1,113 research outputs found

    Finite-size scaling study of the d=4 site-diluted Ising

    Get PDF
    We study the four dimensional site-diluted Ising model using finite-size scaling techniques. We explore the whole parameter space (density-coupling) in order to determine the Universality Class of the transition line. Our data are compatible with Mean Field behavior plus logarithmic corrections.Comment: Contribution to LATTICE 9

    Universality Class of Thermally Diluted Ising Systems at Criticality

    Full text link
    The universality class of thermally diluted Ising systems, in which the realization of the disposition of magnetic atoms and vacancies is taken from the local distribution of spins in the pure original Ising model at criticality, is investigated by finite size scaling techniques using the Monte Carlo method. We find that the critical temperature, the critical exponents and therefore the universality class of these thermally diluted Ising systems depart markedly from the ones of short range correlated disordered systems. Our results agree fairly well with theoretical predictions previously made by Weinrib and Halperin for systems with long range correlated disorder.Comment: 7 pages, 6 figures, RevTe

    The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5

    Get PDF
    Maximin H5 is an anionic antimicrobial peptide from amphibians, which carries a C-terminal amide moiety, and was found to be moderately haemolytic (20%). The α-helicity of the peptide was 42% in the presence of lipid mimics of erythrocyte membranes and was found able to penetrate (10.8mNm(-1)) and lyse these model membranes (64 %). In contrast, the deaminated peptide exhibited lower levels of haemolysis (12%) and α-helicity (16%) along with a reduced ability to penetrate (7.8mNm(-1)) and lyse (55%) lipid mimics of erythrocyte membranes. Taken with molecular dynamic simulations and theoretical analysis, these data suggest that native maximin H5 primarily exerts its haemolytic action via the formation of an oblique orientated α-helical structure and tilted membrane insertion. However, the C-terminal deamination of maximin H5 induces a loss of tilted α-helical structure, which abolishes the ability of the peptide's N-terminal and C-terminal regions to H-bond and leads to a loss in haemolytic ability. Taken in combination, these observations strongly suggest that the C-terminal amide moiety carried by maximin H5 is required to stabilise the adoption of membrane interactive tilted structure by the peptide. Consistent with previous reports, these data show that the efficacy of interaction and specificity of maximin H5 for membranes can be attenuated by sequence modification and may assist in the development of variants of the peptide with the potential to serve as anti-infective

    Star-graph expansions for bond-diluted Potts models

    Full text link
    We derive high-temperature series expansions for the free energy and the susceptibility of random-bond qq-state Potts models on hypercubic lattices using a star-graph expansion technique. This method enables the exact calculation of quenched disorder averages for arbitrary uncorrelated coupling distributions. Moreover, we can keep the disorder strength pp as well as the dimension dd as symbolic parameters. By applying several series analysis techniques to the new series expansions, one can scan large regions of the (p,d)(p,d) parameter space for any value of qq. For the bond-diluted 4-state Potts model in three dimensions, which exhibits a rather strong first-order phase transition in the undiluted case, we present results for the transition temperature and the effective critical exponent γ\gamma as a function of pp as obtained from the analysis of susceptibility series up to order 18. A comparison with recent Monte Carlo data (Chatelain {\em et al.}, Phys. Rev. E64, 036120(2001)) shows signals for the softening to a second-order transition at finite disorder strength.Comment: 8 pages, 6 figure

    Generalized Statistics and High Tc Superconductivity

    Full text link
    Introducing the generalized, non-extensive statistics proposed by Tsallis[1988], into the standard s-wave pairing BCS theory of superconductivity in 2D yields a reasonable description of many of the main properties of high temperature superconductors, provided some allowance is made for non-phonon mediated interactions.Comment: 14 pages, 5 figure

    The four dimensional site-diluted Ising model: a finite-size scaling study

    Get PDF
    Using finite-size scaling techniques, we study the critical properties of the site-diluted Ising model in four dimensions. We carry out a high statistics Monte Carlo simulation for several values of the dilution. The results support the perturbative scenario: there is only the Ising fixed point with large logarithmic scaling corrections. We obtain, using the Perturbative Renormalization Group, functional forms for the scaling of several observables that are in agreement with the numerical data.Comment: 30 pages, 8 postscript figure

    Evidence for softening of first-order transition in 3D by quenched disorder

    Full text link
    We study by extensive Monte Carlo simulations the effect of random bond dilution on the phase transition of the three-dimensional 4-state Potts model which is known to exhibit a strong first-order transition in the pure case. The phase diagram in the dilution-temperature plane is determined from the peaks of the susceptibility for sufficiently large system sizes. In the strongly disordered regime, numerical evidence for softening to a second-order transition induced by randomness is given. Here a large-scale finite-size scaling analysis, made difficult due to strong crossover effects presumably caused by the percolation fixed point, is performed.Comment: LaTeX file with Revtex, 4 pages, 4 eps figure

    Crossover and self-averaging in the two-dimensional site-diluted Ising model

    Full text link
    Using the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since we can tune the critical point of each random sample automatically with the PCC algorithm, we succeed in studying the sample-dependent Tc(L)T_c(L) and the sample average of physical quantities at each Tc(L)T_c(L) systematically. Using the finite-size scaling (FSS) analysis for Tc(L)T_c(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions. The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point. The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature Tc(L)T_c(L). Its variance shows the power-law LL dependence, LnL^{-n}, and the estimate of the exponent nn is consistent with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700 (1996)]. Calculating the relative variance of critical magnetization at the sample-dependent Tc(L)T_c(L), we show that the 2D site-diluted Ising model exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.

    Randomly dilute Ising model: A nonperturbative approach

    Full text link
    The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics between two and four dimensions. We give the critical exponents for the three-dimensional randomly dilute Ising model which are in good agreement with experimental and numerical data. The relevance of the cubic anisotropy in the O(N) model is also treated.Comment: 4 pages, published versio

    Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations

    Get PDF
    We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe
    corecore