novel mobile 
measurement system.  Experimental: CPC, 
SMPS, NOx analyzer, aerosol photometer fitted 
with a PM2.5 impactor 

Various modes of LTO cycles 
including idle, taxi, landing, and 
take-off 

Mazaheri et al. (2009) 

In-use commercial aircraft at Chicago 
Midway Airport and O’Hare International 
Airport (USA); Period: February 2010 

CO, NO, NOx, oil leaks Mobile laboratory located at downwind 
locations to monitor air advected from the active 
taxiways (30−150 m). Experimental: TILDAS; 
HR-ToF AMS; MAAP, CPC 

— Yu et al. (2012) 

Emission of Roanoke Regional Airport in 
Virginia (USA); Period: July 2011 - 
February 2012 

CO2, NOx, particle number, 
BC 

A mobile eddy covariance laboratory with a 
mast extending nearly 15 m above ground level 
and placed near active runways. Experimental: 
automatic devices, CPC, aethalometer 

Idle/taxi and take-off Klapmeyer and Marr (2012) 

Real-time measurements of aircraft 
engine specific emissions at Oakland 
International Airport (USA); Period: 
August 26, 2005 

CO2, particle number 
concentration, size 
dustributions, PM mass 

100-300 m downwind of an active taxi-/runway. 
Experimental: Automatic IR, Cambustion 
DMS500, CPC, SMPS, MAAP 

Normal LTO operations Lobo et al. (2012) 

 4106 

4107 
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Table 5. List of recent studies available in the literature conducted at airports or in their surroundings. The table also reports supplementary information (if 4108 
available) about the target of the study, period and location of experiments, tested aircraft or engine models, measured pollutants, analysed LTO phases and 4109 
sampling methodologies. The list of acronyms is provided in Table 3. 4110 

Target; Period; Airport Analyzed compounds Sampling; Analytical Engine thrusts (if know) or LTO 
phases 

References 

Air quality data in the vicinity of Hong 
Kong International Airport (1997-1998) 
and Los Angeles International Airport 
(2000-2001) 

CO, NOx, SO2, and respirable 
suspended particles 

Data from routine air quality monitoring site 
and special study 

— Yu et al. (2004) 

Airport traffic at Heathrow (UK); Period: 
Jul. 2001–Dec. 2004 

NOx, NO2 LHR2 site at 180 m north of the northern 
runway centreline. Experimental: Common 
automatic devices 

— Carslaw et al. (2006) 

Ambient air and personal at Fiumicino 
Airport, Rome (Italy); Period: January-
February 2005 

23 PAHs, urinary 1-hydroxy-
pyrene, micronucleus assay, 
Comet assay, Sister 
chromatid exchange 

Air samples collected from airport apron, airport 
building and terminal/office area during 5 
working days, plus a biomarker of exposure 
following 5 working day. Experimental: Active 
ECHO PUF sampler at 35 L/min for the first 20 
min and at 120 L/min for the remaining 23 h 
and 40 min on each day, [GC/MS analysis] 

— Cavallo et al. (2006) 

Individual plumes from 29 commonly 
used engines; Period: October 19-
November 15, 2005; Location: London 
Heathrow (UK) 

NOx 180 m from the runway. Experimental: 
chemiluminescence monitor 

— Carslaw et al. (2008) 

Analysis of the extent of Los Angeles 
International Airport emissions on 
downwind ambient air in a mixed use 
neighborhood that includes residences. 
Period: spring of 2003 

UFP, BC, NOx, particle-phase 
PAHs 

Data collected at various sites in and around the 
airport: 500 m upwind of the north runway and 
downwind of the airport (500 m north and east 
of the centerline of the north runway; 100 m 
downwind of the taxiway; 100 m downwind of 
the south runway; 900 m downwind of the south 
runway) . Experimental: CPC, SMPS, DMA, 
aethalometer, photoelectric aerosol sensor, NOx 
analyzer 

— Westerdahl et al. (2008) 

APEX2-3: Oakland International Airport 
in August 2005, and Cleveland Hopkins 
International Airport in Oct-Nov 2005. 

NOx and NOy, including 
HONO 

Panel truck. Experimental: TILDAS; quantum 
cascade-TILDAS; chemiluminescence analyzer  

— Wood et al. (2008b) 

Airport traffic at Warwick, Rhode Island 
(USA); Period: July 2005-September 
2006 

BC Five monitoring sites: 4 close and 1 approx 3.7 
km from the airport. Experimental: Continuous 
with aethalometers 

— Dodson et al. (2009) 

General aviation and private jets at Santa 
Monica Airport (USA); Period: Spring 
and summer 2008 

UFP, PM2.5, BC, particle 
bound PAHs, CO, NOx, NO, 
NO2 

Downwind of the airport using an electric 
vehicle mobile platform equipped with fast 
response instruments. Experimental: CPC, 

Idle/taxi and take-off Hu et al. (2009) 
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FMPS, aethalometer, PAS, automatic 
measurements of gases 

Airport traffic at El Prat, Barcelona 
(Spain); Period: October 17-November 
16, 2007 

PM10, PM2.5 and PM1 
continuously; PM10 (EC, 
OC, SO42-, NO3-, Cl-, 
NH4+, Al, Ca, K, Mg, Fe, S, 
Na, As, Ba, Bi, Cd, Ce, Co, 
Cr, Cs, Cu, Ga, Hf, La, Li, 
Mn, Mo, Nb, Ni, P, Pb, Rb, 
Sb, Sc, Se, Sn, Sr, Th, Ti, Tl, 
U, V, W, Y, Zn, Zr) 

