3,793 research outputs found
Fuels and Burners for Domestic Heating
Discusses fuels and burners for domestic heating, including hand-fired coal or coke, automatic coal stoker, gas-fired heaters, oil burners. INlcudes table of comparative fuel costs
On the Critical Temperature of Non-Periodic Ising Models on Hexagonal Lattices
The critical temperature of layered Ising models on triangular and honeycomb
lattices are calculated in simple, explicit form for arbitrary distribution of
the couplings.Comment: to appear in Z. Phys. B., 8 pages plain TEX, 1 figure available upon
reques
Sliding Luttinger liquid phases
We study systems of coupled spin-gapped and gapless Luttinger liquids. First,
we establish the existence of a sliding Luttinger liquid phase for a system of
weakly coupled parallel quantum wires, with and without disorder. It is shown
that the coupling can {\it stabilize} a Luttinger liquid phase in the presence
of disorder. We then extend our analysis to a system of crossed Luttinger
liquids and establish the stability of a non-Fermi liquid state: the crossed
sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a
finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperature as . This two-dimensional
system has many properties of a true isotropic Luttinger liquid, though at zero
temperature it becomes anisotropic. An extension of this model to a
three-dimensional stack exhibits a much higher in-plane conductivity than the
conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure
In-situ velocity imaging of ultracold atoms using slow--light
The optical response of a moving medium suitably driven into a slow-light
propagation regime strongly depends on its velocity. This effect can be used to
devise a novel scheme for imaging ultraslow velocity fields. The scheme turns
out to be particularly amenable to study in-situ the dynamics of collective and
topological excitations of a trapped Bose-Einstein condensate. We illustrate
the advantages of using slow-light imaging specifically for sloshing
oscillations and bent vortices in a stirred condensate
Spin-Peierls phases in pyrochlore antiferromagnets
In the highly frustrated pyrochlore magnet spins form a lattice of corner
sharing tetrahedra. We show that the tetrahedral ``molecule'' at the heart of
this structure undergoes a Jahn-Teller distortion when lattice motion is
coupled to the antiferromagnetism. We extend this analysis to the full
pyrochlore lattice by means of Landau theory and argue that it should exhibit
spin-Peierls phases with bond order but no spin order. We find a range of Neel
phases, with collinear, coplanar and noncoplanar order. While collinear Neel
phases are easiest to generate microscopically, we also exhibit an interaction
that gives rise to a coplanar state instead.Comment: REVTeX 4, 14 pages, 12 figures (best viewed in color
Direct Minimization Generating Electronic States with Proper Occupation Numbers
We carry out the direct minimization of the energy functional proposed by
Mauri, Galli and Car to derive the correct self-consistent ground state with
fractional occupation numbers for a system degenerating at the Fermi level. As
a consequence, this approach enables us to determine the electronic structure
of metallic systems to a high degree of accuracy without the aid of level
broadening of the Fermi-distribution function. The efficiency of the method is
illustrated by calculating the ground-state energy of C and Si
molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure
Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps
An accurate theory describing adiabatic following of the dark, nonabsorbing
state in the three-level system is developed. An analytical solution for the
wave function of the particle experiencing Raman excitation is found as an
expansion in terms of the time varying nonadiabatic perturbation parameter. The
solution can be presented as a sum of adiabatic and nonadiabatic parts. Both
are estimated quantitatively. It is shown that the limiting value to which the
amplitude of the nonadiabatic part tends is equal to the Fourier component of
the nonadiabatic perturbation parameter taken at the Rabi frequency of the
Raman excitation. The time scale of the variation of both parts is found. While
the adiabatic part of the solution varies slowly and follows the change of the
nonadiabatic perturbation parameter, the nonadiabatic part appears almost
instantly, revealing a jumpwise transition between the dark and bright states.
This jump happens when the nonadiabatic perturbation parameter takes its
maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200
Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions
The temporal evolution of electromagnetically induced transparency (EIT) and
absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate
two-level atomic transition is studied for light intensities below saturation.
Analytical expression for the transient absorption spectra are given for simple
model systems and a model for the calculation of the time dependent response of
realistic atomic transitions, where the Zeeman degeneracy is fully accounted
for, is presented. EIT and EIA resonances have a similar (opposite sign) time
dependent lineshape, however, the EIA evolution is slower and thus narrower
lines are observed for long interaction time. Qualitative agreement with the
theoretical predictions is obtained for the transient probe absorption on the
line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.
Universal Critical Behavior of Aperiodic Ferromagnetic Models
We investigate the effects of geometric fluctuations, associated with
aperiodic exchange interactions, on the critical behavior of -state
ferromagnetic Potts models on generalized diamond hierarchical lattices. For
layered exchange interactions according to some two-letter substitutional
sequences, and irrelevant geometric fluctuations, the exact recursion relations
in parameter space display a non-trivial diagonal fixed point that governs the
universal critical behavior. For relevant fluctuations, this fixed point
becomes fully unstable, and we show the apperance of a two-cycle which is
associated with a novel critical behavior. We use scaling arguments to
calculate the critical exponent of the specific heat, which turns out
to be different from the value for the uniform case. We check the scaling
predictions by a direct numerical analysis of the singularity of the
thermodynamic free-energy. The agreement between scaling and direct
calculations is excellent for stronger singularities (large values of ). The
critical exponents do not depend on the strengths of the exchange interactions.Comment: 4 pages, 1 figure (included), RevTeX, submitted to Phys. Rev. E as a
Rapid Communicatio
- …
