90 research outputs found

    Lammin (EH) laaviosuo - Suomi ja siellä tehtävän tutkmustyön esittely

    Get PDF

    Greenhouse gas dynamics in degraded and restored tropical peatlands

    Get PDF
    Agricultural and other land uses on ombrotrophic lowland tropical peat swamps typically lead to reduced vegetation biomass and water table drawdown. We review what is known about greenhouse gas (GHG) dynamics in natural and degraded tropical peat systems in south-east Asia, and on this basis consider what can be expected in terms of GHG dynamics under restored conditions. Only limited in situ data are available on the effects of restoration and the consequences for peat carbon (C) dynamics. Hydrological restoration seeks to bring the water table closer to the peat surface and thus re-create near-natural water table conditions, in order to reduce wildfire risk and associated fire impacts on the peat C store, as well as to reduce aerobic peat decomposition rates. However, zero emissions are unlikely to be achieved due to the notable potential for carbon dioxide (CO2) production from anaerobic peat decomposition processes. Increased vegetation cover (ideally woody plants) resulting from restoration will increase shading and reduce peat surface temperatures, and this may in turn reduce aerobic decomposition rates. An increase in litter deposition rate will compensate for C losses by peat decomposition but also increase the supply of labile C, which may prime decomposition, especially in peat enriched with recalcitrant substrates. The response of tropical peatland GHG emissions to peatland restoration will also vary according to previous land use and land use intensity.Peer reviewe

    To treat or not to treat? The seedling performance of native tree species for reforestation on degraded tropical peatlands of SE Asia

    Get PDF
    Degraded tropical peatlands in Southeast Asia are a major challenge for reforestation. Often treeless, drained and several times burnt, these peatland areas are nutrient-poor hostile environments prone to droughts, heavy flooding and extreme diurnal temperature changes. In order to succeed in establishment of a viable tree stand, careful selection of species and management techniques is needed. In this study we investigated the suitability of five native tree species for reforestation of tropical peatlands with three site preparation treatments for potentially enhancing seedling success: weeding, mounding and fertilizing. The study area was a clear-cut, drained and repeatedly burnt former tropical peat swamp forest in Central Kalimantan, Indonesia. Seedlings were grown in a field nursery, planted in the field and their growth and survival were monitored regularly for 1.5 years. Seedling growth in response to environmental variables and treatments was studied by linear mixed models and seedling survival with Cox regression models. In most cases, weeding and fertilizing proved beneficial for the growth and survival of the seedlings, whereas mounding only had a minor impact on seedling performance. The seedlings of Shorea balangeran performed the best and can be recommended for reforestation of heavily degraded areas. Alstonia pneumatophora and Dacryodes rostrata performed relatively well depending on the treatments, whereas Dyera polyphylla had mixed results with problems in seedling production, and Campnosperma squamatum performed rather poorly. The effects of wildfires which engulfed the study area two years after planting were also monitored and are discussed.Peer reviewe

    Ecohydrological and vegetational changes in a restored bog and fen

    Get PDF
    The vegetation of two boreal mires drained for forestry was studied prior to and after restoration (removal of tree stand and filling in of ditches). The restoration induced a rapid rise in the water table level and caused relatively rapid changes in plant species composition and cover. On the minerotrophic fen site, the number of forest species declined and the cover of Eriophorum vaginatum increased five-fold, reaching over 50% cover in three years. On the ombrotrophic bog site, the terrestrial lichens disappeared, while the cover of Empetrum nigrum, Calluna vulgaris, E. vaginatum, and Sphagnum balticum increased. Changes in water table level and vegetation indicate a change towards a functional mire ecosystem

    Heterotrophic respiration in drained tropical peat is greatly affected by temperature-a passive ecosystem cooling experiment

    Get PDF
    Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. Peat temperature dynamics and heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes were monitored under four shading conditions, i.e. unshaded, 28%, 51% and 90% shading at experiment sites established on reclaimed fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Groundwater tables on the sites were at about 50 cm depth, the sites were maintained vegetation free and root ingrowth to gas flux monitoring locations was prevented. Half of the four shading areas received NPK-fertilization 50 kg ha−1 for each of N, P and K during the experiment and the other half was unfertilized. Increases in shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference in the topmost 50 cm peat profile was between the unshaded and 90% shaded surface, where the average temperatures at 5 cm depth differed up to 3.7 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilized plots and a 66% lower emission average on the fertilized plots. Correlation between peat temperature and CO2 flux suggested an approximately 8% (unfertilized) and 25% (fertilized) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO2 flux responses to the treatments remained low on degraded peatland. Fertilized conditions negatively correlated with N2O efflux with increases in temperature, suggesting a 12–36% lower efflux for each 1 °C increase in peat temperature (at 5 cm depth) at the sites. Despite the apparently similar landscapes of fallow agricultural land and degraded peatland sites, the differences in greenhouse gas dynamics are expected to be an outcome of the long-term management differences.Peer reviewe

    Carbon dioxide and methane fluxes from different surface types in a created urban wetland

