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Abstract— Technological advancement and the desire to better 
monitor shallow habitats in the Chesapeake Bay, Maryland, 
United States led to the initiation of several high-resolution 
monitoring programs such as ConMon (short for “Continuous 
Monitoring”) measuring oxygen, salinity, and chlorophyll-a at a 
15-minute frequency. These monitoring efforts have yielded an 
enormous volume of data and insight into the condition of the tidal 
water of the Bay. But this information is underutilized in 
documenting the fine-scale variability of water quality, which is 
critical in identifying the link between water quality and ecological 
responses, partly due to the challenges in integrating monitoring 
data collected at different frequencies and locations. In a project 
to understand the environmental suitability of aquaculture sites 
and the future potential overlap between aquaculture and 
submerged aquatic vegetation, we developed a spatiotemporal 
synthesis of ConMon data with data from long-term, fixed-station 
seasonal monitoring. Here, we present our generalized additive 
model-based approach to predict salinity at high frequency (15 
minutes) and fine spatial resolution (~100 meters) in the Maryland 
portion of the Bay, its major tributaries, and the shallow tidal 
creeks that exchange with the tributaries. Predictive performance 
was validated to be 1 PSU (practical salinity unit) in root mean 
square error using de novo monitoring. The resulting data provide 
insights into the environmental suitability of aquaculture, 
specifically the sensitivity of the Easter oyster (Crassostrea 
virginica) to low salinity stress. The spatiotemporal synthesis 
approach has potential applications for integrated monitoring and 
potential linkage with high-resolution water quality models for 
shallow habitats. 

Keywords— big data, data fusion, hydroinformatics, salinity 
estimates. 

I. INTRODUCTION 

The convergence of data science, computing (e.g. parallel 
computing and distributed storage systems) and hydrology [1] 
have enabled analyses using big data in hydroinformatics. The 
combination of open data policies and cloud computing now 
allows for the merging of high-quality data from agencies with 
advanced cyberinfrastructure and technical capacity for data 
management and analysis [2]. While the open-data trend enables 
data sharing and analysis, other issues such as data format, data 
resolution, and metadata development require collaboration and 
innovative solutions[3]. 

Synthesis of location-specific environmental data with 
differing temporal and spatial resolution has been a problem in 
multiple domains: remote sensing [4], atmospheric science [5], 
and hydroinformatics[6]. Common approaches include 
geostatistical approaches such as Kriging with external drift and 
co-Kriging [7,8]. These approaches estimate the correlation 
between different models of data, and spatial cross-covariance 
of measured quality to enhance prediction. But kriging tends to 
be limited by sparse data. A different approach builds flexible 
predictive models for higher-quality sparse data with lower-
quality complete data such as geographically weighted 
regression (GWR) or artificial neural networks [9]. This 
approach can easily incorporate ancillary data and the time 
domain to address the sparse data issues. But model fitting and 
optimization can be time-consuming. Furthermore, all of these 
approaches can be computationally challenging for big data. 

This case study unites disparate high spatial-resolution and 
high temporal-resolution salinity datasets from the Chesapeake 
Bay. Continuous Monitoring (ConMon) is a spatially sparse, but 
high temporal resolution monitoring program for shallow 
habitats in the Chesapeake Bay. Such data is valuable to 
document the fine-scale variability of water quality at specific 
locations and understand the environmental suitability of 
aquaculture sites and future potential overlap between 
aquaculture and submerged aquatic vegetation [10]. We 
developed a statistical framework to fuse the ConMon station 
records with complementary data sources to build a salinity 
record with high spatial resolution and high temporal frequency. 
These salinity records are useful to understand the vulnerability 
of locations to low-salinity conditions, which impact the site 
suitability for growing oysters. 

II. MATERIALS AND METHODS 

A. Study Area 
The Chesapeake Bay system (denoted Bay hereafter) is a 

large estuary located on the Mid-Atlantic coast of the USA. The 
Bay is shallow and connected with over 60 tributaries, with a 
mean freshwater discharge of 2219 m3s-1 , and a freshwater fill 
time of about one year. The ratio of drainage basin area to 
estuarine surface area for the entire Bay is 14:1, which indicates 
the potential for large terrestrial influence. Freshwater inputs to 
the Bay are a primary driver of many key physical and biological 
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processes, including vertical stratification in the summer [11], 
summer hypoxia [12], and strong gradients in salinity [13]. 

