8,468 research outputs found

    Impact of Simulated 1/f Noise for HI Intensity Mapping Experiments

    Full text link
    Cosmology has entered an era where the experimental limitations are not due to instrumental sensitivity but instead due to inherent systematic uncertainties in the instrumentation and data analysis methods. The field of HI intensity mapping (IM) is still maturing, however early attempts are already systematics limited. One such systematic limitation is 1/f noise, which largely originates within the instrumentation and manifests as multiplicative gain fluctuations. To date there has been little discussion about the possible impact of 1/f noise on upcoming single-dish HI IM experiments such as BINGO, FAST or SKA. Presented in this work are Monte-Carlo end-to-end simulations of a 30 day HI IM survey using the SKA-MID array covering a bandwidth of 950 and 1410 MHz. These simulations extend 1/f noise models to include not just temporal fluctuations but also correlated gain fluctuations across the receiver bandpass. The power spectral density of the spectral gain fluctuations are modelled as a power-law, and characterised by a parameter β\beta. It is found that the degree of 1/f noise frequency correlation will be critical to the success of HI IM experiments. Small values of β\beta (β\beta < 0.25) or high correlation is preferred as this is more easily removed using current component separation techniques. The spectral index of temporal fluctuations (α\alpha) is also found to have a large impact on signal-to-noise. Telescope slew speed has a smaller impact, and a scan speed of 1 deg s1^{-1} should be sufficient for a HI IM survey with the SKA.Comment: 22 pages, 15 figures, 2 table

    HI intensity mapping with FAST

    Full text link
    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 1919-beam L-band receivers (1.051.05--1.451.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,waw_{0},w_{a}) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000deg26000\,{\rm deg}^2. However, observing with larger frequency coverage at higher redshift (0.950.95--1.351.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ2~\sigma confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.Comment: 7 pages, 3 figures, submitted to "Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015" conference proceedin

    Epiglottis cross-sectional area and oropharyngeal airway length in male and female obstructive sleep apnea patients

    Get PDF
    INTRODUCTION: Obstructive sleep apnea (OSA) is a male-predominant condition, characterized by repeated upper-airway collapse with continued diaphragmatic efforts during sleep, and is accompanied by severe physiological consequences. Multiple morphological aspects, including epiglottis cross-sectional area (CSA) and oropharyngeal airway length (OPAL), can contribute to airway collapsibility in the condition. This study focused on the effects of OSA severity, sex, and race on OPA dimensions. MATERIALS AND METHODS: Two high-resolution T(1)-weighted image series were collected from 40 mild-to-severe OSA subjects (age 46.9±9 years, body mass index 30.4±5.4 kg/m(2), Apnea–Hypopnea Index score 32.8±22.5, 28 males) and 54 control subjects (47±9 years, 24.7±3.8 kg/m(2), 32 males) using a 3 T magnetic resonance-imaging scanner. Caucasian, Asian, African-American, and “other” subjects constituted the study pool. Both image series were realigned and averaged, and reoriented to a common space. CSA and OPAL were measured, normalized for subject height, and compared between sexes and disease-severity levels in OSA and control subjects. RESULTS: Significantly reduced epiglottis CSA appeared only in severe OSA vs controls (P=0.009). OPAL increased significantly with OSA severity vs controls (mild, P=0.027; moderate, P<0.001; severe, P<0.001). OSA males showed increased CSA and greater OPAL than OSA females, which may underlie the increased proportion of affected males with higher apnea–hypopnea index scores. However, no significant differences appeared between CSA and OPAL measures for male and female controls, suggesting that airway morphology may not be the sole contributor for airway collapse. No ethnic or racial differences appeared for CSA or OPAL measures. CONCLUSION: Sex-based reductions in epiglottis CSA and increased OPAL in OSA subjects may enhance airway-collapse vulnerability, more so with greater disease severity, and partially underlie male vs female susceptibility to the sleep disorder

    The challenges of extending climate risk insurance to fisheries

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordNatural Environment Research Council (NERC)Centre for Environment, Fisheries and Aquaculture Science (Cefas)Willis Research NetworkCommonwealth Marine Economies Programme, UK Foreign and Commonwealth Offic

    On faces of the Kunz cone and the numerical semigroups within them

    Full text link
    A numerical semigroup is a cofinite subset of the non-negative integers that is closed under addition and contains 0. Each numerical semigroup SS with fixed smallest positive element mm corresponds to an integer point in a rational polyhedral cone Cm\mathcal C_m, called the Kunz cone. Moreover, numerical semigroups corresponding to points in the same face FCmF \subseteq \mathcal C_m are known to share many properties, such as the number of minimal generators. In this work, we classify which faces of Cm\mathcal C_m contain points corresponding to numerical semigroups. Additionally, we obtain sharp bounds on the number of minimal generators of SS in terms of the dimension of the face of Cm\mathcal C_m containing the point corresponding to SS

