10,476 research outputs found
Active and passive microwave measurements in Hurricane Allen
The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods
Study of a small solar probe /sunblazer/. part ii- spacecraft and payload design progress report, jul. 1, 1964 - jun. 30, 1965
Design considerations for Sunblazer solar probe and payloa
High-entropy high-hardness metal carbides discovered by entropy descriptors
High-entropy materials have attracted considerable interest due to the
combination of useful properties and promising applications. Predicting their
formation remains the major hindrance to the discovery of new systems. Here we
propose a descriptor - entropy forming ability - for addressing
synthesizability from first principles. The formalism, based on the energy
distribution spectrum of randomized calculations, captures the accessibility of
equally-sampled states near the ground state and quantifies configurational
disorder capable of stabilizing high-entropy homogeneous phases. The
methodology is applied to disordered refractory 5-metal carbides - promising
candidates for high-hardness applications. The descriptor correctly predicts
the ease with which compositions can be experimentally synthesized as rock-salt
high-entropy homogeneous phases, validating the ansatz, and in some cases,
going beyond intuition. Several of these materials exhibit hardness up to 50%
higher than rule of mixtures estimations. The entropy descriptor method has the
potential to accelerate the search for high-entropy systems by rationally
combining first principles with experimental synthesis and characterization.Comment: 12 pages, 2 figure
Asymptotic Freedom for Non-Relativistic Confinement
Some aspects of asymptotic freedom are discussed in the context of a simple
two-particle non-relativisitic confining potential model. In this model
asymptotic freedom follows from the similarity of the free-particle and bound
state radial wave functions at small distances and for the same angular
momentum and the same large energy. This similarity, which can be understood
using simple quantum mechanical arguments, can be used to show that the exact
response function approaches that obtained when final state interactions are
ignored. A method of calculating corrections to this limit is given and
explicit examples are given for the case of the harmonic oscillator.Comment: 16 pages, 5 figures, RevTex
Permanent Draft Genome sequence for Frankia sp. strain CcI49, a Nitrogen-Fixing Bacterium Isolated from Casuarina cunninghamiana that Infects Elaeagnaceae
Frankia sp. strain CcI49 was isolated from Casuarina cunninghamiana nodules. However the strain was unable to re-infect Casuarina, but was able to infect other actinorhizal plants including Elaeagnaceae. Here, we report the 9.8-Mbp draft genome sequence of Frankia sp. strain CcI49 with a G+C content of 70.5 % and 7,441 candidate protein-encoding genes. Analysis of the genome revealed the presence of a bph operon involved in the degradation of biphenyls and polychlorinated biphenyls
Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?
The existence of resonant enhanced transmission and collimation of light
waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et
al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820
(2002)] leads to the basic question: Can a light be enhanced and simultaneously
localized in space and time by a subwavelength slit? To address this question,
the spatial distribution of the energy flux of an ultrashort (femtosecond)
wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by
using the conventional approach based on the Neerhoff and Mur solution of
Maxwell's equations. The results show that a light can be enhanced by orders of
magnitude and simultaneously localized in the near-field diffraction zone at
the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure
- …