B. Data 
The long-term Chesapeake Bay monitoring program is a 

comprehensive water quality and habitat monitoring program. 
The program collects data at 133 stations in the Bay; bimonthly 
in warmer months (May through September) and monthly 
throughout the year, with vertical profiles collected at 1-meter 

Figure  1 Calvert Creek and Harris Creek sampling stations  and 
duration in Maryland, United States. Calvert Creek sampling 
follows fortnightly  design while Harris Creek sampling utilized  
the continuous monitoring schemes.  

resolution. The program has assessed water quality since 1984 
by measuring nutrients and habitat conditions such as salinity, 
dissolved oxygen, and water clarity. The shallow water 
monitoring program deploys continuous 
monitoring (ConMon) at over 80 locations 
in the Bay, some of which are maintained 
as sentinel locations and others that are 
rotated between locations every 3 years. 
Widely available multi-sensor probes (YSI, 
Xylem) are deployed to collect data 
continuously every 15 minutes for habitat 
conditions such as surface salinity, surface 
temperature, and dissolved oxygen (Fig. 1). 

C. Data Processing 
To prepare the data for processing, 

long-term stations were divided into 48 
Bay segments, and grouped these into 13 
batches. Each batch consists of seven years 
when contemporary aquaculture data are 
available. We then linked surface grab 
samples from long-term stations to the 
nearest ConMon station and matched observations within 1 hour 

of the grab sonde reading. Average hourly sonde measurements 
were computed for each Julian day for each ConMon station. 
The matched ConMon data represented the expected high-
frequency seasonal variation of salinity for each long-term 
station. The matching process was conducted separately for each 
segment in the Maryland portion of the Bay, using separate 
polygons to delineate the search areas and to implement 
neighbor searches using water distance instead of geographic 
distance. Each batch was processed in parallel using separate 
CPUs. 

D. Statistical Framework 
Within each segment and year, we formulate several 
Geographically Weighted Regressions (GWR) to predict 
salinity, with the following formulation. 
𝑧𝑧𝑖𝑖 ~𝛽𝛽0 + te(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ) + s(𝑗𝑗𝑖𝑖 , 𝑏𝑏𝑏𝑏 = cc) + te(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ,by = 𝑢𝑢𝑖𝑖) + 𝜖𝜖𝑖𝑖 

where z is measured salinity at a long-term station, x, and y 
are the longitude and latitude of the measurement, j is the 
Julian day (i.e. day of year), and u is the average hourly salinity 
from the nearest ConMon station on the same Julian day. 
Parameters include β0 the intercept, s denotes a cubic 
regression spline, bs=cc denotes cyclic cubic regression spline, 
te denotes the bivariate thin-plate spline built through tensor 
products for the slopes in average salinity defined via “by=u”, 
and ϵ denotes the residuals following a normal distribution. 
The model was implemented in the mgcv package in R [14], 
and run on a Beowulf cluster with 96 cores and 256 Gb RAM, 
and 1 Tb storage. Hourly prediction generated intermediate 
files approaching 10 Gb for big segments. For these segments, 
the predictive analysis took around 55.6 hours. 

III. RESULTS 

Three GWR models were evaluated using ten-fold cross-
validation. The long-term monitoring data were divided 
randomly into 10 batches. The models were trained with 9 
batches and tested on the remaining batch iteratively (Fig. 2). 
All long-term data were used in the cross-validation 
(n=1,055,385). We tested a GWR model with spatially varying 
coefficients, and two dynamic GWR models with daily, or 
hourly-specific varying coefficients. Model skill was visualized 
using smoothed scatter plots. Cross-validation suggests a 

Figure 2:  Ten-fold cross validation results based on long term monitoring data (n=  
1,055,385) for three Geographically Weighted Regression predictions for salinity. Left:  
spatially varying coefficients, Middle: spatially  and daily (Julian)  varying coefficients.   
Right: spatially and  hourly varying coefficients.  
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balance between model complexity and predictive performance. 
The spatial-only GWR model predicted less well, while the 
hourly GWR was over-parameterized and generated spurious 
results. The dynamic GWR with medium complexity generated 
the best overall predictive performance and was therefore 
selected for further evaluation. 

Figure  3: Evaluation of model prediction based on theTop: 
Calvert Creek Monitoring study,  Bottom: High frequency time 
series of sampled  and fused salinity from Harris Creek  
between 2013-2019 via Taylor diagrams for hourly salinity  
prediction.   