Mobile laboratory van at about 130 m from the 
major runway. Experimental: PM10, PM2.5 and 
PM1 with laser-spectrometer dust monitors and 
PM10 on QFF using HI-VOL sampler 

Take-off, sometimes landing Amato et al. (2010) 

Commercial aircraft; Period: 10–20 May 
2005; Airports: Manchester and London 
Heathrow (UK) 

Dispersion of exhaust plumes Rapid-scanning LIDAR system installed at 
ground 200-330 m on the sides of runways 

All modes were observed: taxiing, 
take-off, rotation, climb-out, 
approach, and landing. Landing 
tyre smoke 

Bennett et al. (2010); Bennett 
and Christie (2011) 

Commercial airliners at London Heathrow 
(UK): A320 232; B757 236; B747 436) 

PM elemental composition, 
particle size spectrum 

Samples of dust from the undercarriage. 
Experimental: SEM/EDX; 
aerosizer/aerodisperser 

— Bennett et al. (2011) 

Ambient air and personal at the Teterboro 
Airport, New York/New Jersey 
metropolitan area (USA); Period: Summer 
2006 and winter 2006–2007;  

BTEX At 15 households located close to the airport 
(indoor, outdoor, and personal), at the end of 
airport runways and an out-of-neighborhood 
location. Experimental: Passive samplers (48 h) 
[GC/MS] 

— Jung et al. (2011) 

High-resolution monitoring and flight 
activity data to quantify contributions 
from LTO at T.F. Green Airport in 
Warwick (USA). Period: 2007-2008 

Particle number concentration Four stationary monitoring sites around the 
airport. Experimental: CPC 

Various LTO phases, especially 
departures 

Hsu et al. (2012) 

Aircraft emissions and local air quality 
impacts from take-off activities at Los 
Angeles International Airport (USA). 
Periods:  September 2005; Feb-Mar 2006; 
May 2006 

Particle number 
concentrations and size 
distributions, and time 
integrated black carbon, 
PM2.5 mass, and chemical 
species 

Data collected at the blast fence (~140 m from 
the take-off position) and 5 sites located 
downwind, up to 600 m from the take-off 
runway and upwind of a freeway. Experimental: 
CPC, SMPS, aethalometers, BAM, PAH Tisch 
Sampler, canister and cartridge samplers[lab 
analysis] 

Taxi-way and take-off operations Zhu et al. (2011) 

Contributions of aircraft arrivals and 
departures to UFP at Los Angeles 
International Airport (USA). Period: 
summer 2008 

Particle number concentration Five sites around the airport. Experimental: Fast 
Mobility Particle Sizer 

LTO phases: aircraft arrivals and 
departures 

Hsu et al. (2013) 
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 4111 

Figure 1. Absolute growth of aviation (1930‒2012) recorded by ICAO in terms of RPK, RTK and 4112 
aircraft kilometres. Data refers to ICAO (2013) and were taken from Airlines for America (2013). 4113 
 4114 

 4115 

 4116 
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 4117 

Figure 2. Simplified diagram of a turbofan engine (upper left); products of ideal and actual 4118 
combustion in an aircraft engine (upper right); and related atmospheric processes, products, 4119 
environmental effects, human health effects and sinks of emitted compounds (bottom). Adapted 4120 
from Prather et al. (1999), Wuebbles et al. (2007) and Lee et al. (2009). 4121 

4122 
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 4123 

Figure 3. Division of the combustion products from an aircraft engine, adapted from Lewis et al. 4124 
(1999). 4125 
 4126 
 4127 

 4128 
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 4131 

 4132 
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 4134 

 4135 

 4136 

 4137 

 4138 

 4139 

 4140 

 4141 

 4142 

Figure 4a and 4b. Geographical and vertical distributions of aviation: a) column sum of global fuel 4143 
burn from scheduled civil aviation in 2005, as reported by Simone et al. (2013) using AEIC model 4144 
(Stettler et al., 2011); b) annual global vertical distribution of commercial aviation fuel burn for the 4145 
NASA-Boeing 1992 and 1999 (Baughcum et al., 1996a;b; Sutkus et al., 2001), QUANTIFY 2000 4146 
(Owen et al., 2010), AERO2k (Eyers et al., 2004) and AEDT 2006 (Roof et al., 2007) datasets, 4147 
taken from Olsen et al. (2013). 4148 
 4149 
 4150 
 4151 
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 4152 

Figure 5. Standard ICAO LTO cycle. Adapted from ICAO (2011). 4153 
 4154 
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4169 

 4170 

Figure 6. Burned fuel and emissions for complete standardised LTO cycle. Data from ICAO 4171 
databank at April 2013 (EASA, 2013). All engines certified in each period were included in the 4172 
statistics, without distinction of type, manufacturer, model or technology.   4173 
 4174 

 4175 

 4176 

 4177 
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4178 

 4179 

Figure 7. EIs provided by the ICAO databank (EASA, 2013). All in-use engines certified from 4180 
1976 to today (April 2013) are included. 4181 
 4182 
 4183 
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4184 

 4185 

Figure 8. Fuel burned and emissions of CO, NOx and total unburned hydrocarbons during the four 4186 
LTO phases. Data were calculated from the EIs and fuel consumption provided by the ICAO 4187 
databank (EASA, 2013). All in-use engines certified from 1976 to today (April 2013) were included 4188 
and reprocessed as a function of LTO stages and standard times (i.e., 0.7 min for take-off, 2.2 min 4189 
for climb-out, 4 min for approach and 26 min for idle). 4190 
 4191 
  4192 
 4193 
 4194 
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 4195 

Figure 9. Results of the APEX campaigns. Profile (mass fractions) of individual hydrocarbon species. The single compounds are ordered to show decreasing 4196 
fractions.  4197 
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