We investigate the effects of geometric fluctuations, associated with
aperiodic exchange interactions, on the critical behavior of q-state
ferromagnetic Potts models on generalized diamond hierarchical lattices. For
layered exchange interactions according to some two-letter substitutional
sequences, and irrelevant geometric fluctuations, the exact recursion relations
in parameter space display a non-trivial diagonal fixed point that governs the
universal critical behavior. For relevant fluctuations, this fixed point
becomes fully unstable, and we show the apperance of a two-cycle which is
associated with a novel critical behavior. We use scaling arguments to
calculate the critical exponent α of the specific heat, which turns out
to be different from the value for the uniform case. We check the scaling
predictions by a direct numerical analysis of the singularity of the
thermodynamic free-energy. The agreement between scaling and direct
calculations is excellent for stronger singularities (large values of q). The
critical exponents do not depend on the strengths of the exchange interactions.Comment: 4 pages, 1 figure (included), RevTeX, submitted to Phys. Rev. E as a
Rapid Communicatio