    Phylogenetic Relationships in the Festuca-Lolium Complex (Loliinae; Poaceae): New Insights from Chloroplast Sequences

    Get PDF
    The species within the Lolium/Festuca grass complex have dispersed and colonized large areas of temperate global grasslands both naturally and by human intervention. The species within this grass complex represent some of the most important grass species both for amenity and agricultural use worldwide. There has been renewed interest by grass breeders in producing hybrid combinations between these species and several countries now market Festulolium varieties as a combination of genes from both genera. The two genera have been differentiated by their inflorescence structure, but controversy has surrounded the taxonomic classification of the Lolium-Festuca complex species for several decades. In order to better understand the complexities within the Lolium/Festuca complex and their genetic background, the phylogeny of important examplers from the Lolium-Festuca complex were reconstructed. In total 40 taxa representing the Festuca and Lolium species with Vulpia myuros and Brachypodium distachyon as outgroups were sampled, using two noncoding intergenic spacers (trnQ-rps16, trnH-psbA) and one coding gene (rbcL). Maximum parsimony (MP), Bayesian inference (BI) analyses based on each partition and combined plastid DNA dataset, and median-jointing network analysis were employed. The outcomes strongly suggested that the subgen. Schedonorus has a close relationship to Lolium, and it is also proposed to move the sect. Leucopoa from subgen. Leucopoa to Subgen. Schedonorus and to separate sect. Breviaristatae from the subgen. Leucopoa. We found that F. californica could be a lineage of hybrid origin because of its intermediate placement between the broad-leaved and fine-leaved clade

    Metabolic efficiency of liver mitochondria in rats with decreased thermogenesis

    Get PDF
    AbstractWe have studied changes in hepatic mitochondrial efficiency induced by 24-h fasting or acclimation at 29°C, two conditions of reduced thermogenesis. Basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, are not affected after 24-h fasting, when serum free triiodothyronine decreases significantly and serum free fatty acids increase significantly. In rats at 29°C, in which serum free triiodothyronine and fatty acids decrease significantly, basal proton leak increases significantly, while no variation is found in palmitate-induced proton leak. The present results indicate that mitochondrial efficiency in the liver is not related to a physiological decrease in whole body thermogenesis

    Examination of Antibody Responses as a Measure of Exposure to Malaria in the Indigenous Batwa and Their Non-Indigenous Neighbors in Southwestern Uganda

    Get PDF
    Understanding variations in malaria transmission and exposure is critical to identify populations at risk and enable better targeting of interventions. The indigenous Batwa of southwestern Uganda have a disproportionate burden of malaria infection compared with their non-indigenous neighbors. To better understand the individual- and community-level determinants of malaria exposure, a seroepidemiological study was conducted in 10 local council cells in Kanungu District, Uganda, in April 2014. The Batwa had twice the odds of being seropositive to two Plasmodium falciparum–specific antigens, apical membrane antigen-1 and merozoite surface protein-119, compared with the non-indigenous Bakiga (odds ratio = 2.08, 95% confidence interval = 1.51–2.88). This trend was found irrespective of altitude level and after controlling for cell location. Seroconversion rates in the Batwa were more than twice those observed in the Bakiga. For the Batwa, multiple factors may be associated with higher exposure to malaria and antibody levels relative to their non-indigenous neighbors

    Discrete-Event Simulation for Performance Evaluation and Improvement of Gynecology Outpatient Departments: A Case Study in the Public Sector

    Get PDF
    Gynecology outpatient units are in charge of treating different gynecological diseases such as tumorous, cancer, urinary incontinence, gynecological pain, and abnormal discharge. On-time attention is thus needed to avoid severe complications, patient dissatisfaction, and elevated healthcare costs. There is then an urgent need for assessing whether the gynecology outpatient departments are cost-effective and what interventions are required for improving clinical outcomes. Despite this context, the studies directly concentrating on diagnosis and improvement of these departments are widely limited. To address these concerns, this paper aims to provide a Discrete-event Simulation (DES) modelling framework to help healthcare managers gain a better understanding of the gynecology outpatient services and evaluate improvement strategies. First, the patient journey through the gynecology outpatient service is mapped. To correctly represent the system uncertainty, collected data is then processed through input analysis. Third, the data is used to model and simulate the real gynecology outpatient unit. This model is later validated to determine whether it is statistically equivalent to the real system. After this, using performance metrics derived from the simulation model, the gynecology outpatient department is analyzed to identify potential improvements. We finally pretest potential interventions to define their viability during implementation. A case study of a mixed-patient type environment in a public gynecology outpatient unit is presented to verify the applicability of the proposed methodology. The results evidenced that appointment lead times could be efficiently reduced using this approach. © 2019, Springer Nature Switzerland AG
    corecore