3,326 research outputs found

    Molecules in the mirror: how SERS backgrounds arise from the quantum method of images

    Get PDF
    The Raman coupling of light to molecular vibrations is strongly modified when they are placed near a plasmonic metal surface, with the appearance of a strong broad continuum background in addition to the normal surface-enhanced Raman scattering (SERS) peaks. Using a quantum method of images approach, we produce a simple but quantitative explanation of the inevitable presence of the background, due to the resistive damping of the image molecule. This model thus suggests new strategies for enhancing the SERS peak to background ratio

    Inclination-Independent Galaxy Classification

    Full text link
    We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger'' scenario).Comment: Accepted for publication in ApJ. 7 pages in emulateap

    Molecules in the mirror: how SERS backgrounds arise from the quantum method of images.

    Get PDF
    The Raman coupling of light to molecular vibrations is strongly modified when they are placed near a plasmonic metal surface, with the appearance of a strong broad continuum background in addition to the normal surface-enhanced Raman scattering (SERS) peaks. Using a quantum method of images approach, we produce a simple but quantitative explanation of the inevitable presence of the background, due to the resistive damping of the image molecule. This model thus suggests new strategies for enhancing the SERS peak to background ratio.This work was supported by UK EPSRC EP/C511786/1, EP/F011393, ERC 320503 LINASS, EU CUBIHOLES, 3M, the Royal Society and the Wolfson Foundation

    A Spatiotemporal Synthesis of High-Resolution Salinity Data with Aquaculture Applications

    Get PDF
    Technological advancement and the desire to better monitor shallow habitats in the Chesapeake Bay, Maryland, United States led to the initiation of several high-resolution monitoring programs such as ConMon (short for “Continuous Monitoring”) measuring oxygen, salinity, and chlorophyll-a at a 15-minute frequency. These monitoring efforts have yielded an enormous volume of data and insight into the condition of the tidal water of the Bay. But this information is underutilized in documenting the fine-scale variability of water quality, which is critical in identifying the link between water quality and ecological responses, partly due to the challenges in integrating monitoring data collected at different frequencies and locations. In a project to understand the environmental suitability of aquaculture sites and the future potential overlap between aquaculture and submerged aquatic vegetation, we developed a spatiotemporal synthesis of ConMon data with data from long-term, fixed-station seasonal monitoring. Here, we present our generalized additive model-based approach to predict salinity at high frequency (15 minutes) and fine spatial resolution (~100 meters) in the Maryland portion of the Bay, its major tributaries, and the shallow tidal creeks that exchange with the tributaries. Predictive performance was validated to be 1 PSU (practical salinity unit) in root mean square error using de novo monitoring. The resulting data provide insights into the environmental suitability of aquaculture, specifically the sensitivity of the Easter oyster (Crassostrea virginica) to low salinity stress. The spatiotemporal synthesis approach has potential applications for integrated monitoring and potential linkage with high-resolution water quality models for shallow habitats

    Self-Help: Extrajudicial Rights, Privileges and Remedies in Contemporary American Society

    Get PDF
    This Special Project examines the myriad forms of self-help currently available to persons in American society. It groups and discusses notable self-help rights, privileges, and remedies under topical classifications that parallel traditional jurisprudential categories. Parts H through VI of the Special Project sketch the legally fashioned contours and explore the legal, social, and political consequences of self-help methods in tort law, criminal law and law enforcement, commercial transactions, landlord-tenant relations,and family law matters. Part VII explores the attorney\u27s role in the development and implementation of curative self-help procedures such as mediation. Special Project concludes by examining the function, mechanisms, and merits of two increasingly popular alternative dispute resolution processes--rent-a-judge programs and the ombudsman--that offer hope for continued peaceable dispute resolution

    A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies

    Get PDF
    Determining the structure of macromolecular samples is vital for understanding and adapting their function. Transmission electron microscopy (TEM) is widely used to achieve this, but, owing to the weak electron scattering cross-section of carbon, TEM images of macromolecular samples are generally low contrast and low resolution. Here we implement a fast and practically simple routine to achieve high-contrast imaging of macromolecular samples using exit wave reconstruction (EWR), revealing a new level of structural detail. This is only possible using ultra-low contrast supports such as the graphene oxide (GO) used here and as such represents a novel application of these substrates. We apply EWR on GO membranes to study self-assembled block copolymer structures, distinguishing not only the general morphology or nanostructure, but also evidence for the substructure (i.e. the polymer chains) which gives insight into their formation mechanisms and functional properties

    Physiological Profile of Male Competitive and Recreational Surfers

    Get PDF
    Surfing consists of both high- and low-intensity paddling of varying durations, using both the aerobic and anaerobic systems. Surf-specific physiological studies lack adequate group sample sizes, and V[Combining Dot Above]O2peak values are yet to determine the differences between competitive and recreational surfers. The purpose of this study was therefore to provide a comprehensive physiological profile of both recreational and competitive surfers. This multisite study involved 62 male surfers, recreational (n = 47) and competitive (n = 15). Anthropometric measurements were conducted followed by dual-energy x-ray absorptiometry, anaerobic testing and finally aerobic testing. V[Combining Dot Above]O2peak was significantly greater in competitive surfers than in recreational surfers (M = 40.71 ± 3.28 vs. 31.25 ± 6.31 ml·kg·min, p \u3c 0.001). This was also paralleled for anaerobic power (M = 303.93 vs. 264.58 W) for competitive surfers. Arm span and lean total muscle mass was significantly (p ≤ 0.01) correlated with key performance variables (V[Combining Dot Above]O2peak and anaerobic power). No significant (p ≥ 0.05) correlations were revealed between season rank and each of the variables of interest (V[Combining Dot Above]O2peak and anaerobic power). Key performance variables (V[Combining Dot Above]O2peak and anaerobic power) are significantly higher in competitive surfers, indicating that this is both an adaptation and requirement in this cohort. This battery of physiological tests could be used as a screening tool to identify an athlete\u27s weaknesses or strengths. Coaches and clinicians could then select appropriate training regimes to address weaknesses
    • …
    corecore