The predictive performance of the proposed models was 
evaluated with a portion of monitoring data collected as part of 
a county-supported monitoring program in the tidal tributaries 
of the Patuxent River estuary (itself a tributary of Chesapeake 
Bay). These data, which were collected as part of a program 
called “Calvert Creeks”, were not used in training the GWR. 
The sampling design of Calvert Creek monitoring is similar to 
long-term monitoring, except that data are only collected during 
the warm season (May to September) and only surface and 
bottom measurements are made. The hourly GWR prediction 
was aligned with the nearest monitoring data over time and 
space (Fig. 3).  Predictive performance was validated to be 1 
PSU (practical salinity unit) in root mean square error using 
Calvert Creek monitoring. The prediction was slightly less 
accurate in July than in June and August. An alternative 
ConMon dataset collected in Harris Creek (Fig. 1) was also 
used to validate the models. Predictive performance was 

Figure 4: Average of seven monthly proportions (April 
through October) of hours with predicted low salinity 
(<5) at 100m resolution. Salinity was predicted using a 
geographically weighted regression of long term 
monitoring data and continuously monitoring data. 
Each monthly proportion is a cell and month specific 
proportion of hours between 2012-2019 with low 
salinity. 

approximately 1 PSU in root mean square error (RMSE) using 
high-frequency time series of the monitoring. 

A monthly median of hourly salinity, as well as extremes 
(lower and upper 5 percentiles), were predicted using the best-
performing model (Fig. 4). The hourly salinity was predicted at 
the centroid of each raster cell for each year between 2012 and 
2019. The hourly predictions from each period were temporally 
aggregated over years into long-term summaries. Missing values 
due to insufficient nearest ConMon data were interpolated using 
inverse distance weighting. 

IV. DISCUSSION AND CONCLUSION 

Shallow habitats exhibit fine-scale variability of water 
quality, which is a challenge for agencies interested in 
monitoring water quality criteria and for aquaculturists 
interested in choosing optimal locations for their farms. To 
understand the environmental suitability of aquaculture sites and 
the future potential overlap between aquaculture and submerged 
aquatic vegetation, a Geographically Weighted Regression was 
used to develop a high-spatial resolution salinity dataset by 
combining ConMon and standard monitoring data. This 
statistical method generates hourly predictions of salinity within 
~100 m grid cells. Validation studies suggest reasonable 
accuracy of the predictions in terms of RMSE in regions of de 
novo sampling. Data fusion, as demonstrated in this study, can 
significantly enhance our ability to characterize the 
spatiotemporal variation of shallow habitats, which is critical in 
identifying the link between water quality and ecological 
response. 



    
  

  
     

      
 

    
      

 

     
  

    
  

   
  
   

  
  

    
  

  
    

    
 

 
       

   
   

  
   

   
 

 
 

      
   

     
 

  
  

          
 

   
   

        
   

        
   

  
  

     
   

   
   

     
   

    
    

     
  

     

   
 

        
    

   
   

         
 

    
  

  
    

 
     

    
   

  
     

      
  

  
   

     
          

      
  

   

 

Our analyses can be improved in the following aspects. First 
data fusion is challenging in sparsely sampled regions. The 
performance of other methods (e.g. Geostatistical fusion) 
remains to be evaluated. In particular, Bayesian principles can 
be applied to build prior from low-quality complete data and 
correct it with higher-quality sparse observations [15,16]. 
Multivariate approaches such as principle component analysis, 
and wavelet analyses, may also be applied to this problem [17]. 

Water quality modeling can benefit from cyber-
infrastructure development to enable a scalable and reproducible 
workflow [18]. In this data synthesis effort, gigabytes of time 
series data were manually processed and integrated. The 
synthesis process could be automated to make datasets for 
similar shallow habitat parameters, such as oxygen and 
chlorophyll-a, available in high resolution to the broader 
research community. Analysis conducted at high resolution (e.g. 
100-m resolution over 15-minute frequency for Chesapeake Bay 
between 2013-2019) led to a computing bottleneck during the 
predictive modeling and optimization stage. The current 
workflow took more than 24 hours, which may not be ideal for 
some use cases that require a faster turn-around [2]. High-
performance computing platforms can be utilized to potentially 
alleviate the computing bottleneck and produce similar results 
but within a more reasonable turnaround time. Figures and 
Tables 
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