1,475 research outputs found

    Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects

    Get PDF
    AbstractOur recent study [O'Carroll et al. (1996). Nature 382, 63–66) described a correlation between the spatio-temporal properties of motion detecting neurons in the optic lobes of flying insects and behaviour. We consider here theoretical properties of insect motion detectors at very low image velocities and measure spatial and temporal sensitivity of neurons in the lobula complex of two specialised hovering insects, the bee-fly Bombylius and the hummingbird hawkmoth, Macroglossum. The spatio-temporal optima of direction-selective neurons in these insects lie at lower velocities than those of other insects which we have studied, including large syrphid flies, which are also excellent hoverers. We argue that spatio-temporal optima reflect a compromise between the demands of diverse behaviour, which can involve prolonged periods of stationary, hovering flight followed by spectacular high speed pursuits of conspecifics. Males of the syrphid Eristalis which engage in such behaviour, have higher temporal frequency optima than females. High contrast sensitivity in these flies nevertheless results in reliable responses at very low image velocities. Neurons of Bombylius have two distinct velocity optima, suggesting that they sum inputs from two classes of motion correlator with different time constants. This also provides sensitivity to a large range of velocities

    Changes in Congressional Oversight

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68007/2/10.1177_000276427902200504.pd

    Suboptimal blood pressure control in chronic kidney disease stage 3: baseline data from a cohort study in primary care

    Get PDF
    Background: poorly controlled hypertension is independently associated with mortality, cardiovascular risk and disease progression in chronic kidney disease (CKD). In the UK, CKD stage 3 is principally managed in primary care, including blood pressure (BP) management. Controlling BP is key to improving outcomes in CKD. This study aimed to investigate associations of BP control in people with CKD stage 3.Methods: 1,741 patients with CKD 3 recruited from 32 general practices for the Renal Risk in Derby Study underwent medical history, clinical assessment and biochemistry testing. BP control was assessed by three standards: National Institute for Health and Clinical Excellence (NICE), National Kidney Foundation Kidney Disease Outcome Quality Initiative (KDOQI) and Kidney Disease: Improving Global Outcomes (KDIGO) guidelines. Descriptive statistics were used to compare characteristics of people achieving and not achieving BP control. Univariate and multivariate logistic regression was used to identify factors associated with BP control.Results: the prevalence of hypertension was 88%. Among people with hypertension, 829/1426 (58.1%) achieved NICE BP targets, 512/1426 (35.9%) KDOQI targets and 859/1426 (60.2%) KDIGO targets. Smaller proportions of people with diabetes and/or albuminuria achieved hypertension targets. 615/1426 (43.1%) were only taking one antihypertensive agent. On multivariable analysis, BP control (NICE and KDIGO) was negatively associated with age (NICE odds ratio (OR) 0.27; 95% confidence interval (95% CI) 0.17-0.43) 70–79 compared to &lt;60), diabetes (OR 0.32; 95% CI 0.25-0.43)), and albuminuria (OR 0.56; 95% CI 0.42-0.74)). For the KDOQI target, there was also association with males (OR 0.76; 95% CI 0.60-0.96)) but not diabetes (target not diabetes specific). Older people were less likely to achieve systolic targets (NICE target OR 0.17 (95% CI 0.09,0.32) p?&lt;?0.001) and more likely to achieve diastolic targets (OR 2.35 (95% CI 1.11,4.96) p?&lt;?0.001) for people &gt;80 compared to?&lt;?60).Conclusions: suboptimal BP control was common in CKD patients with hypertension in this study, particularly those at highest risk of adverse outcomes due to diabetes and or albuminuria. This study suggests there is scope for improving BP control in people with CKD by using more antihypertensive agents in combination while considering issues of adherence and potential side effects.<br/

    Temperature Variation of Ultra Slow Light in a Cold Gas

    Get PDF
    A model is developed to explain the temperature dependence of the group velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594 (1999)). The group velocity is quite sensitive to the change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily responsible for the observed behavior.Comment: 12 pages, 4 figure

    Decay of the metastable phase in d=1 and d=2 Ising models

    Full text link
    We calculate perturbatively the tunneling decay rate Γ\Gamma of the metastable phase in the quantum d=1 Ising model in a skew magnetic field near the coexistence line 0<hx<1,hz00<h_{x}<1, h_{z}\to -0 at T=0. It is shown that Γ\Gamma oscillates in the magnetic field hzh_{z} due to discreteness of the excitation energy spectrum. After mapping of the obtained results onto the extreme anisotropic d=2 Ising model at T<TcT<T_c, we verify in the latter model the droplet theory predictions for the free energy analytically continued to the metastable phase. We find also evidence for the discrete-lattice corrections in this metastable phase free energy.Comment: 4 pages, REVTe

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    Cell specific microvesicles vary with season and disease predisposition in healthy and previously laminitic ponies

    Get PDF
    Microvesicles are small (up to 1 μm) vesicles found in plasma and other bodily fluids. They are recognised as part of the normal system of inter-cellular communication but altered numbers are also used as biomarkers of disease. Microvesicles have not been studied in detail in the horse but may be relevant to diseases such as laminitis. Identification of equine cell specific microvesicles was performed by developing a panel of cross reactive antibodies to use in flow cytometry to detect microvesicles of platelet, leucocyte and endothelial origin in plasma from healthy ponies and those predisposed to laminitis. The total number and proportion of microvesicles from the different cell types varied with season and there were more annexin V positive endothelial MV in non laminitic ponies compared to previously laminitic ponies. Development of this antibody panel and the technique for measuring microvesicles in the horse opens a new field for further investigation of these important structures in equine health and disease
    corecore