    Get PDF
    Many wetlands have been drained due to urbanization, agriculture, forestry or other purposes, which has resulted in a loss of their ecosystem services. To protect receiving waters and to achieve services such as flood control and storm water quality mitigation, new wetlands are created in urbanized areas. However, our knowledge of greenhouse gas exchange in newly created wetlands in urban areas is currently limited. In this paper we present measurements carried out at a created urban wetland in Southern Finland in the boreal climate. We conducted measurements of ecosystem CO2 flux and CH4 flux (FCH4) at the created storm water wetland Gateway in Nummela, Vihti, Southern Finland, using the eddy covariance (EC) technique. The measurements were commenced the fourth year after construction and lasted for 1 full year and two subsequent growing seasons. Besides ecosystemscale fluxes measured by the EC tower, the diffusive CO2 and CH4 fluxes from the open-water areas (FwCO(2) and FwCH(4), respectively) were modelled based on measurements of CO2 and CH4 concentration in the water. Fluxes from the vegetated areas were estimated by applying a simple mixing model using the above-mentioned fluxes and the footprintweighted fractional area. The half-hourly footprint-weighted contribution of diffusive fluxes from open water ranged from 0% to 25.5% in 2013. The annual net ecosystem exchange (NEE) of the studied wetland was 8.0 g C-CO2 m(-2) yr(-1), with the 95% confidence interval between 18:9 and 34.9 g C-CO2 m(-2) yr(-1), and FCH4 was 3.9 g C-CH4 m(-2) yr(-1), with the 95% confidence interval between 3.75 and 4.07 g C-CH4 m(-2) yr(-1). The ecosystem sequestered CO2 during summer months (June-August), while the rest of the year it was a CO2 source. CH4 displayed strong seasonal dynamics, higher in summer and lower in winter, with a sporadic emission episode in the end of May 2013. Both CH4 and CO2 fluxes, especially those obtained from vegetated areas, exhibited strong diurnal cycles during summer with synchronized peaks around noon. The annual FwCO(2) was 297.5 g C-CO2 m(-2) yr(-1) and FwCH(4) was 1.73 g C-CH4 m(-2) yr(-1). The peak diffusive CH4 flux was 137.6 nmol C-CH4 m(-2) s(-1), which was synchronized with the FCH4. Overall, during the monitored time period, the established storm water wetland had a climate-warming effect with 0.263 kgCO(2)-eqm(-2) yr(-1) of which 89% was contributed by CH4. The radiative forcing of the open-water areas exceeded that of the vegetation areas (1.194 and 0.111 kgCO(2)-eqm(-2) yr(-1), respectively), which implies that, when considering solely the climate impact of a created wetland over a 100-year horizon, it would be more beneficial to design and establish wetlands with large patches of emergent vegetation and to limit the areas of open water to the minimum necessitated by other desired ecosystem services.Peer reviewe

    Mapping peat soil moisture under oil palm plantation and tropical forest in Sarawak

    Get PDF
    Water table conditions in drained peatlands affect peat decomposition, fluvial carbon and greenhouse gas emissions, and plant growth in oil palm plantations. This study illustrates the spatial heterogeneity of soil moisture profiles in cultivated tropical peat under oil palm plantation and uncultivated secondary forest, using maps. At a study plot under each land use the geographical coordinates of sampling points, tree locations and other features were recorded. Peat soil samples were taken at depths of 0–50 cm, 50–100 cm, 100–150 cm and 150–200 cm, and their moisture contents were determined. Overall, soil moisture content was higher in secondary forest than in oil palm plantation due to land management activities such as drainage and peat compaction in the latter. Significant differences were observed between the topsoil (0–50 cm) and deeper soil layers under both land uses. Soil moisture maps of the study plots interpolated using geographical information system (GIS) software were used to visualise the spatial distributions of moisture content in soil layers at different depths (0–50 cm, 50–100 cm, 100–150 cm, 150–200 cm). Moisture content in the 0–50 cm soil layer appeared to be inversely related to elevation, but the correlation was not statistically significant. On the other hand, there was a significant positive correlation between soil moisture content and the diameters of oil palm trunks. Palm trees with negative growth of trunk diameter were mostly located in subplots which were relatively dry and/or located near drains. The results of this study indicate that soil moisture mapping using GIS could be a useful tool in improving the management of peatland to promote oil palm growth.Peer reviewe

    The effects of peatland restoration on water-table depth, elemental concentrations, and vegetation: 10 years of changes. Restor. Ecol

    Get PDF
    Abstract We studied the effects of restoration on water-table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long-term rise of the water-table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long-term monitoring is needed to determine whether the goals of restoration will be met

    Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands

    Get PDF
    Arctic and subarctic ecosystems are changing rapidly in species composition and functioning as they warm twice as fast as the global average. It has been suggested that tree-less boreal landscapes may shift abruptly to tree-dominated states as climate warms. Yet, we insufficiently understand the conditions and mechanisms underlying tree establishment in the subarctic and arctic regions to anticipate how climate change may further affect ecosystem structure and functioning. We conducted a field experiment to assess the role of permafrost presence, micro-topography and shrub canopy on tree establishment in almost tree-less subarctic peatlands of northern Finland. We introduced seeds and seedlings of four tree-line species and monitored seedling survival and environmental conditions for six growing seasons. Our results show that once seedlings have emerged, the absence of permafrost can enhance early tree seedling survival, but shrub cover is the most important driver of subsequent tree seedling survival in subarctic peatlands. Tree seedling survival was twice as high under an intact shrub canopy than in open conditions after shrub canopy removal. Under unclipped control conditions, seedling survival was positively associated with dense shrub canopies for half of the tree species studied. These strong positive interactions between shrubs and trees may facilitate the transition from today's treeless subarctic landscapes towards tree-dominated states. Our results suggest that climate warming may accelerate this vegetation shift as permafrost is lost, and shrubs further expand across the subarctic.Peer reviewe
    • …
    corecore